
MYS-ZU5EV_FPGA Development Manual V2.0.3

MYS-ZU5EV_FPGA Development

File Status：

[] Draft

[√] Release

Copyright © 2010－202

- 1 - -

ZU5EV_FPGA Development Manual V2.0.3

ZU5EV_FPGA Development

Manual

 File： MYS-ZU5EV_FPGA Development Manual

Revision： V2.0.3

 Author： Rill yang

 Date： 2021-07-13

 Update： 2021-07-13

2021 Copyright Shenzhen MYIR Electronics Co., Ltd.

ZU5EV_FPGA Development

ZU5EV_FPGA Development Manual

Copyright Shenzhen MYIR Electronics Co., Ltd.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Revision history

Date Revision

2021.05.31 v1.0.0

2021.06.02 V1.0.1

2021.06.04 V1.0.2

2021.06.07 V1.0.3

2021.06.08 V1.0.4

2021.06.25 V2.0.0

2021.07.03 V2.0.1

2021.07.07 V2.0.2

- 2 - -

ZU5EV_FPGA Development Manual V2.0.3

Revision history：

Revision Description

v1.0.0 v1.0

V1.0.1 Revise the directory structure, revise the

chapter content arrangement

V1.0.2 Revise the directory structure, revise the

chapter content arrangement

V1.0.3 Revise the directory structure, revise the

chapter content arrangement

V1.0.4 Revise the directory structure, revise the

chapter content arrangement

V2.0.0 Officially release revision

V2.0.1 1. Modify the overall format and font format

of the text. 2. Revise the controversial picture

in Section 6.1.1 in the previous version, and

revise the picture references and constraint

statements in Section 2.3.4 regarding input

constraints and output constraints. 3. The

chapter table in section 1.4 is revised. 4. The

software part in section 6.1.3 has been

revised. 5. Amended the content cited in

Section 7.3.2 and merged with Section 7.3.1.

6. Reference materials and contact

information have been added at the end of

the document.

V2.0.2 1. Modified the name of the picture. 2. Explain

the corresponding compressed file in the CD

file for each sample project. 3. Simplified and

revised the explanation about usage

constraints in section 2.3.4. 4. Modified the

basic knowledge of DMA in section

Revise the directory structure, revise the

arrangement

Revise the directory structure, revise the

chapter content arrangement

Revise the directory structure, revise the

chapter content arrangement

Revise the directory structure, revise the

chapter content arrangement

Officially release revision

1. Modify the overall format and font format

of the text. 2. Revise the controversial picture

in Section 6.1.1 in the previous version, and

erences and constraint

statements in Section 2.3.4 regarding input

constraints and output constraints. 3. The

chapter table in section 1.4 is revised. 4. The

software part in section 6.1.3 has been

revised. 5. Amended the content cited in

merged with Section 7.3.1.

6. Reference materials and contact

information have been added at the end of

1. Modified the name of the picture. 2. Explain

the corresponding compressed file in the CD

file for each sample project. 3. Simplified and

revised the explanation about usage

constraints in section 2.3.4. 4. Modified the

basic knowledge of DMA in section 5.2.1 and

MYS-ZU5EV_FPGA Development Manual V2.0.3

2021.07.09 V2.0.3

- 3 - -

ZU5EV_FPGA Development Manual V2.0.3

quoted the official PG021 document content.

V2.0.3 1. Added part of the VCU content in Section

6.2.

quoted the official PG021 document content.

1. Added part of the VCU content in Section

MYS-ZU5EV_FPGA Development Manual V2.0.3

MYS-ZU5EV_FPGA Development Manual

Revision history：

CONTENT

Chapter 1Abstract

1.1 About the Document

1.2 About the Arrangement of the Later Chapters of this Document

1.3 MPSOC Series Chip Introduction

1.4 Vivado Project List

1.5Sections of this Chapter

Chapter 2 MYS-ZU5EV Preparation

2.1 Hardware Preparation

2.2 Software Preparation

2.2.1 Vivado Download

2.2.2 Vivado Installation

2.2.3 Vivado License Register

2.2.4 Temporary License Registration of Paid IP in Vivado

2.2.5 Modelsim Download and Installation

2.2.6 Modelsim Installation

2.2.7 Modelsim Project Establishment and Simulation

2.3 Knowledge Preparation

2.3.1 Verilog Brief Introduction to Grammar

2.3.2 VerilogGrammar Study References

2.3.3 Usage of DocNav

2.3.4 XDC Constraints File

2.3.5 TCL Brief Introduction to

2.4 Sections of this Chapter

Chapter 3 Detailed Configuration of Hardware Platform

- 4 - -

ZU5EV_FPGA Development Manual V2.0.3

CONTENT

ZU5EV_FPGA Development Manual

..

..

...

1.1 About the Document ..

1.2 About the Arrangement of the Later Chapters of this Document

1.3 MPSOC Series Chip Introduction ..

1.4 Vivado Project List ..

1.5Sections of this Chapter ...

ZU5EV Preparation ..

2.1 Hardware Preparation ..

2.2 Software Preparation...

2.2.1 Vivado Download ..

Installation ..

2.2.3 Vivado License Register ..

2.2.4 Temporary License Registration of Paid IP in Vivado

2.2.5 Modelsim Download and Installation

2.2.6 Modelsim Installation ..

2.2.7 Modelsim Project Establishment and Simulation

2.3 Knowledge Preparation ...

2.3.1 Verilog Brief Introduction to Grammar

Grammar Study References

Usage of DocNav ..

2.3.4 XDC Constraints File ..

ntroduction to Grammar

2.4 Sections of this Chapter ..

Chapter 3 Detailed Configuration of Hardware Platform

.. - 1 -

................................ - 2 -

... - 4 -

............................... - 7 -

................................ - 7 -

1.2 About the Arrangement of the Later Chapters of this Document - 8 -

.. - 9 -

................................... - 11 -

......................... - 12 -

............................ - 13 -

............................ - 13 -

........................... - 15 -

... - 16 -

... - 16 -

... - 23 -

2.2.4 Temporary License Registration of Paid IP in Vivado - 26 -

... - 34 -

... - 34 -

........................... - 38 -

......................... - 42 -

.. - 42 -

.. - 59 -

.. - 60 -

.. - 65 -

... - 71 -

.. - 74 -

Chapter 3 Detailed Configuration of Hardware Platform - 75 -

MYS-ZU5EV_FPGA Development Manual V2.0.3

3.1 The First Project is Established

3.1.1 Vivado Project New

3.1.2 PS Detail Configuration

3.1.3 Generate XSA File

3.1.4 Built Vitis Application

3.1.5 Debug

3.1.6Serial Print O

3.1.7Program Curing

3.2 Data Interaction Between PL and PS

3.2.1 Direct Data Exchange Between PL and PS

3.2.2 Configurable Bus Between PS and PL

3.3 Introduction to AXI4 Bus

3.3.1 AXI4 Protocol

3.3.2 AXI Handshake Protocol

3.4 Sections of this Chapter

Chapter 4Interface Device Module Based on AXI4

4.1 AXI UART

4.1.1 AXI UART Basis Knowledge

4.1.2 Experimental Logical

4.1.3Experimental Steps

4.2 IIC

4.2.1 IIC Basis Knowledge

4.2.2 Experiment Logical

4.2.3Experiment Steps

4.3 Sections of this Chapter

Chapter 5Device ModuleBased on AXI4 High

5.1 BRAM

5.1.1AXI BRAM Contorller Basis Knowledge

5.1.2Experiment Logical

5.1.3Experiment Steps

5.2 AXI DMA

5.2.1AXI DMA Basis Knowledge

- 5 - -

ZU5EV_FPGA Development Manual V2.0.3

he First Project is Established ..

3.1.1 Vivado Project New ..

3.1.2 PS Detail Configuration ..

3.1.3 Generate XSA File ..

3.1.4 Built Vitis Application ..

..

3.1.6Serial Print Output“Hello World”

3.1.7Program Curing ..

3.2 Data Interaction Between PL and PS ..

irect Data Exchange Between PL and PS

3.2.2 Configurable Bus Between PS and PL

3.3 Introduction to AXI4 Bus ..

3.3.1 AXI4 Protocol ...

3.3.2 AXI Handshake Protocol ..

3.4 Sections of this Chapter ..

Chapter 4Interface Device Module Based on AXI4-Lite Bus

..

4.1.1 AXI UART Basis Knowledge ..

4.1.2 Experimental Logical ..

Experimental Steps ..

..

.2.1 IIC Basis Knowledge ..

4.2.2 Experiment Logical ..

Experiment Steps ...

of this Chapter ..

Chapter 5Device ModuleBased on AXI4 High-Speed Data Interface

...

5.1.1AXI BRAM Contorller Basis Knowledge

5.1.2Experiment Logical ..

Experiment Steps ...

..

5.2.1AXI DMA Basis Knowledge ..

... - 75 -

... - 75 -

.. - 80 -

... - 91 -

.. - 97 -

... - 105 -

.. - 108 -

.......................... - 108 -

.............................. - 112 -

...................................... - 112 -

... - 113 -

.. - 117 -

............................. - 117 -

.. - 120 -

.. - 121 -

Lite Bus - 123 -

.. - 123 -

.................................. - 123 -

... - 124 -

... - 124 -

................................ - 131 -

.. - 131 -

.. - 131 -

....................... - 131 -

.. - 132 -

Speed Data Interface- 134 -

......................... - 134 -

... - 134 -

.. - 134 -

....................... - 134 -

... - 138 -

..................................... - 138 -

MYS-ZU5EV_FPGA Development Manual V2.0.3

5.2.2 Experiment Logical

5.2.3 Experiment Steps

5.3Sections of this Chapter

Chapter 6 Device Module Based on AXI

6.1 MIPI

6.1.1 MIPI_CSI2_Rx_Subsystem Basis Knowledge

6.1.2 Experiment Logical

6.1.3Experiment Steps

6.1.4How to Add White Balance Module

6.2 VCU

6.2.1VCU Basis Knowledge

6.2.2 Experiment Logical

6.2.3 Experiment Steps

6.3 Sections of this Chapter

Chapter 7 How to Use Xilinx

7.1 User Guide

7.1.1How to Use “

7.2 Product Guide

7.2.1 How to Use the

7.3 Reference Design

7.3.1Reference Design for Vivado Project Usage

7.3Xilinx Community Forum

7.3.1 How to Ask Questions in the Community Forum

chapter 8 Conclusion

8.1 Conclusion

Reference................................

Appendix A

Warranty & Technical Support Services

- 6 - -

ZU5EV_FPGA Development Manual V2.0.3

5.2.2 Experiment Logical ..

Experiment Steps ..

5.3Sections of this Chapter ...

Chapter 6 Device Module Based on AXI-Stream Interface

..

6.1.1 MIPI_CSI2_Rx_Subsystem Basis Knowledge

6.1.2 Experiment Logical ..

6.1.3Experiment Steps ...

6.1.4How to Add White Balance Module

...

6.2.1VCU Basis Knowledge ..

6.2.2 Experiment Logical ..

6.2.3 Experiment Steps ..

ions of this Chapter ..

ilinx Official Information

..

“User Guide” ..

..

7.2.1 How to Use the “Product Guide”

..

7.3.1Reference Design for Vivado Project Usage

7.3Xilinx Community Forum ..

7.3.1 How to Ask Questions in the Community Forum

..

..

..

..

Warranty & Technical Support Services ...

.. - 142 -

.. - 142 -

....................... - 146 -

Stream Interface - 147 -

............................ - 147 -

.................................... - 154 -

.. - 158 -

....................... - 159 -

... - 161 -

............................. - 162 -

.. - 162 -

.. - 167 -

.. - 168 -

.. - 169 -

...................................... - 170 -

... - 170 -

................................... - 170 -

... - 173 -

... - 174 -

................................... - 174 -

.................................... - 174 -

... - 176 -

......................... - 176 -

.................... - 178 -

... - 178 -

... - 179 -

....................................... - 181 -

............................... - 181 -

MYS-ZU5EV_FPGA Development Manual V2.0.3

Chapter 1Abstract

1.1 About the Document

This document mainly introduces how to implement your own project de

velopment on the MYS-ZU5EV hardware platform. Through studying this docu

ment, I hope that customers can achieve several goals:

1. Understand the hardware platform of MYS

2. Be able to achieve your

3. Understand the reference materials about the hardware platform of MY

S-ZU5EV, customers can find them quickly, especially for some official referen

ce documents and reference designs of xilinx.

Introduce the collection of materials and information that customers may

 use when using the MYS

points, they can seek the direction of reference materials, and they can seek

cooperation and development from MYIR.

Here is the origin of the heterogeneous platform ZYNQ/MPSOC.

This is a hardware platform developed on the basis of the SOC. When th

e required peripheral interfaces and the data to be processed are integrated

by the ARM processor, it is the SOC chip, but there are so

n the SOC that cannot be completed or reached. To the required standard, it

 is necessary to add additional resources to complete the dedicated function.

 At this time, there are two solutions, one is to plug a dedicated device outs

ide the PCB, and the other is to add a dedicated area in the SOC chip to co

mplete the dedicated function. Obviously now the ZYNQ platform is the seco

nd solution. The second solution is the development trend, the current trend

AI function and the newly added variou

tion is to embed the corresponding functional modules into the SOC chip to

 form a more complex SOC chip.

 For detailed information about the heterogeneous platform of ZYNQZYN

Q/MPSOC, please refer to the official xilinx

ds891-zynq-ultrascale
ug1137-zynq-ultrascale
ug1085-zynq-ultrascale

- 7 - -

ZU5EV_FPGA Development Manual V2.0.3

Chapter 1Abstract

1.1 About the Document

nt mainly introduces how to implement your own project de

ZU5EV hardware platform. Through studying this docu

ment, I hope that customers can achieve several goals:

Understand the hardware platform of MYS-ZU5EV.

Be able to achieve your own target design on this hardware platform.

Understand the reference materials about the hardware platform of MY

ZU5EV, customers can find them quickly, especially for some official referen

ce documents and reference designs of xilinx.

llection of materials and information that customers may

use when using the MYS-ZU5EV hardware platform. When encountering key

points, they can seek the direction of reference materials, and they can seek

cooperation and development from MYIR.

origin of the heterogeneous platform ZYNQ/MPSOC.

This is a hardware platform developed on the basis of the SOC. When th

e required peripheral interfaces and the data to be processed are integrated

by the ARM processor, it is the SOC chip, but there are some special tasks i

n the SOC that cannot be completed or reached. To the required standard, it

is necessary to add additional resources to complete the dedicated function.

At this time, there are two solutions, one is to plug a dedicated device outs

PCB, and the other is to add a dedicated area in the SOC chip to co

mplete the dedicated function. Obviously now the ZYNQ platform is the seco

nd solution. The second solution is the development trend, the current trend

AI function and the newly added various functional modules The primary solu

tion is to embed the corresponding functional modules into the SOC chip to

form a more complex SOC chip.

For detailed information about the heterogeneous platform of ZYNQZYN

Q/MPSOC, please refer to the official xilinx document:

ultrascale-plus-overview.pdf
ultrascale-mpsoc-swdev.pdf
ultrascale-trm.pdf

nt mainly introduces how to implement your own project de

ZU5EV hardware platform. Through studying this docu

own target design on this hardware platform.

Understand the reference materials about the hardware platform of MY

ZU5EV, customers can find them quickly, especially for some official referen

llection of materials and information that customers may

ZU5EV hardware platform. When encountering key

points, they can seek the direction of reference materials, and they can seek

origin of the heterogeneous platform ZYNQ/MPSOC.

This is a hardware platform developed on the basis of the SOC. When th

e required peripheral interfaces and the data to be processed are integrated

me special tasks i

n the SOC that cannot be completed or reached. To the required standard, it

is necessary to add additional resources to complete the dedicated function.

At this time, there are two solutions, one is to plug a dedicated device outs

PCB, and the other is to add a dedicated area in the SOC chip to co

mplete the dedicated function. Obviously now the ZYNQ platform is the seco

nd solution. The second solution is the development trend, the current trend

s functional modules The primary solu

tion is to embed the corresponding functional modules into the SOC chip to

For detailed information about the heterogeneous platform of ZYNQZYN

MYS-ZU5EV_FPGA Development Manual V2.0.3

1.2 About the Arrangement of the Later Chapters
of this Document

The first chapter is an introduction, briefly introducing the purpose

ting this document and the chapter structure of the document. The second c

hapter introduces some preparations for using this hardware platform or simil

ar hardware platforms, including some preparations for the use of the hardw

are platform. For the introduction of using xilinx's EDA tool vivado, from xilin

x official website registration to download the required version Vivado softwa

re, installation screenshots are introduced.

Secondly, it introduces the download, installation and use of FPGA simula

tion tool modelsim. The corresponding vivado version can call the specific m

odelsim version. Here, refer to the vivado installation document to find the c

orresponding modelsim version. When using these EDA tools for the first tim

e, license registration is req

 addition, some paid IPs from Xilinx have a trial period of 3 months. You ne

ed to download a temporary license on the official website to register before

 you can use it. Otherwise, you need to design and wr

ally, some verilog syntax, corresponding reference materials, the use of the d

ocument finder DocNav, the syntax introduction of XDC constraint files, a bri

ef introduction of TCL syntax and so on are introduced.

Chapter 3, Section 3.1

hardware platform. The general content includes a detailed configuration intr

oduction of MPSOC according to the resources used by the hardware platfor

m. For example, the hardware platform is connected to

he PS side. When establishing the vivado project, you need to check the DP

interface option of the peripheral interface of the MPSOC IP core. , And selec

t the corresponding link pin according to the schematic connection method. I

n short, the interfaces and peripherals on the hardware platform will be intro

duced in detail in the PS configuration in Chapter 3. The last step is to speci

fically generate the hardware platform file xsa file, and the last step is to use

 vitis to build an app project to output hello world. Section 3.2 On the basis

 of Section 3.1, assuming that the PL side logic is added, we will introduce t

he data interaction method between the PL and the PS side. It focuses on th

- 8 - -

ZU5EV_FPGA Development Manual V2.0.3

1.2 About the Arrangement of the Later Chapters
of this Document

The first chapter is an introduction, briefly introducing the purpose

ting this document and the chapter structure of the document. The second c

hapter introduces some preparations for using this hardware platform or simil

ar hardware platforms, including some preparations for the use of the hardw

troduction of using xilinx's EDA tool vivado, from xilin

x official website registration to download the required version Vivado softwa

re, installation screenshots are introduced.

Secondly, it introduces the download, installation and use of FPGA simula

n tool modelsim. The corresponding vivado version can call the specific m

odelsim version. Here, refer to the vivado installation document to find the c

orresponding modelsim version. When using these EDA tools for the first tim

e, license registration is required, and registration methods are introduced. In

addition, some paid IPs from Xilinx have a trial period of 3 months. You ne

ed to download a temporary license on the official website to register before

you can use it. Otherwise, you need to design and write your own code. Fin

ally, some verilog syntax, corresponding reference materials, the use of the d

ocument finder DocNav, the syntax introduction of XDC constraint files, a bri

ef introduction of TCL syntax and so on are introduced.

Chapter 3, Section 3.1 explains the detailed configuration of the detailed

hardware platform. The general content includes a detailed configuration intr

oduction of MPSOC according to the resources used by the hardware platfor

m. For example, the hardware platform is connected to the DP interface on t

he PS side. When establishing the vivado project, you need to check the DP

interface option of the peripheral interface of the MPSOC IP core. , And selec

t the corresponding link pin according to the schematic connection method. I

rt, the interfaces and peripherals on the hardware platform will be intro

duced in detail in the PS configuration in Chapter 3. The last step is to speci

fically generate the hardware platform file xsa file, and the last step is to use

project to output hello world. Section 3.2 On the basis

of Section 3.1, assuming that the PL side logic is added, we will introduce t

he data interaction method between the PL and the PS side. It focuses on th

1.2 About the Arrangement of the Later Chapters

The first chapter is an introduction, briefly introducing the purpose of wri

ting this document and the chapter structure of the document. The second c

hapter introduces some preparations for using this hardware platform or simil

ar hardware platforms, including some preparations for the use of the hardw

troduction of using xilinx's EDA tool vivado, from xilin

x official website registration to download the required version Vivado softwa

Secondly, it introduces the download, installation and use of FPGA simula

n tool modelsim. The corresponding vivado version can call the specific m

odelsim version. Here, refer to the vivado installation document to find the c

orresponding modelsim version. When using these EDA tools for the first tim

uired, and registration methods are introduced. In

addition, some paid IPs from Xilinx have a trial period of 3 months. You ne

ed to download a temporary license on the official website to register before

ite your own code. Fin

ally, some verilog syntax, corresponding reference materials, the use of the d

ocument finder DocNav, the syntax introduction of XDC constraint files, a bri

explains the detailed configuration of the detailed

hardware platform. The general content includes a detailed configuration intr

oduction of MPSOC according to the resources used by the hardware platfor

the DP interface on t

he PS side. When establishing the vivado project, you need to check the DP

interface option of the peripheral interface of the MPSOC IP core. , And selec

t the corresponding link pin according to the schematic connection method. I

rt, the interfaces and peripherals on the hardware platform will be intro

duced in detail in the PS configuration in Chapter 3. The last step is to speci

fically generate the hardware platform file xsa file, and the last step is to use

project to output hello world. Section 3.2 On the basis

of Section 3.1, assuming that the PL side logic is added, we will introduce t

he data interaction method between the PL and the PS side. It focuses on th

MYS-ZU5EV_FPGA Development Manual V2.0.3

e AXI4 bus. This content is closely related to t

apters.

The fourth chapter is divided into several sub

ntroduces a use case of using this hardware platform to achieve a goal. Thes

e are all based on the AXI4

erface module. The two general interfaces introduced are AXI UART interface

and AXI-IIC interface.

The fifth chapter is an introduction to the use of high

bus interface. 5.1 Introduce the use of PL

side data of small modules. 5.2 introduces the demo using DMA.

Chapter 6 , Introduces the use of AXI

 streams, focusing on the MIPI interface using IMX334 as a sensor, configurat

ion, and the process of using AXI

d things are customizable. How to add RTL module to AXI

m. Custom IP design, white balance module addition. The seventh chapter int

roduces how to use some official reference materials of xilinx.

Chanpter 7. 7.1 Introduce how to quickly view the official user manual do

cuments to quickly find the information we need. 7.2 Introduce how to quickl

y find xilinx product manuals, and quickly find information about the function

s, features, interfaces, timing an

ntroduces how to use the official reference design of xilinx. 7.4 How to quick

ly seek help for problems encountered by customers, you can raise questions

 in the Chinese and English communities of xilinx's offic

edicated xilinx technical support for maintenance. Working hours are online,

where you can get quick feedback and solutions. Program.

Chapter 8, Conclusion.

1.3 MPSOC Series Chip Introduction
1，Low-end CG series,as show

- 9 - -

ZU5EV_FPGA Development Manual V2.0.3

e AXI4 bus. This content is closely related to the content of the following ch

The fourth chapter is divided into several sub-sections, and respectively i

ntroduces a use case of using this hardware platform to achieve a goal. Thes

e are all based on the AXI4-Lite bus PL end external expansion per

erface module. The two general interfaces introduced are AXI UART interface

The fifth chapter is an introduction to the use of high-performance AXI4

bus interface. 5.1 Introduce the use of PL-side BRAM to interact with the

side data of small modules. 5.2 introduces the demo using DMA.

Chapter 6 , Introduces the use of AXI-Stream in the transmission of video

streams, focusing on the MIPI interface using IMX334 as a sensor, configurat

ion, and the process of using AXI-stream to transmit video streams. The adde

d things are customizable. How to add RTL module to AXI-Stream data strea

m. Custom IP design, white balance module addition. The seventh chapter int

roduces how to use some official reference materials of xilinx.

ter 7. 7.1 Introduce how to quickly view the official user manual do

cuments to quickly find the information we need. 7.2 Introduce how to quickl

y find xilinx product manuals, and quickly find information about the function

s, features, interfaces, timing and other aspects of the corresponding IP. 7.3 i

ntroduces how to use the official reference design of xilinx. 7.4 How to quick

ly seek help for problems encountered by customers, you can raise questions

in the Chinese and English communities of xilinx's official website. There is d

edicated xilinx technical support for maintenance. Working hours are online,

where you can get quick feedback and solutions. Program.

Chapter 8, Conclusion.

1.3 MPSOC Series Chip Introduction
end CG series,as show，

he content of the following ch

sections, and respectively i

ntroduces a use case of using this hardware platform to achieve a goal. Thes

Lite bus PL end external expansion peripheral int

erface module. The two general interfaces introduced are AXI UART interface

performance AXI4

side BRAM to interact with the PS-

side data of small modules. 5.2 introduces the demo using DMA.

Stream in the transmission of video

streams, focusing on the MIPI interface using IMX334 as a sensor, configurat

am to transmit video streams. The adde

Stream data strea

m. Custom IP design, white balance module addition. The seventh chapter int

roduces how to use some official reference materials of xilinx.

ter 7. 7.1 Introduce how to quickly view the official user manual do

cuments to quickly find the information we need. 7.2 Introduce how to quickl

y find xilinx product manuals, and quickly find information about the function

d other aspects of the corresponding IP. 7.3 i

ntroduces how to use the official reference design of xilinx. 7.4 How to quick

ly seek help for problems encountered by customers, you can raise questions

ial website. There is d

edicated xilinx technical support for maintenance. Working hours are online,

MYS-ZU5EV_FPGA Development Manual V2.0.3

The low-end series processor is dual

ach 1.3GHz, the actual frequency is lower, only about 1GHz, the high

nterface on the ps side has USB3.1, STAT3.0, DP, GEthernet, PCIe.

is low, and the logic unit can choose different devices as the demand fails.

2，The mid-range EG series, as shown

In the mid-range series, the processor is quad

can reach 1.5GHz, the actual stable frequency

high-speed interfaces on the ps side include USB3.1, STAT3.0, DP, GEthernet, and

PCIe. The logic unit can choose different devices according to the demand. If the

high-speed demand is relatively high, you can choose 4EG

need 100Gbps communication data, you need to choose 11EG and 17EG, 19EG

- 10 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 1-1CG series features

end series processor is dual-core A53, the main frequency can re

ach 1.3GHz, the actual frequency is lower, only about 1GHz, the high

nterface on the ps side has USB3.1, STAT3.0, DP, GEthernet, PCIe.

the logic unit can choose different devices as the demand fails.

range EG series, as shown：

Figure 1-2 EG series features

range series, the processor is quad-core A53, the main frequency

can reach 1.5GHz, the actual stable frequency is lower, only about 1.2GHz, and the

speed interfaces on the ps side include USB3.1, STAT3.0, DP, GEthernet, and

The logic unit can choose different devices according to the demand. If the

speed demand is relatively high, you can choose 4EG, 5EG upwards, if you

need 100Gbps communication data, you need to choose 11EG and 17EG, 19EG

core A53, the main frequency can re

ach 1.3GHz, the actual frequency is lower, only about 1GHz, the high-speed i

nterface on the ps side has USB3.1, STAT3.0, DP, GEthernet, PCIe. The ability

the logic unit can choose different devices as the demand fails.

core A53, the main frequency

is lower, only about 1.2GHz, and the

speed interfaces on the ps side include USB3.1, STAT3.0, DP, GEthernet, and

The logic unit can choose different devices according to the demand. If the

, 5EG upwards, if you

need 100Gbps communication data, you need to choose 11EG and 17EG, 19EG

MYS-ZU5EV_FPGA Development Manual V2.0.3

these three models. The biggest difference from the CG series is the addition of

GPU processors on the PS side.

3，High-end EV series, as shown

The high-end EV series has a quad

can reach 1.5GHz, the actual stable frequency is lower, only about 1.2GHz, and the

high-speed interfaces on the ps side include USB3.1, STAT3.0, DP, GEthernet, and

PCIe. The logic unit can choose different devices as the demand is not available. If

the high-speed demand is relatively high, you can choose 4EV, 5EV, and 7EV. If

you need 100Gbps communication data, you still need to choose the mid

11EG and 17EG, 19EG. Three models. The biggest difference from the EG series is

the addition of the VCU hard core module on the PL end, which can handle the

video encoding and decoding of the H.264/H.265 protocol.

1.4 Vivado Project List
The projects introduced in this documen

and the corresponding project documents can be downloaded and used in the

information channels announced by the company. The specific development

process is described in detail in Chapter 3

Num Name
1 hello_world.rar

2 gpio_mio.rar

- 11 -

ZU5EV_FPGA Development Manual V2.0.3

these three models. The biggest difference from the CG series is the addition of

GPU processors on the PS side.

end EV series, as shown：

Figure 1-3 EVseries features

end EV series has a quad-core A53 processor, the main frequency

can reach 1.5GHz, the actual stable frequency is lower, only about 1.2GHz, and the

speed interfaces on the ps side include USB3.1, STAT3.0, DP, GEthernet, and

The logic unit can choose different devices as the demand is not available. If

speed demand is relatively high, you can choose 4EV, 5EV, and 7EV. If

you need 100Gbps communication data, you still need to choose the mid

hree models. The biggest difference from the EG series is

the addition of the VCU hard core module on the PL end, which can handle the

video encoding and decoding of the H.264/H.265 protocol.

1.4 Vivado Project List
The projects introduced in this document can be seen in the following list,

and the corresponding project documents can be downloaded and used in the

information channels announced by the company. The specific development

process is described in detail in Chapter 3。

Table 1 project list
Description

hello_world.rar Introduced as a basic configuration
project in Chapter 3

gpio_mio.rar In the third chapter, the introduction of

these three models. The biggest difference from the CG series is the addition of

core A53 processor, the main frequency

can reach 1.5GHz, the actual stable frequency is lower, only about 1.2GHz, and the

speed interfaces on the ps side include USB3.1, STAT3.0, DP, GEthernet, and

The logic unit can choose different devices as the demand is not available. If

speed demand is relatively high, you can choose 4EV, 5EV, and 7EV. If

you need 100Gbps communication data, you still need to choose the mid-range

hree models. The biggest difference from the EG series is

the addition of the VCU hard core module on the PL end, which can handle the

t can be seen in the following list,

and the corresponding project documents can be downloaded and used in the

information channels announced by the company. The specific development

Introduced as a basic configuration

In the third chapter, the introduction of

MYS-ZU5EV_FPGA Development Manual V2.0.3

3 IIc_test.rar

4 uart_cycle.rar

5 dma_loop.rar

6 bram_test.rar

7 MIPI_DP_4G

1.5Sections of this Chapter
This chapter mainly introduces the summary of the entire document. The

later chapters are basically mentioned in this chapter. The detailed content n

eeds to be checked in the specific chapters, or the corresponding reference

materials or projects can be found. For the MYIR MYS

rm, the main application directions are

d artificial intelligence.

- 12 -

ZU5EV_FPGA Development Manual V2.0.3

the use of ps-side LED lights is
introduced
Introduction to the use of the IIC
peripheral bus on the PS side in
Chapter 4

uart_cycle.rar In the fourth chapter, we will introduce
peripheral experiments based on the
AXI-Lite bus

dma_loop.rar In the fifth chapter, the introduction
experiment using AXI4 bus

bram_test.rar In the fifth chapter, use the introduction
experiment of AXI4-Lite bus

MIPI_DP_4G In the sixth chapter, the introduction
experiment using AXI-Stream bus

1.5Sections of this Chapter
This chapter mainly introduces the summary of the entire document. The

rs are basically mentioned in this chapter. The detailed content n

eeds to be checked in the specific chapters, or the corresponding reference

materials or projects can be found. For the MYIR MYS-ZU5EV hardware platfo

rm, the main application directions are edge computing, image processing an

side LED lights is

Introduction to the use of the IIC
bus on the PS side in

In the fourth chapter, we will introduce
peripheral experiments based on the

In the fifth chapter, the introduction
experiment using AXI4 bus

chapter, use the introduction
Lite bus

In the sixth chapter, the introduction
Stream bus

This chapter mainly introduces the summary of the entire document. The

rs are basically mentioned in this chapter. The detailed content n

eeds to be checked in the specific chapters, or the corresponding reference

ZU5EV hardware platfo

edge computing, image processing an

MYS-ZU5EV_FPGA Development Manual V2.0.3

Chapter 2 MYS
2.1 Hardware Preparation

A little introduction to the basic characteristics of the MYS

platform，as show in figure2

Figure 2

MYS-ZU5EV-32E4D-EDGE use Xilinx XCZU5EV

grade is -2. 32E means 32GEMMC, 4D means 4G DDR storage.

2SFVC784I supports 1.5GHz (maximum

RPU speed, 667MHz (maximum

XCZU5EV-2SFVC784I device resources

Processor System Unit (PS):

  Processing core: Quad

1.5GHz

 The highest clock frequency: 1.5Ghz  APU: L1 Cache 32KB I / D per core,

L2 Cache 1MB.

 RPU: L1 Cache 32KB I / D per core On

Off-chip interface:

support LPDDR4, DDR4, DDR3, DDR3L LPDDR3 with E

storage: 2x Quad-SPI, NAND

DMA channels:

8 (4 of which are dedicated to PL) 

Peripherals:

- 13 -

ZU5EV_FPGA Development Manual V2.0.3

Chapter 2 MYS-ZU5EV Preparation
2.1 Hardware Preparation

A little introduction to the basic characteristics of the MYS-ZU5EV hardware

as show in figure2-1

Figure 2-1 Hardware platform products

EDGE use Xilinx XCZU5EV-SFVC784 decice

2. 32E means 32GEMMC, 4D means 4G DDR storage. XCZU5EV

2SFVC784I supports 1.5GHz (maximum -2) APU speed, 600MHz (maximum

RPU speed, 667MHz (maximum -2) GPU speed, and up to 2400Mbps DDR4 speed.

2SFVC784I device resources：

Processor System Unit (PS):

 Processing core: Quad-core ARM Cortex-A53 multi-core processor up to

 The highest clock frequency: 1.5Ghz  APU: L1 Cache 32KB I / D per core,

 RPU: L1 Cache 32KB I / D per core On-chip cache: 256KB

support LPDDR4, DDR4, DDR3, DDR3L LPDDR3 with ECC  External static

SPI, NAND

8 (4 of which are dedicated to PL) 

ZU5EV Preparation

ZU5EV hardware

SFVC784 decice，The speed

XCZU5EV-

2) APU speed, 600MHz (maximum -2)

2) GPU speed, and up to 2400Mbps DDR4 speed.

core processor up to

 The highest clock frequency: 1.5Ghz  APU: L1 Cache 32KB I / D per core,

chip cache: 256KB

CC  External static

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2-2 MPSOC interconnection block diagram
 High performance interface

DisplayPort, 4x Tri-mode

Gigabit Ethernet.

 General interface：2xUSB 2.0, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x I2C,

2x SPI, 4x 32b GPIO.

Programble Logical Unit

- 14 -

ZU5EV_FPGA Development Manual V2.0.3

2 MPSOC interconnection block diagram
High performance interface：PCIe® Gen2 x4, 2x USB3.0, SATA 3.1,

2xUSB 2.0, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x I2C,

Programble Logical Unit（PL）：

2 MPSOC interconnection block diagram

PCIe® Gen2 x4, 2x USB3.0, SATA 3.1,

2xUSB 2.0, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x I2C,

MYS-ZU5EV_FPGA Development Manual V2.0.3

resources

Logical kernal

Programable logical Unit

LUTs

register

Block RAM

DSP Slice

AMS System Monitor

2.2 Software Preparation

This section mainly introduces the installation of Vivado2020.1. The

installation of vivado2020.1 is applicable to all vivado versions. The difference

between vivado versions is not very big. We recommend using the vivado

software version of the same version of our engineering documents to facilitate

the verification of the vivado software

documentation routines.

 Why install vivado instead of ISE, here is the evolution process: As the FPGA

chip enters the 28nm process, the performance of the ISE software can no longer

follow the huge improvement in the hardw

progress of the process, so there is the plan of vivado, although the follow

continues to update in 2008, it has also been added. For 28nm series devices and

subsequent device libraries, it is necessary to accelerate de

and improve software efficiency.

 Vivado®DesignSuite aims to improve the overall work efficiency of

designing, integrating and implementing systems using Xilinx®UltraScale™ and 7

series devices, Zynq®UltraScale+™ MPSoC devices and Zynq

Then there are various problems with different versions of vivado. The first is

the update of IP, and the second is that there will be unexpected problems in the

process of generating bitstream in the comprehensive realization of vivado. It ma

be caused by problems such as spaces in the path. It may be caused by other

- 15 -

ZU5EV_FPGA Development Manual V2.0.3

Table 2 PL side logic resources

ZU5EV

Xilinx Kintex Ultrascale+®FPGA

logical Unit 256K

117K

234K

Distributed RAM 5.1Mb /

Block RAM 18.0Mb

1248

 1

2.2 Software Preparation

This section mainly introduces the installation of Vivado2020.1. The

vivado2020.1 is applicable to all vivado versions. The difference

between vivado versions is not very big. We recommend using the vivado

software version of the same version of our engineering documents to facilitate

the verification of the vivado software version we provide. Engineering

Why install vivado instead of ISE, here is the evolution process: As the FPGA

chip enters the 28nm process, the performance of the ISE software can no longer

follow the huge improvement in the hardware performance caused by the

progress of the process, so there is the plan of vivado, although the follow

continues to update in 2008, it has also been added. For 28nm series devices and

subsequent device libraries, it is necessary to accelerate design and development

and improve software efficiency.

Vivado®DesignSuite aims to improve the overall work efficiency of

designing, integrating and implementing systems using Xilinx®UltraScale™ and 7

series devices, Zynq®UltraScale+™ MPSoC devices and Zynq®-7000 SoC.

Then there are various problems with different versions of vivado. The first is

the update of IP, and the second is that there will be unexpected problems in the

process of generating bitstream in the comprehensive realization of vivado. It ma

be caused by problems such as spaces in the path. It may be caused by other

Xilinx Kintex Ultrascale+®FPGA

Distributed RAM 5.1Mb /

This section mainly introduces the installation of Vivado2020.1. The

vivado2020.1 is applicable to all vivado versions. The difference

between vivado versions is not very big. We recommend using the vivado

software version of the same version of our engineering documents to facilitate

version we provide. Engineering

Why install vivado instead of ISE, here is the evolution process: As the FPGA

chip enters the 28nm process, the performance of the ISE software can no longer

are performance caused by the

progress of the process, so there is the plan of vivado, although the follow-up ISE

continues to update in 2008, it has also been added. For 28nm series devices and

sign and development

Vivado®DesignSuite aims to improve the overall work efficiency of

designing, integrating and implementing systems using Xilinx®UltraScale™ and 7

7000 SoC.

Then there are various problems with different versions of vivado. The first is

the update of IP, and the second is that there will be unexpected problems in the

process of generating bitstream in the comprehensive realization of vivado. It may

be caused by problems such as spaces in the path. It may be caused by other

MYS-ZU5EV_FPGA Development Manual V2.0.3

unknown reasons. For smooth engineering development, the same version is

recommended. Secondly, there may be inexplicable reasons when using vivado.

This reason is sometimes caus

or it may be caused by inconsistent use of vivado. Various complex reasons, if

they occur, A recommended solution is to uninstall vivado and reinstall.

2.2.1 Vivado Download

To download the Vivado tool, y

official website. After completing the registration, you can find "Product

"Hardware Development——

version" to download. as the picture shows

Figure 2

You can see that the serial numbers of various versions are there. Download

and select "ALL OS installer Signaler

package is relatively large, there are generally no extra problems

afterdownloading and installing. And the download speed is relatively fast.

2.2.2 Vivado Installation

Before installation, please close the anti

anti-virus software.

Step 1: Unzip the downloaded installation document, double

installation program, as shown in the figure

- 16 -

ZU5EV_FPGA Development Manual V2.0.3

unknown reasons. For smooth engineering development, the same version is

recommended. Secondly, there may be inexplicable reasons when using vivado.

This reason is sometimes caused by errors or death of the PC processor process,

or it may be caused by inconsistent use of vivado. Various complex reasons, if

they occur, A recommended solution is to uninstall vivado and reinstall.

To download the Vivado tool, you need to register an account on the xilinx

official website. After completing the registration, you can find "Product

——"Vivado Design Suit——"Find the corresponding

version" to download. as the picture shows

Figure 2-3vivado download page

You can see that the serial numbers of various versions are there. Download

and select "ALL OS installer Signaler-file download". Although the installation

package is relatively large, there are generally no extra problems

talling. And the download speed is relatively fast.

2.2.2 Vivado Installation

Before installation, please close the anti-virus software, especially the 360

Step 1: Unzip the downloaded installation document, double

tion program, as shown in the figure，

unknown reasons. For smooth engineering development, the same version is

recommended. Secondly, there may be inexplicable reasons when using vivado.

ed by errors or death of the PC processor process,

or it may be caused by inconsistent use of vivado. Various complex reasons, if

they occur, A recommended solution is to uninstall vivado and reinstall.

ou need to register an account on the xilinx

official website. After completing the registration, you can find "Product——

"Find the corresponding

You can see that the serial numbers of various versions are there. Download

file download". Although the installation

package is relatively large, there are generally no extra problems

talling. And the download speed is relatively fast.

virus software, especially the 360

Step 1: Unzip the downloaded installation document, double-click the

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure2-

Step 2: Click NEXT on the welcome

Step 3: Tick all of them, all agree, NEXT.

- 17 -

ZU5EV_FPGA Development Manual V2.0.3

-4 decompressed vivado installation file

Step 2: Click NEXT on the welcome page:

Figure 2-5 Installation Wizard

Step 3: Tick all of them, all agree, NEXT.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Step 4: Choose the product to install, because the 2020.1 version is updated

from the SDK to the Vitis software tool, so choose Vitis

- 18 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-6 installation wiazrd

Step 4: Choose the product to install, because the 2020.1 version is updated

from the SDK to the Vitis software tool, so choose Vitis

Step 4: Choose the product to install, because the 2020.1 version is updated

MYS-ZU5EV_FPGA Development Manual V2.0.3

Step 5: Select the installation path and user, as shown in the figure

Figure 2-

- 19 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-7 installation wizard
Step 5: Select the installation path and user, as shown in the figure

-8 installation wizard-installation location

Step 5: Select the installation path and user, as shown in the figure

MYS-ZU5EV_FPGA Development Manual V2.0.3

Step 6: Click YES

Step 7: Click Install, the installation will take about 45 minutes

Step 8: Install the network adapter

Step 9: Install the downloader driver

- 20 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-9 installation wizard
Step 7: Click Install, the installation will take about 45 minutes

Figure 2-10 installation wizard

Step 8: Install the network adapter

Figure 2-11 installation wizard
Step 9: Install the downloader driver

Step 7: Click Install, the installation will take about 45 minutes

MYS-ZU5EV_FPGA Development Manual V2.0.3

- 21 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-12 installation wizard

Figure 2-13 installation wizard

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

Figure 2

- 22 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-14 installation wizard-install wincap

Figure 2-15 installation wizard-install wincap

MYS-ZU5EV_FPGA Development Manual V2.0.3

Step 10: Finally, a window to install MATLAB will pop up. Just fork it directly. If

you need it, you can install it yourself.

Step11: the installation is successful, the window for installing the license

pops up, and it is also directly crossed. Explained

registered .

Figure 2

2.2.3 Vivado License Register

In the previous section, the license registration wascrossed directly during

the installation. Now reopen the Vivado license Manager

menu bar.

- 23 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-16 installation wizard
Step 10: Finally, a window to install MATLAB will pop up. Just fork it directly. If

you need it, you can install it yourself.

: the installation is successful, the window for installing the license

pops up, and it is also directly crossed. Explained in the next section. Install wizard

Figure 2-17installation wizard-finished

2.2.3 Vivado License Register

In the previous section, the license registration wascrossed directly during

the installation. Now reopen the Vivado license Manager and find it in the start

Step 10: Finally, a window to install MATLAB will pop up. Just fork it directly. If

: the installation is successful, the window for installing the license

in the next section. Install wizard

In the previous section, the license registration wascrossed directly during

and find it in the start

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

Figure 2

- 24 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-18 Manage Xilinx License

Figure 2-19 installation of license

MYS-ZU5EV_FPGA Development Manual V2.0.3

Chose Load License，then select Copy License.

Figure 2

Find the vivadoregister file of Xilinx.lic

- 25 -

ZU5EV_FPGA Development Manual V2.0.3

then select Copy License...

Figure 2-20installation of license

Find the vivadoregister file of Xilinx.lic

Figure 2-21installation license

MYS-ZU5EV_FPGA Development Manual V2.0.3

At last click View License State

2.2.4 Temporary License Registration of Paid IP in Vivado

Let's take an example of an IP that needs to be paid. If w

of 10G/25G Ethernet Subsystem, when we configure, the status of the IP is IP:

Design_Linking IP License available.

- 26 -

ZU5EV_FPGA Development Manual V2.0.3

At last click View License State，You can verify the license has been registered

Figure 2-22installation license

2.2.4 Temporary License Registration of Paid IP in Vivado

Let's take an example of an IP that needs to be paid. If we want to use the IP

of 10G/25G Ethernet Subsystem, when we configure, the status of the IP is IP:

Design_Linking IP License available.

You can verify the license has been registered。

2.2.4 Temporary License Registration of Paid IP in Vivado

e want to use the IP

of 10G/25G Ethernet Subsystem, when we configure, the status of the IP is IP:

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2-23installation of license state after a lic registered

Vivado License Manager find ,as show below:

Figure 2

At this time, the license has expired, and it can be simulated but bitstream

cannot be generated. Next, we will introduce how to apply for a specific license.

- 27 -

ZU5EV_FPGA Development Manual V2.0.3

23installation of license state after a lic registered

Vivado License Manager find ,as show below:

Figure 2-24Installation license

At this time, the license has expired, and it can be simulated but bitstream

cannot be generated. Next, we will introduce how to apply for a specific license.

23installation of license state after a lic registered

At this time, the license has expired, and it can be simulated but bitstream

cannot be generated. Next, we will introduce how to apply for a specific license.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Just follow the steps shown in the figure.

Figure 2

Figure 2-26 Go to license requested permission page

- 28 -

ZU5EV_FPGA Development Manual V2.0.3

Just follow the steps shown in the figure.

Figure 2-2510G/25G Ethernet Subsystem IP

26 Go to license requested permission page

26 Go to license requested permission page

MYS-ZU5EV_FPGA Development Manual V2.0.3

- 29 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-27Product Licensing

Figure 2-28 Search license

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2-30 Fill ip with you PC MACaddress to generatelicense

- 30 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-29 Generate license

30 Fill ip with you PC MACaddress to generatelicense

30 Fill ip with you PC MACaddress to generatelicense

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

Figure 2

- 31 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-31 Confirm the license generation

Figure 2-32 Agreement with xilinx license

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

So far, you can receive the corresponding Xilinx.lic in the registered mailbox

Figure 2

Download the received

Vivado License manager (repeat the operation in section 2.2.3), as shown in the

figure

- 32 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-33 after send license to you mail

So far, you can receive the corresponding Xilinx.lic in the registered mailbox

Figure 2-34 Mail received license attachment

Download the received Xilinx.lic, and then re-register the license with the

Vivado License manager (repeat the operation in section 2.2.3), as shown in the

So far, you can receive the corresponding Xilinx.lic in the registered mailbox

register the license with the

Vivado License manager (repeat the operation in section 2.2.3), as shown in the

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

At this point, the corresponding IP status has become Hardware_Evaluation

IP License available

Figure 2

- 33 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-35 Installation of license
At this point, the corresponding IP status has become Hardware_Evaluation

Figure 2-36 Installation license of state IP core

At this point, the corresponding IP status has become Hardware_Evaluation

MYS-ZU5EV_FPGA Development Manual V2.0.3

In the next 3 month,you can use the IP of

(25GEMAC) Evaluation。

2.2.5 Modelsim Download and Installation

modelsim se 2019 is the latest version of HDL language simulation

softwarethat has been improved and optimized on the basis of the original

version of the software functions and performance, making its softwa

functionality more complete. The 2019 new version provides comprehensive and

high-performance verification functions, fully supporting the industry's wide

range of standards; in addition, compared with the old version, the simulation

speed is 10 times faster, and the graphical user interface is powerful, all windows

will be automatically updated in any other windows activity. For example,

selecting the design area in the Structure window will automatically update the

Source, Signals, Process and Variable

simulate without leaving the software environment. All user interface operations

can be scripted, and the simulation can be run in batch or interactive mode. It is

the preferred simulation software for FPGA/ASIC de

Modelsim is a simulation tool of Mentor Graphics Corporation. The method of

downloading here can be found on the eetop website to find the corresponding

installation package, or download it from Mentor Graphics' official website.

2.2.6 Modelsim Installation

1,Unzip the compressed package of the software installation package to get

the installation program。

- 34 -

ZU5EV_FPGA Development Manual V2.0.3

In the next 3 month,you can use the IP of 10G/25G Ethernet MAC/PCS

。

2.2.5 Modelsim Download and Installation

modelsim se 2019 is the latest version of HDL language simulation

softwarethat has been improved and optimized on the basis of the original

version of the software functions and performance, making its softwa

functionality more complete. The 2019 new version provides comprehensive and

performance verification functions, fully supporting the industry's wide

range of standards; in addition, compared with the old version, the simulation

aster, and the graphical user interface is powerful, all windows

will be automatically updated in any other windows activity. For example,

selecting the design area in the Structure window will automatically update the

Source, Signals, Process and Variables windows. You can edit, recompile and re

simulate without leaving the software environment. All user interface operations

can be scripted, and the simulation can be run in batch or interactive mode. It is

the preferred simulation software for FPGA/ASIC design.

Modelsim is a simulation tool of Mentor Graphics Corporation. The method of

downloading here can be found on the eetop website to find the corresponding

installation package, or download it from Mentor Graphics' official website.

Installation

Unzip the compressed package of the software installation package to get

10G/25G Ethernet MAC/PCS

modelsim se 2019 is the latest version of HDL language simulation

softwarethat has been improved and optimized on the basis of the original

version of the software functions and performance, making its software

functionality more complete. The 2019 new version provides comprehensive and

performance verification functions, fully supporting the industry's wide

range of standards; in addition, compared with the old version, the simulation

aster, and the graphical user interface is powerful, all windows

will be automatically updated in any other windows activity. For example,

selecting the design area in the Structure window will automatically update the

s windows. You can edit, recompile and re-

simulate without leaving the software environment. All user interface operations

can be scripted, and the simulation can be run in batch or interactive mode. It is

Modelsim is a simulation tool of Mentor Graphics Corporation. The method of

downloading here can be found on the eetop website to find the corresponding

installation package, or download it from Mentor Graphics' official website.

Unzip the compressed package of the software installation package to get

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

2,Double click the suffix .exe files to install

click next。

Figure 2

3,Select the software installation path, click Browse to change the path, or set

the installation path according to the default.

- 35 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-37 modelsim installation files
Double click the suffix .exe files to install，go to the installation wizard and

Figure 2-38 modelsim installation wizard

3,Select the software installation path, click Browse to change the path, or set

the installation path according to the default.

go to the installation wizard and

3,Select the software installation path, click Browse to change the path, or set

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

4,Agreement with the license

Figure 2

5,The software enters the installation state and is being installed. The installation

process will take some time, just wait

- 36 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-39 modelsim installation location
Agreement with the license

Figure 2-40 modelsim license agreement
The software enters the installation state and is being installed. The installation

process will take some time, just wait

The software enters the installation state and is being installed. The installation

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

6,click NO

Figure 2

7,In the last step to install the key driver of the hardware, select No, do not install.

This completes the installation of modelsim

- 37 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-41 modelsim installation progress

Figure 2-42 modelsim installation
last step to install the key driver of the hardware, select No, do not install.

This completes the installation of modelsim。

last step to install the key driver of the hardware, select No, do not install.

MYS-ZU5EV_FPGA Development Manual V2.0.3

2.2.7 Modelsim Project Establishment and Simulation

1，built new modelsim project

2，open modelsim software

Figure 2

3,fill the project name and location

Figure 2

4,Add existing files -> then chose RTL design files

- 38 -

ZU5EV_FPGA Development Manual V2.0.3

2.2.7 Modelsim Project Establishment and Simulation

built new modelsim project，and make a location for the project

im software，file->new->project

Figure 2-43 New modelsim project

fill the project name and location

Figure 2-44 modelsim new project

> then chose RTL design files

and make a location for the project。

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

5,compile-> compile AL

6,Back to library window

- 39 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-45 project to add existing files

> compile ALL

Figure 2-46 modelsim compile
Back to library window

MYS-ZU5EV_FPGA Development Manual V2.0.3

7,Open work library-> “Testbench

- 40 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-47modelsim library
Testbench ”，and simulation：

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

Add the signal to be observed in the sim window, and then you can see the

simulated waveform window. If there is an error, you can modify it according to

the prompt.

Figure 2

- 41 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-48 modelsim simulation begin
Add the signal to be observed in the sim window, and then you can see the

simulated waveform window. If there is an error, you can modify it according to

Figure 2-49 modelsim simulation waveform

Add the signal to be observed in the sim window, and then you can see the

simulated waveform window. If there is an error, you can modify it according to

MYS-ZU5EV_FPGA Development Manual V2.0.3

2.3 Knowledge Preparation

2.3.1 Verilog Brief Introduction to Grammar

Verilog HDL is a hardware description language tha

and behavior of digital system hardware in text form. It can be used to represent

logic circuit diagrams, logic expressions, and logic functions completed by digital

logic systems. Verilog HDL and VHDL are the two most popular har

description languages in the world, both of which were developed in the mid

1980s. The former was developed by Gateway Design Automation (the company

was acquired by Cadence in 1989). Both HDL are IEEE standards. Here are some

synthesizable grammatical knowledge of Verilog:

1，Constant：

Constants can exist in Verilog documents, which will be converted to

constant registers corresponding to logic circuits or ignored directly during the

pretreatment stage. For example, integer, parameter DLY=1; here is t

constant DLY, integer can be represented by binary b or B, octal o or O, decimal d

or D, hexadecimal h or H, for example, 8'b00001111 means 8 bits A bit

binary integer, 4'ha represents a 4

underscore: assign a = 8’b0000_1111; The underscore here is for easy reading.

For example, X, or Z: X indicates that the variable is in an uncertain state, a =

8'bxxx0_11xx; here it means that the 0, 1, 5, 6, 7 bits of the variable a[7:0] are

uncertain values, that is, In the actual result, there must be a result, but we cannot

logically determine whether the exact value of this result is 0 or 1. On the whole,

the value of a is in an uncertain state. If a = 8'bzzz0_11zz, here it means that the

0,1,5,6,7 bits of the variable a[7:0] are in the high

implies, the resistance is large enough to reach an open circuit, which is

equivalent to floating. The value depends on the logic circuit that follows.

2，Variable

Refers to the amount of value

amount of value that can be changed in Verilog is a variable of the register type,

such as the reg type. The value of the line connecting a colleague and reg is also

changed. This type is a wire type variable. The

changes, which can be used to store data, such as RAM, ROM, etc., as well as

- 42 -

ZU5EV_FPGA Development Manual V2.0.3

2.3 Knowledge Preparation

2.3.1 Verilog Brief Introduction to Grammar

Verilog HDL is a hardware description language that describes the structure

and behavior of digital system hardware in text form. It can be used to represent

logic circuit diagrams, logic expressions, and logic functions completed by digital

logic systems. Verilog HDL and VHDL are the two most popular har

description languages in the world, both of which were developed in the mid

1980s. The former was developed by Gateway Design Automation (the company

was acquired by Cadence in 1989). Both HDL are IEEE standards. Here are some

al knowledge of Verilog:

Constants can exist in Verilog documents, which will be converted to

constant registers corresponding to logic circuits or ignored directly during the

stage. For example, integer, parameter DLY=1; here is t

constant DLY, integer can be represented by binary b or B, octal o or O, decimal d

or D, hexadecimal h or H, for example, 8'b00001111 means 8 bits A bit

binary integer, 4'ha represents a 4-bit wide hexadecimal integer. For example,

re: assign a = 8’b0000_1111; The underscore here is for easy reading.

For example, X, or Z: X indicates that the variable is in an uncertain state, a =

8'bxxx0_11xx; here it means that the 0, 1, 5, 6, 7 bits of the variable a[7:0] are

t is, In the actual result, there must be a result, but we cannot

logically determine whether the exact value of this result is 0 or 1. On the whole,

the value of a is in an uncertain state. If a = 8'bzzz0_11zz, here it means that the

variable a[7:0] are in the high-impedance state. As the name

implies, the resistance is large enough to reach an open circuit, which is

equivalent to floating. The value depends on the logic circuit that follows.

amount of value that can be changed during operation. The

amount of value that can be changed in Verilog is a variable of the register type,

such as the reg type. The value of the line connecting a colleague and reg is also

changed. This type is a wire type variable. There is also a whole block of data

changes, which can be used to store data, such as RAM, ROM, etc., as well as

t describes the structure

and behavior of digital system hardware in text form. It can be used to represent

logic circuit diagrams, logic expressions, and logic functions completed by digital

logic systems. Verilog HDL and VHDL are the two most popular hardware

description languages in the world, both of which were developed in the mid-

1980s. The former was developed by Gateway Design Automation (the company

was acquired by Cadence in 1989). Both HDL are IEEE standards. Here are some

Constants can exist in Verilog documents, which will be converted to

constant registers corresponding to logic circuits or ignored directly during the

stage. For example, integer, parameter DLY=1; here is to define a

constant DLY, integer can be represented by binary b or B, octal o or O, decimal d

or D, hexadecimal h or H, for example, 8'b00001111 means 8 bits A bit-wide

bit wide hexadecimal integer. For example,

re: assign a = 8’b0000_1111; The underscore here is for easy reading.

For example, X, or Z: X indicates that the variable is in an uncertain state, a =

8'bxxx0_11xx; here it means that the 0, 1, 5, 6, 7 bits of the variable a[7:0] are

t is, In the actual result, there must be a result, but we cannot

logically determine whether the exact value of this result is 0 or 1. On the whole,

the value of a is in an uncertain state. If a = 8'bzzz0_11zz, here it means that the

impedance state. As the name

implies, the resistance is large enough to reach an open circuit, which is

equivalent to floating. The value depends on the logic circuit that follows.

that can be changed during operation. The

amount of value that can be changed in Verilog is a variable of the register type,

such as the reg type. The value of the line connecting a colleague and reg is also

re is also a whole block of data

changes, which can be used to store data, such as RAM, ROM, etc., as well as

MYS-ZU5EV_FPGA Development Manual V2.0.3

frequently used DDR, SDRAM, FLASH, and so on. These devices can all be

instantiated in verilog's grammar, and can naturally store changed data. He

introduce wire and reg.

3，Wire：

Wire refers to a linear variable. Use wire to define a variable. Wire [7:0] a; In

the process of synthesis, there is an 8

connected at both ends of the connection, it needs to be

in the design. For example, assign a = 8'b0000_1111; here is to link a to the

output terminal of the 8bit constant register, so that the value on the entire line

has changed, and it is always 8'b0000_1111. For example, link a to t

terminal of the register, Here the register needs to have a bit width of 8bit, and

only the assign statement can be used in Verilog. Of course, the bit width

assigned to a is mainly 8bit. as the picture shows:

4，Reg：

This is called a register v

represent the corresponding variable. The bit width and number of variables are

consistent with the number of registers implemented in the circuit. Obviously, reg

type variables can store us The req

the clock of the register, the value in the register can be retained, changed, etc.

The change of the register value in the verilog syntax must be carried out in the

always statement. There are two usages here

circuit and sequential logic circuit; the register q is defined, the generated circuit

is sequential logic, and the structure on the right is the D flip

- 43 -

ZU5EV_FPGA Development Manual V2.0.3

frequently used DDR, SDRAM, FLASH, and so on. These devices can all be

instantiated in verilog's grammar, and can naturally store changed data. He

Wire refers to a linear variable. Use wire to define a variable. Wire [7:0] a; In

the process of synthesis, there is an 8-bit wide connection. As for what is

connected at both ends of the connection, it needs to be specific It will be known

in the design. For example, assign a = 8'b0000_1111; here is to link a to the

output terminal of the 8bit constant register, so that the value on the entire line

has changed, and it is always 8'b0000_1111. For example, link a to t

terminal of the register, Here the register needs to have a bit width of 8bit, and

only the assign statement can be used in Verilog. Of course, the bit width

assigned to a is mainly 8bit. as the picture shows:

This is called a register variable in verilog. In the circuit, a register is used to

represent the corresponding variable. The bit width and number of variables are

consistent with the number of registers implemented in the circuit. Obviously, reg

type variables can store us The required data, its value can also be changed with

the clock of the register, the value in the register can be retained, changed, etc.

The change of the register value in the verilog syntax must be carried out in the

always statement. There are two usages here, divided into Combinational logic

circuit and sequential logic circuit; the register q is defined, the generated circuit

is sequential logic, and the structure on the right is the D flip-flop.

frequently used DDR, SDRAM, FLASH, and so on. These devices can all be

instantiated in verilog's grammar, and can naturally store changed data. Here we

Wire refers to a linear variable. Use wire to define a variable. Wire [7:0] a; In

bit wide connection. As for what is

specific It will be known

in the design. For example, assign a = 8'b0000_1111; here is to link a to the

output terminal of the 8bit constant register, so that the value on the entire line

has changed, and it is always 8'b0000_1111. For example, link a to the output

terminal of the register, Here the register needs to have a bit width of 8bit, and

only the assign statement can be used in Verilog. Of course, the bit width

ariable in verilog. In the circuit, a register is used to

represent the corresponding variable. The bit width and number of variables are

consistent with the number of registers implemented in the circuit. Obviously, reg

uired data, its value can also be changed with

the clock of the register, the value in the register can be retained, changed, etc.

The change of the register value in the verilog syntax must be carried out in the

, divided into Combinational logic

circuit and sequential logic circuit; the register q is defined, the generated circuit

flop.

MYS-ZU5EV_FPGA Development Manual V2.0.3

module top(d, clk,
q) ;
input d ;
input clk ;
output reg q ;
always @(posedge clk)
begin
q <= d ;
end
endmodule

Combinational logic can also be generated, such as data selector, sensitive

signals have no clock, reg Mux is defined, and the final generating circuit is

combinational logic.

module top(a, b, c, d, sel
Mux) ;
input a ;
input b ;
input c ;
input d ;
input [1:0] sel ;
output reg Mux ;
always @(sel or a or b or
d)
begin
case(sel)
2'b00 : Mux = a ;
2'b01 : Mux = b ;
2'b10 : Mux = c ;
2'b11 : Mux = d ;
endcase
end
endmodule

Memory type: We can use reg [15:0] a [1023:0]; to define a data block, there

are 1024 data, and the bit width is 16bit. It can be instantiated in RAM, occupying

RAM resources, and can be instantiated into ROM, FLASH, etc. memory in ASIC

design。

Operator: Operators include: arithmetic operators, logical operators, bitwise

operators, reduction operators, relational operators, shift operators, equality

operators, conditional operators, and concatenation operators.

Arithmetic operators: Commonly used arithmet

addition,-subtraction, * multiplication, / division,% modulo (remainder)

The above arithmetic operators are binocular operators.

- 44 -

ZU5EV_FPGA Development Manual V2.0.3

Combinational logic can also be generated, such as data selector, sensitive

signals have no clock, reg Mux is defined, and the final generating circuit is

sel,

or c or

Memory type: We can use reg [15:0] a [1023:0]; to define a data block, there

are 1024 data, and the bit width is 16bit. It can be instantiated in RAM, occupying

RAM resources, and can be instantiated into ROM, FLASH, etc. memory in ASIC

Operators include: arithmetic operators, logical operators, bitwise

operators, reduction operators, relational operators, shift operators, equality

operators, conditional operators, and concatenation operators.

Arithmetic operators: Commonly used arithmetic operators include: +

subtraction, * multiplication, / division,% modulo (remainder)

The above arithmetic operators are binocular operators.

Combinational logic can also be generated, such as data selector, sensitive

signals have no clock, reg Mux is defined, and the final generating circuit is

Memory type: We can use reg [15:0] a [1023:0]; to define a data block, there

are 1024 data, and the bit width is 16bit. It can be instantiated in RAM, occupying

RAM resources, and can be instantiated into ROM, FLASH, etc. memory in ASIC

Operators include: arithmetic operators, logical operators, bitwise

operators, reduction operators, relational operators, shift operators, equality

ic operators include: +

subtraction, * multiplication, / division,% modulo (remainder)

MYS-ZU5EV_FPGA Development Manual V2.0.3

Logical Operators: && Logical AND, || Logical OR,! Logical negation Bitwise

operators: ~ Bitwise negation, & bitwise AND, | bitwise OR, ^ bitwise XOR, ^~, ~^

bitwise XOR Reduction operator: Abbreviated operators are unary operators,

including the following: & And, ~& and or, | or, ~| NOR, ^ XOR, ^~, ~^ same or

E.g:

reg [3:0] a;

b = & a; // equal to b = (((a[0] & a[1]) & a[2]) & a[3])

Relational operators:

<Less than, <= less than or equal to,> greater than, >= greater than or equal

to Shift operator: <<, shift left. >>, move right Equality operator: == equals, != is

not equal, === is equal, !==

The two operands involved in the comparison must be equal bit by bit, and

the result of the equality comparison is 1. If some bits are in the indeterminate

state or high impedance state, the result of the equality com

value;

 Congruence operator (===): In the indeterminate or high

the two operands must be exactly the same, and the result is 1.

Conditional operator ?:

 Concatenation operator: {}

For example: {3{a,b}} is equivalent

{a, b, a, b, a, b }.

The precedence levels of various operators are as follows:

- 45 -

ZU5EV_FPGA Development Manual V2.0.3

Logical Operators: && Logical AND, || Logical OR,! Logical negation Bitwise

negation, & bitwise AND, | bitwise OR, ^ bitwise XOR, ^~, ~^

bitwise XOR Reduction operator: Abbreviated operators are unary operators,

including the following: & And, ~& and or, | or, ~| NOR, ^ XOR, ^~, ~^ same or

= (((a[0] & a[1]) & a[2]) & a[3])

<Less than, <= less than or equal to,> greater than, >= greater than or equal

to Shift operator: <<, shift left. >>, move right Equality operator: == equals, != is

not equal, === is equal, !== is not equal Equality operator (==):

The two operands involved in the comparison must be equal bit by bit, and

the result of the equality comparison is 1. If some bits are in the indeterminate

state or high impedance state, the result of the equality comparison is indefinite

Congruence operator (===): In the indeterminate or high-impedance state,

the two operands must be exactly the same, and the result is 1.

Conditional operator ?:

Concatenation operator: {}

For example: {3{a,b}} is equivalent to {{a,b}, {a,b}, {a,b} }, and also equivalent to

The precedence levels of various operators are as follows:

Logical Operators: && Logical AND, || Logical OR,! Logical negation Bitwise

negation, & bitwise AND, | bitwise OR, ^ bitwise XOR, ^~, ~^

bitwise XOR Reduction operator: Abbreviated operators are unary operators,

including the following: & And, ~& and or, | or, ~| NOR, ^ XOR, ^~, ~^ same or

<Less than, <= less than or equal to,> greater than, >= greater than or equal

to Shift operator: <<, shift left. >>, move right Equality operator: == equals, != is

is not equal Equality operator (==):

The two operands involved in the comparison must be equal bit by bit, and

the result of the equality comparison is 1. If some bits are in the indeterminate

parison is indefinite

impedance state,

to {{a,b}, {a,b}, {a,b} }, and also equivalent to

MYS-ZU5EV_FPGA Development Manual V2.0.3

5，Combinational logical：

The characteristic of the combinational logic circuit is that the o

- 46 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-50 Operator Priority

：

The characteristic of the combinational logic circuit is that the o

The characteristic of the combinational logic circuit is that the output at any

MYS-ZU5EV_FPGA Development Manual V2.0.3

time depends only on the input signal, the input signal changes, the output

changes immediately, and does not depend on the clock.

AND：

In verilog, "&" means bitwise AND, such as c=a&b, the truth table is as

follows, when both a and b are equ

the figure

Code ：
module top(a, b,
c) ;
input a ;
input b ;
output c ;
assign c = a &b ;
endmodule

Test fot excitation：
`timescale 1 ns/1 ns
module top_tb() ;
reg a ;
reg b ;
wire c ;
initial
begin
a = 0 ;
b = 0 ;
forever
begin
#({$random}%100)
a = ~a ;
#({$random}%100)
b = ~b ;
end
end
top
t0(.a(a), .b(b),.c(c)) ;
endmodule

The simulation results are as follows

- 47 -

ZU5EV_FPGA Development Manual V2.0.3

time depends only on the input signal, the input signal changes, the output

changes immediately, and does not depend on the clock.

In verilog, "&" means bitwise AND, such as c=a&b, the truth table is as

follows, when both a and b are equal to 1, the result is 1, RTL means as shown in

The simulation results are as follows ：

time depends only on the input signal, the input signal changes, the output

In verilog, "&" means bitwise AND, such as c=a&b, the truth table is as

al to 1, the result is 1, RTL means as shown in

MYS-ZU5EV_FPGA Development Manual V2.0.3

If the bit width of a and b is greater than 1, for

input [3:0]b, then a&b then The corresponding phases of a and b are AND. Such

as a[0]&b[0], a[1]&b[1]. Other combinatorial logic similar processes can be

learned.

Comparators：

In verilog, it is expressed as greater than ">",

greater than or equal to ">=", less than or equal to "<=", not equal to "!=". Take

greater than for example, such as c= a > b; means that if a is greater than b, then

the value of c is 1, otherwise it is 0. The truth table is

code：
module top(a, b, c) ;
input a ;
input b ;
output c ;
assign c = a >b ;
endmodule

Test fot excitation：
`timescale 1 ns/1
ns
module top_tb() ;
reg a ;
reg b ;
wire c ;
initial
begin
a = 0 ;
b = 0 ;
forever
begin
#({$random}%100)
a = ~a ;
#({$random}%100)
b = ~b ;
end
end
top
t0(.a(a), .b(b),.c(
endmodule

The simulation results are as follows

- 48 -

ZU5EV_FPGA Development Manual V2.0.3

If the bit width of a and b is greater than 1, for example, define input [3:0] a,

input [3:0]b, then a&b then The corresponding phases of a and b are AND. Such

as a[0]&b[0], a[1]&b[1]. Other combinatorial logic similar processes can be

In verilog, it is expressed as greater than ">", equal to "==", less than "<",

greater than or equal to ">=", less than or equal to "<=", not equal to "!=". Take

greater than for example, such as c= a > b; means that if a is greater than b, then

the value of c is 1, otherwise it is 0. The truth table is as follows:

The simulation results are as follows ：

example, define input [3:0] a,

input [3:0]b, then a&b then The corresponding phases of a and b are AND. Such

as a[0]&b[0], a[1]&b[1]. Other combinatorial logic similar processes can be

equal to "==", less than "<",

greater than or equal to ">=", less than or equal to "<=", not equal to "!=". Take

greater than for example, such as c= a > b; means that if a is greater than b, then

MYS-ZU5EV_FPGA Development Manual V2.0.3

6，Timing logical：

The characteristic of the logic function of the combinational logic circuit is

that the output at any time depends only on the input at the current time, and

has nothing to do with the original state of the circuit. The characteristic of

sequential logic in logic function is that the output at any moment not only

depends on the current input signal, but also depends on the original state of the

circuit. The following is a typical sequential logic analysis.
D flip-flop：

D flip-flop stores data on the rising

output is the same as the state of the input signal before the clock jumps. Verilog

describes the D flip-flop ：
module top(d, clk,
q) ;
input d ;
input clk ;
output reg q ;
always @(posedge clk)
begin
q <= d ;
end
endmodule

RTL synthesis：

The simulation stimulus file is as follows
`timescale 1 ns/1 ns
module top_tb() ;
reg d ;
reg clk ;
wire q ;

- 49 -

ZU5EV_FPGA Development Manual V2.0.3

The characteristic of the logic function of the combinational logic circuit is

that the output at any time depends only on the input at the current time, and

has nothing to do with the original state of the circuit. The characteristic of

n logic function is that the output at any moment not only

depends on the current input signal, but also depends on the original state of the

circuit. The following is a typical sequential logic analysis.

flop stores data on the rising or falling edge of the clock, and the

output is the same as the state of the input signal before the clock jumps. Verilog

：

The simulation stimulus file is as follows：

The characteristic of the logic function of the combinational logic circuit is

that the output at any time depends only on the input at the current time, and

has nothing to do with the original state of the circuit. The characteristic of

n logic function is that the output at any moment not only

depends on the current input signal, but also depends on the original state of the

or falling edge of the clock, and the

output is the same as the state of the input signal before the clock jumps. Verilog

MYS-ZU5EV_FPGA Development Manual V2.0.3

initial
begin
d = 0 ;
clk = 0 ;
forever
begin
#({$random}%100)
d = ~d ;
end
end
always #10 clk = ~clk ;
top
t0(.d(d),.clk(clk),.q(q)) ;
endmodule

The simulation results are as follows. It can be seen that at time t0, the value

of d is 0, and the value of q is also 0; at time t1, when d changes and the value is 1,

then q correspondingly changes and the value becomes 1. . It can be seen that in

a clock cycle between t0-t1, no matter how the value of the input signal d

changes, the value of q remains unchanged, that is, there is a storage function,

and the saved value is on the transition edge of the clock. The value of d at time.

Dual port RAM：

Dual-port RAM is divided into true dual

RAM. The read-write address of pseudo

write or read address can be rando

operations at the same time. True dual

data lines, allowing two systems to read and write to it. Here is the introduction of

true dual-port RAM
Verilog description of the dua

module top
(
input [7:0] data_a, data_b
input [5:0] addr_a, addr_b
input wr_a, wr_b,
input rd_a, rd_b,
input clk,
output reg [7:0] q_a, q_b
);
reg [7:0] ram[63:0]; //declare ram
//Port A
always @ (posedge clk)
begin
if (wr_a) //write
begin

- 50 -

ZU5EV_FPGA Development Manual V2.0.3

)) ;

The simulation results are as follows. It can be seen that at time t0, the value

of d is 0, and the value of q is also 0; at time t1, when d changes and the value is 1,

correspondingly changes and the value becomes 1. . It can be seen that in

t1, no matter how the value of the input signal d

changes, the value of q remains unchanged, that is, there is a storage function,

the transition edge of the clock. The value of d at time.

port RAM is divided into true dual-port RAM and pseudo

write address of pseudo-dual-port RAM is independent, and the

write or read address can be randomly selected to perform read and write

operations at the same time. True dual-port RAM has two sets of control lines and

data lines, allowing two systems to read and write to it. Here is the introduction of

Verilog description of the dual port RAM：

data_b,
addr_b,

q_b

//declare ram

The simulation results are as follows. It can be seen that at time t0, the value

of d is 0, and the value of q is also 0; at time t1, when d changes and the value is 1,

correspondingly changes and the value becomes 1. . It can be seen that in

t1, no matter how the value of the input signal d

changes, the value of q remains unchanged, that is, there is a storage function,

the transition edge of the clock. The value of d at time.

port RAM and pseudo-dual-port

port RAM is independent, and the

mly selected to perform read and write

port RAM has two sets of control lines and

data lines, allowing two systems to read and write to it. Here is the introduction of

MYS-ZU5EV_FPGA Development Manual V2.0.3

ram[addr_a] <= data_a;
q_a <= data_a ;
end
if (rd_a)
//read
q_a <= ram[addr_a];
end
//Port B
always @ (posedge clk)
begin
if (wr_b) //write
begin
ram[addr_b] <= data_b;
q_b <= data_b ;
end
if (rd_b)
//read
q_b <= ram[addr_b];
end
endmodule

RTL simulation stimulus file is as follows
`timescale 1 ns/1 ns
module top_tb() ;
reg [7:0] data_a, data_b ;
reg [5:0] addr_a, addr_b ;
reg wr_a, wr_b ;
reg rd_a, rd_b ;
reg clk ;
wire [7:0] q_a, q_b ;
initial
begin
data_a = 0 ;
data_b = 0 ;
addr_a = 0 ;
addr_b = 0 ;
wr_a = 0 ;
wr_b = 0 ;
rd_a = 0 ;
rd_b = 0 ;
clk = 0 ;
#100 wr_a = 1 ;
#100 rd_b = 1 ;
end
always #10 clk = ~clk ;
always @(posedge clk)
begin
if (wr_a)

- 51 -

ZU5EV_FPGA Development Manual V2.0.3

simulation stimulus file is as follows：

;
;

MYS-ZU5EV_FPGA Development Manual V2.0.3

begin
data_a <= data_a + 1'b1 ;
addr_a <= addr_a + 1'b1 ;
end
else
begin
data_a <= 0 ;
addr_a <= 0 ;
end
end
always @(posedge clk)
begin
if (rd_b)
begin
addr_b <= addr_b + 1'b1 ;
end
else addr_b <= 0 ;
end
top
t0(.data_a(data_a), .data_b
.addr_a(addr_a), .addr_b(
),
.wr_a(wr_a), .wr_b(wr_b),
.rd_a(rd_a), .rd_b(rd_b),
.clk(clk),
.q_a(q_a), .q_b(q_b)) ;
endmodule

Simulation results：

Finite State Machine：

The finite state machine (Finite

state automachine, abbreviated as a state machine, which is a mathematical

model that represents a finite number of states and the behaviors such as

transitions and actions between these states. I often apply FSM in application

scenarios such as motor control and com

article is talking about is the writing skills and specifications of the finite state

machine based on the hardware description language Verilog HDL. As we all

know, FPGA is known to the world for its parallelism and

today’s electronic world, basically all devices are serial, so FPGA as a control unit

or a programmable unit needs to be converted from parallel to serial. It

communicates and controls with the outside world, and the finite state mac

plays this role with its simplicity, practicality, clear structure and appropriateness.

- 52 -

ZU5EV_FPGA Development Manual V2.0.3

;
;

;

data_b(data_b),
(addr_b

),
),

The finite state machine (Finite-State Machine, FSM), has become a finite

achine, abbreviated as a state machine, which is a mathematical

model that represents a finite number of states and the behaviors such as

transitions and actions between these states. I often apply FSM in application

scenarios such as motor control and communication protocol analysis. What this

article is talking about is the writing skills and specifications of the finite state

machine based on the hardware description language Verilog HDL. As we all

know, FPGA is known to the world for its parallelism and reconfigurability. In

s electronic world, basically all devices are serial, so FPGA as a control unit

or a programmable unit needs to be converted from parallel to serial. It

communicates and controls with the outside world, and the finite state mac

plays this role with its simplicity, practicality, clear structure and appropriateness.

State Machine, FSM), has become a finite

achine, abbreviated as a state machine, which is a mathematical

model that represents a finite number of states and the behaviors such as

transitions and actions between these states. I often apply FSM in application

munication protocol analysis. What this

article is talking about is the writing skills and specifications of the finite state

machine based on the hardware description language Verilog HDL. As we all

reconfigurability. In

s electronic world, basically all devices are serial, so FPGA as a control unit

or a programmable unit needs to be converted from parallel to serial. It

communicates and controls with the outside world, and the finite state machine

plays this role with its simplicity, practicality, clear structure and appropriateness.

MYS-ZU5EV_FPGA Development Manual V2.0.3

A finite state machine is a hardware sequential circuit composed of a register

group and a combinational logic. Its state (that is, a finite number of states

composed of the combined state of 1 and 0 of the register group) can only be

changed from the same clock transition edge. When one state turns to another

state, which state to turn to or stay in the original state not only depends on each

input value, but also depends on the current state.

There are two types of state machines: Mealy and Moore. The output of the

Moore-type state machine is only related to the current state, while the output of

the Mealy-type state machine not only depends on the current state,

directly controlled by the input, and may have nothing to do with the state. The

structure of the state machine is shown in the figure below.

Figure 2

The essence of the state machine is a method of describing

logical sequence or timing law. The two most important words in this argument

are "logical order" and "chronological logic". These two points are the core and

strengths of the state machine to describe. In other words, all things with logical

order and timing laws are suitable for description by the state machine.

 Two application ideas of state machine. The first idea is to start with state

variables. If a circuit has sequential logic or logical sequence, we can naturally plan

out the states, start with these states, analyze the input, state transition and

output of each state, and complete the circuit function; The second idea is to first

clarify the output relationship of the circuit, these outputs are equivalent to the

output of the state, backtracking plan each state, and state transition conditions

and state inputs.

The two ways of thinking have the same goal in different ways. They must use

the state machine to achieve the purpose of controlling a certain part of the

- 53 -

ZU5EV_FPGA Development Manual V2.0.3

A finite state machine is a hardware sequential circuit composed of a register

group and a combinational logic. Its state (that is, a finite number of states

osed of the combined state of 1 and 0 of the register group) can only be

changed from the same clock transition edge. When one state turns to another

state, which state to turn to or stay in the original state not only depends on each

depends on the current state.

There are two types of state machines: Mealy and Moore. The output of the

type state machine is only related to the current state, while the output of

type state machine not only depends on the current state,

directly controlled by the input, and may have nothing to do with the state. The

structure of the state machine is shown in the figure below.：

Figure 2-51 Moore finite state machine

The essence of the state machine is a method of describing events with

logical sequence or timing law. The two most important words in this argument

are "logical order" and "chronological logic". These two points are the core and

strengths of the state machine to describe. In other words, all things with logical

rder and timing laws are suitable for description by the state machine.

Two application ideas of state machine. The first idea is to start with state

variables. If a circuit has sequential logic or logical sequence, we can naturally plan

start with these states, analyze the input, state transition and

output of each state, and complete the circuit function; The second idea is to first

clarify the output relationship of the circuit, these outputs are equivalent to the

acktracking plan each state, and state transition conditions

The two ways of thinking have the same goal in different ways. They must use

the state machine to achieve the purpose of controlling a certain part of the

A finite state machine is a hardware sequential circuit composed of a register

group and a combinational logic. Its state (that is, a finite number of states

osed of the combined state of 1 and 0 of the register group) can only be

changed from the same clock transition edge. When one state turns to another

state, which state to turn to or stay in the original state not only depends on each

There are two types of state machines: Mealy and Moore. The output of the

type state machine is only related to the current state, while the output of

type state machine not only depends on the current state, but is also

directly controlled by the input, and may have nothing to do with the state. The

events with

logical sequence or timing law. The two most important words in this argument

are "logical order" and "chronological logic". These two points are the core and

strengths of the state machine to describe. In other words, all things with logical

rder and timing laws are suitable for description by the state machine.

Two application ideas of state machine. The first idea is to start with state

variables. If a circuit has sequential logic or logical sequence, we can naturally plan

start with these states, analyze the input, state transition and

output of each state, and complete the circuit function; The second idea is to first

clarify the output relationship of the circuit, these outputs are equivalent to the

acktracking plan each state, and state transition conditions

The two ways of thinking have the same goal in different ways. They must use

the state machine to achieve the purpose of controlling a certain part of the

MYS-ZU5EV_FPGA Development Manual V2.0.3

circuit, and complete a certain circuit design with logic sequence or timing law.

The parameter definition of the state machine adopts the one

Compared with the Gray code, although the one

the combined circuit used can save some, so the

circuit are significantly improved. The number of units did not increase

significantly. After adopting one

some unreachable states. For this reason, the default branch direction need

added at the end of the case statement. This can be represented by a default item

or a definite item to ensure that it returns to the initial state.

Generally, the synthesizer can handle the default items reasonably through

the control of the synthesis instruction

The function of the vending machine is described as follows

The unit price of drinks is 2 yuan, and the vending machine can only accept

0.5 yuan and 1 yuan coins. Consider changing and shipping. The coin insertion

and shipment processes are carried out one at a time, and there will be no such

thing as a one-time investment of multiple coins or one

multiple bottles of beverages. After each round of vending machines accept coin

insertion, shipment, and change, it can ente

working state transition diagram of the vending machine is shown below,

including the input and output signal states. Among them, coin = 1 means 0.5

yuan coin is invested, and coin = 2 means 1 yuan coin is invested.

State machine design: 3-

The state machine design is as follows:

First, determine the state machine code according to the number of state

machines. Using codes to assign values to the status register makes the code

more readable.

The first stage of the state machine, sequential logic, non

assignment, transfer the state of the register.

The second stage of the state machine, combinatorial logic, block

assignment, and determine the state of the next state machine based on the

current state and current input.

- 54 -

ZU5EV_FPGA Development Manual V2.0.3

a certain circuit design with logic sequence or timing law.

The parameter definition of the state machine adopts the one-hot code.

Compared with the Gray code, although the one-hot code uses more triggers,

the combined circuit used can save some, so the speed and reliability of the

circuit are significantly improved. The number of units did not increase

significantly. After adopting one-hot encoding, there are redundant states and

some unreachable states. For this reason, the default branch direction need

added at the end of the case statement. This can be represented by a default item

or a definite item to ensure that it returns to the initial state.

Generally, the synthesizer can handle the default items reasonably through

hesis instruction.

The function of the vending machine is described as follows

The unit price of drinks is 2 yuan, and the vending machine can only accept

0.5 yuan and 1 yuan coins. Consider changing and shipping. The coin insertion

s are carried out one at a time, and there will be no such

time investment of multiple coins or one-time shipment of

multiple bottles of beverages. After each round of vending machines accept coin

insertion, shipment, and change, it can enter the new automatic selling state. The

working state transition diagram of the vending machine is shown below,

including the input and output signal states. Among them, coin = 1 means 0.5

yuan coin is invested, and coin = 2 means 1 yuan coin is invested.

-stage (recommended)

The state machine design is as follows:

First, determine the state machine code according to the number of state

machines. Using codes to assign values to the status register makes the code

first stage of the state machine, sequential logic, non-blocking

assignment, transfer the state of the register.

The second stage of the state machine, combinatorial logic, block

assignment, and determine the state of the next state machine based on the

urrent state and current input.

a certain circuit design with logic sequence or timing law.

hot code.

hot code uses more triggers,

speed and reliability of the

circuit are significantly improved. The number of units did not increase

hot encoding, there are redundant states and

some unreachable states. For this reason, the default branch direction needs to be

added at the end of the case statement. This can be represented by a default item

Generally, the synthesizer can handle the default items reasonably through

 ：

The unit price of drinks is 2 yuan, and the vending machine can only accept

0.5 yuan and 1 yuan coins. Consider changing and shipping. The coin insertion

s are carried out one at a time, and there will be no such

time shipment of

multiple bottles of beverages. After each round of vending machines accept coin

r the new automatic selling state. The

working state transition diagram of the vending machine is shown below,

including the input and output signal states. Among them, coin = 1 means 0.5

yuan coin is invested, and coin = 2 means 1 yuan coin is invested.

First, determine the state machine code according to the number of state

machines. Using codes to assign values to the status register makes the code

blocking

The second stage of the state machine, combinatorial logic, block

assignment, and determine the state of the next state machine based on the

MYS-ZU5EV_FPGA Development Manual V2.0.3

The third generation of state machine, sequential logic, non

assignment, because it is a Mealy type state machine, it determines the output

signal according to the current state and current input.

Verilog RTL description：
module vending_machine_p3
 (
 input clk ,
 input rstn ,
 input [1:0] coin , //01 for 0.5 jiao, 10 for 1 yuan
 output [1:0] change ,
 output sell //output the drink
);
 //machine state decode
 parameter IDLE = 3'd0 ;
 parameter GET05 = 3'd1 ;
 parameter GET10 = 3'd2 ;
 parameter GET15 = 3'd3 ;
 //machine variable
 reg [2:0] st_next ;
 reg [2:0] st_cur ;
 //(1) state transfer
 always @(posedge clk or negedge rstn) begin
 if (!rstn) begin
 st_cur <= 'b0 ;
 end
 else begin
 st_cur <= st_next ;
 end
 end
 //(2) state switch, using block assignment for combination
 always @(*) begin //all case items need to be displayed completely

- 55 -

ZU5EV_FPGA Development Manual V2.0.3

The third generation of state machine, sequential logic, non

assignment, because it is a Mealy type state machine, it determines the output

signal according to the current state and current input.

：
module vending_machine_p3

input clk ,
input rstn ,
input [1:0] coin , //01 for 0.5 jiao, 10 for 1 yuan
output [1:0] change ,
output sell //output the drink

parameter IDLE = 3'd0 ;
parameter GET05 = 3'd1 ;
parameter GET10 = 3'd2 ;
parameter GET15 = 3'd3 ;

reg [2:0] st_next ;
reg [2:0] st_cur ;

always @(posedge clk or negedge rstn) begin

st_cur <= 'b0 ;

<= st_next ;

//(2) state switch, using block assignment for combination-logic
always @(*) begin //all case items need to be displayed completely

The third generation of state machine, sequential logic, non-blocking

assignment, because it is a Mealy type state machine, it determines the output

always @(*) begin //all case items need to be displayed completely

MYS-ZU5EV_FPGA Development Manual V2.0.3

 case(st_cur)
 IDLE:
 case (coin)
 2'b01:
 2'b10: st_next = GET10 ;
 default: st_next = IDLE ;
 endcase
 GET05:
 case (coin)
 2'b01: st_next = GET10 ;
 2'b10: st_next = GET15 ;
 default: st_next = GET05 ;
 endcase
 GET10:
 case (coin)
 2'b01: st_next = GET15 ;
 2'b10: st_next = IDLE ;
 default: st_next = GET10 ;
 endcase
 GET15:
 case (coin)
 2'b01,2'b10:

 default: st_next = GET15 ;
 endcase
 default: st_next = IDLE ;
 endcase
 end
 //(3) output logic, using non
 reg [1:0] change_r ;
 reg sell_r ;
 always @(posedge clk or negedge rstn) begin
 if (!rstn) begin
 change_r <= 2'b0 ;
 sell_r <= 1'b0 ;
 end
 else if ((st_cur == GET15 && coin ==2'h1)
 || (st_cur == GET10 && coin ==2'd2)) begin
 change_r <= 2'b0 ;
 sell_r <= 1'b1 ;
 end
 else if (st_cur == GET15 && coin == 2'h2) begin
 change_r <= 2'b1 ;
 sell_r <= 1'b1 ;
 end
 else begin
 change_r <= 2'b0 ;
 sell_r <= 1'b0 ;
 end
 end

- 56 -

ZU5EV_FPGA Development Manual V2.0.3

2'b01: st_next = GET05 ;
2'b10: st_next = GET10 ;
default: st_next = IDLE ;

2'b01: st_next = GET10 ;
2'b10: st_next = GET15 ;
default: st_next = GET05 ;

2'b01: st_next = GET15 ;
2'b10: st_next = IDLE ;
default: st_next = GET10 ;

2'b01,2'b10:
 st_next = IDLE ;

default: st_next = GET15 ;

default: st_next = IDLE ;

//(3) output logic, using non-block assignment
reg [1:0] change_r ;

always @(posedge clk or negedge rstn) begin

change_r <= 2'b0 ;
sell_r <= 1'b0 ;

else if ((st_cur == GET15 && coin ==2'h1)
|| (st_cur == GET10 && coin ==2'd2)) begin

change_r <= 2'b0 ;
sell_r <= 1'b1 ;

else if (st_cur == GET15 && coin == 2'h2) begin
change_r <= 2'b1 ;
sell_r <= 1'b1 ;

change_r <= 2'b0 ;
sell_r <= 1'b0 ;

MYS-ZU5EV_FPGA Development Manual V2.0.3

 assign sell = sell_r ;
 assign change = change_r ;
endmodule

The test-bench design is as follows

Four scenarios are simul

ds to the consecutive input of 4 5 jiao coins; case2 corresponds to the coin i

nsertion sequence of 1 yuan

ertion sequence of 5 jiao-

 jiao and then a 1 The order of yuan coin insertion.

`timescale 1ns/1ps
module test ;
 reg clk;
 reg rstn ;
 reg [1:0] coin ;
 wire [1:0] change ;
 wire sell ;
 //clock generating
 parameter CYCLE_200MHz = 10 ; //
 always begin
 clk = 0 ; #(CYCLE_200MHz/2) ;
 clk = 1 ; #(CYCLE_200MHz/2) ;
 end
 //motivation generating
 reg [9:0] buy_oper ; //store state of the buy operation
 initial begin
 buy_oper = 'h0 ;
 coin = 2'h0 ;
 rstn = 1'b0 ;
 #8 rstn = 1'b1 ;
 @(negedge clk) ;
 //case(1) 0.5 -> 0.5 -
 #16 ;
 buy_oper = 10'b00_0101_0101 ;
 repeat(5) begin
 @(negedge clk) ;
 coin = buy_oper[1:0] ;
 buy_oper = buy_oper >> 2 ;
 end
 //case(2) 1 -> 0.5 -> 1, taking change
 #16 ;
 buy_oper = 10'b00_0010_0110 ;
 repeat(5) begin
 @(negedge clk) ;
 coin = buy_o
 buy_oper = buy_oper >> 2 ;
 end

- 57 -

ZU5EV_FPGA Development Manual V2.0.3

assign sell = sell_r ;
assign change = change_r ;

bench design is as follows：

Four scenarios are simulated in the simulation, namely: Case1 correspon

ds to the consecutive input of 4 5 jiao coins; case2 corresponds to the coin i

nsertion sequence of 1 yuan-5 jiao-1 yuan; case3 corresponds to the coin ins

-1 yuan-5 jiao; case4 corresponds to 3 consecutive 5

jiao and then a 1 The order of yuan coin insertion.

parameter CYCLE_200MHz = 10 ; //

clk = 0 ; #(CYCLE_200MHz/2) ;
clk = 1 ; #(CYCLE_200MHz/2) ;

//motivation generating
reg [9:0] buy_oper ; //store state of the buy operation

-> 0.5 -> 0.5

buy_oper = 10'b00_0101_0101 ;

) ;
coin = buy_oper[1:0] ;
buy_oper = buy_oper >> 2 ;

> 1, taking change

buy_oper = 10'b00_0010_0110 ;

@(negedge clk) ;
coin = buy_oper[1:0] ;
buy_oper = buy_oper >> 2 ;

ated in the simulation, namely: Case1 correspon

ds to the consecutive input of 4 5 jiao coins; case2 corresponds to the coin i

1 yuan; case3 corresponds to the coin ins

nds to 3 consecutive 5

MYS-ZU5EV_FPGA Development Manual V2.0.3

 //case(3) 0.5 -> 1 -> 0.5
 #16 ;
 buy_oper = 10'b00_0001_1001 ;
 repeat(5) begin
 @(negedge clk) ;
 coin = buy_oper[1:0] ;
 buy_oper = buy_oper >>
 end
 //case(4) 0.5 -> 0.5 -
 #16 ;
 buy_oper = 10'b00_1001_0101 ;
 repeat(5) begin
 @(negedge clk) ;
 coin = buy_oper[1:0] ;
 buy_oper = buy_oper >> 2 ;
 end
 end
 //(1) mealy state with 3-
 vending_machine_p3 u_mealy_p3
 (
 .clk (clk),
 .rstn (rstn),
 .coin (coin),
 .change (change),
 .sell (sell)
);
 //(2) mealy state with 2-
 wire [1:0] change_p2 ;
 wire sell_p2 ;
 vending_machine_p2 u_mealy_p2
 (
 .clk (clk),
 .rstn (rstn),
 .coin (coin),
 .change (change_p2),
 .sell (sell_p2)
);

 //(3) mealy state with 1-
 wire [1:0] change_p1 ;
 wire sell_p1 ;
 vending_machine_p1 u_mealy_p1
 (
 .clk (clk
 .rstn (rstn),
 .coin (coin),
 .change (change_p1),
 .sell (sell_p1));
 //(4) mealy state with 1-
 wire [1:0] change_moore ;

- 58 -

ZU5EV_FPGA Development Manual V2.0.3

> 0.5

buy_oper = 10'b00_0001_1001 ;

@(negedge clk) ;
coin = buy_oper[1:0] ;
buy_oper = buy_oper >> 2 ;

-> 0.5 -> 1, taking change

buy_oper = 10'b00_1001_0101 ;

@(negedge clk) ;
coin = buy_oper[1:0] ;
buy_oper = buy_oper >> 2 ;

-stage
vending_machine_p3 u_mealy_p3

.clk (clk),

.rstn (rstn),

.coin (coin),

.change (change),

.sell (sell)

-stage
wire [1:0] change_p2 ;
wire sell_p2 ;
vending_machine_p2 u_mealy_p2

.clk (clk),

.rstn (rstn),

.coin (coin),

.change (change_p2),

.sell (sell_p2)

-stage
wire [1:0] change_p1 ;
wire sell_p1 ;
vending_machine_p1 u_mealy_p1

.clk (clk),

.rstn (rstn),

.coin (coin),

.change (change_p1),

.sell (sell_p1));
-stage

wire [1:0] change_moore ;

MYS-ZU5EV_FPGA Development Manual V2.0.3

 wire sell_moore ;
 vending_machine_moore u_moore_p3
 (
 .clk (clk),
 .rstn (rstn),
 .coin (coin),
 .change (change_moore),
 .sell (sell_moore));
 //simulation finish
 always begin
 #100;
 if ($time >= 10000) $finish ;
 end
endmodule // test

Simulations results as follows

It can be seen from the figure that the sell signal representing the shipm

ent action can be pulled up normally after the coin is inserted, and the sig

l change representing the change action can also output the correct change

signal according to the input coin scene

6 Conclusion

This document introduces the commonly used modules in combinatorial logic

and sequential logic. Among them, finite state ma

but they are often used. I hope everyone can understand them deeply, use them

more in the code, and think more, which is conducive to rapid improvement.

2.3.2 VerilogGrammar Study References

There are many reference materials for learning verilog grammar, but before

learning verilog grammar, you need to complete the study of digital logic circuits

and the study of semiconductor principles in the analog circuit course.

For further competition

delays in sequential circuits, input and output delays, about the integration of

module instantiation, parameter transfer, etc., here is limited to the length of the

introduction, you can refer to the ve

The learning materials are as follows:

- 59 -

ZU5EV_FPGA Development Manual V2.0.3

wire sell_moore ;
ding_machine_moore u_moore_p3

.clk (clk),

.rstn (rstn),

.coin (coin),

.change (change_moore),

.sell (sell_moore));

if ($time >= 10000) $finish ;

Simulations results as follows:

It can be seen from the figure that the sell signal representing the shipm

ent action can be pulled up normally after the coin is inserted, and the sig

l change representing the change action can also output the correct change

signal according to the input coin scene

This document introduces the commonly used modules in combinatorial logic

and sequential logic. Among them, finite state machines are more complicated,

but they are often used. I hope everyone can understand them deeply, use them

more in the code, and think more, which is conducive to rapid improvement.

Grammar Study References

There are many reference materials for learning verilog grammar, but before

learning verilog grammar, you need to complete the study of digital logic circuits

and the study of semiconductor principles in the analog circuit course.

For further competition and risk in combinational logic circuits, as well as

delays in sequential circuits, input and output delays, about the integration of

module instantiation, parameter transfer, etc., here is limited to the length of the

introduction, you can refer to the verilog

The learning materials are as follows:

It can be seen from the figure that the sell signal representing the shipm

ent action can be pulled up normally after the coin is inserted, and the signa

l change representing the change action can also output the correct change

This document introduces the commonly used modules in combinatorial logic

chines are more complicated,

but they are often used. I hope everyone can understand them deeply, use them

more in the code, and think more, which is conducive to rapid improvement.

There are many reference materials for learning verilog grammar, but before

learning verilog grammar, you need to complete the study of digital logic circuits

and the study of semiconductor principles in the analog circuit course.

and risk in combinational logic circuits, as well as

delays in sequential circuits, input and output delays, about the integration of

module instantiation, parameter transfer, etc., here is limited to the length of the

MYS-ZU5EV_FPGA Development Manual V2.0.3

[1] Xiaomei Ge FPGA Tutorial

[2] Weisan Academy FPGA Tutorial

[3] Wu Houhang. Playing with FPGA in simple language[M]. Beijing

University of Aeronautics and Astronautics Press, 2013.

[4] Xia Yuwen. Verilog digital system design tutorial. 3rd edition [M].

Beijing University of Aeronautics and Astronautics Press, 2013.

[5] Han Bin, Yu Xiaoyu, Zhang Leiming. Detailed explanation of FPGA

design skills and case development[M]. Publishing House of

Industry, 2014.

For information on timing, you can use xilinx official timing analysis and the

use of constraints.

2.3.3 Usage of DocNav

Installation of DocNav:

-Can be installed separately

-The software is already included in the Vivado in

DocNav overview:

Open the software, Catalog View and Design Hub View will be displayed in

the upper left corner.

Catalog View divides the data into categories according to chip series,

development tools, IP, etc.

The Design Hub View classifies documents from the FPGA design perspective.

How to use this tool well? One of the purposes of this tool is to help us find

Xilinx related documents. Furthermore, it means "use less time to find documents

and save more time to read do

contacted Xilinx, you may only know the basic flow of FPGA design or simple

terminology, then you can start to find the information you need from Design

Hub Veiw. If you open DocNav and the Design Hub View is n

click the red box button in the figure below (in the upper right corner). Select

System-Level Design Flow in the figure below, and a clear flow chart will appear.

The wonderful thing about this flow chart is that the blue text in the

hyperlink. Click it and you will find that related documents are all gathered

together.

- 60 -

ZU5EV_FPGA Development Manual V2.0.3

Xiaomei Ge FPGA Tutorial

Weisan Academy FPGA Tutorial

Wu Houhang. Playing with FPGA in simple language[M]. Beijing

University of Aeronautics and Astronautics Press, 2013.

Xia Yuwen. Verilog digital system design tutorial. 3rd edition [M].

Beijing University of Aeronautics and Astronautics Press, 2013.

Han Bin, Yu Xiaoyu, Zhang Leiming. Detailed explanation of FPGA

design skills and case development[M]. Publishing House of

For information on timing, you can use xilinx official timing analysis and the

Installation of DocNav:

Can be installed separately

The software is already included in the Vivado installation file, just check it

Open the software, Catalog View and Design Hub View will be displayed in

Catalog View divides the data into categories according to chip series,

development tools, IP, etc.

n Hub View classifies documents from the FPGA design perspective.

How to use this tool well? One of the purposes of this tool is to help us find

Xilinx related documents. Furthermore, it means "use less time to find documents

and save more time to read documents". If you are a beginner and have just

contacted Xilinx, you may only know the basic flow of FPGA design or simple

terminology, then you can start to find the information you need from Design

Hub Veiw. If you open DocNav and the Design Hub View is not displayed, you can

click the red box button in the figure below (in the upper right corner). Select

Level Design Flow in the figure below, and a clear flow chart will appear.

The wonderful thing about this flow chart is that the blue text in the

hyperlink. Click it and you will find that related documents are all gathered

Wu Houhang. Playing with FPGA in simple language[M]. Beijing

Xia Yuwen. Verilog digital system design tutorial. 3rd edition [M].

Beijing University of Aeronautics and Astronautics Press, 2013.

Han Bin, Yu Xiaoyu, Zhang Leiming. Detailed explanation of FPGA

design skills and case development[M]. Publishing House of Electronics

For information on timing, you can use xilinx official timing analysis and the

stallation file, just check it

Open the software, Catalog View and Design Hub View will be displayed in

Catalog View divides the data into categories according to chip series,

n Hub View classifies documents from the FPGA design perspective.

How to use this tool well? One of the purposes of this tool is to help us find

Xilinx related documents. Furthermore, it means "use less time to find documents

cuments". If you are a beginner and have just

contacted Xilinx, you may only know the basic flow of FPGA design or simple

terminology, then you can start to find the information you need from Design

ot displayed, you can

click the red box button in the figure below (in the upper right corner). Select

Level Design Flow in the figure below, and a clear flow chart will appear.

The wonderful thing about this flow chart is that the blue text in the figure is a

hyperlink. Click it and you will find that related documents are all gathered

MYS-ZU5EV_FPGA Development Manual V2.0.3

For example, if you click Logic Simulation, the following documents will

appear (only a part of them are shown here). Then you ca

according to your reading habits. For beginners, GetTIng Started is a good part.

There are videos, a Tutorial that teaches you step by step, and a User Guide for

further in-depth learning. For the User Guide, I personally suggest that y

use it as a dictionary, and you can check it when you encounter problems, which

will be more efficient. It's really unnecessary to read page by page.

- 61 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-52 DocNav begin
For example, if you click Logic Simulation, the following documents will

appear (only a part of them are shown here). Then you can view the document

according to your reading habits. For beginners, GetTIng Started is a good part.

There are videos, a Tutorial that teaches you step by step, and a User Guide for

depth learning. For the User Guide, I personally suggest that y

use it as a dictionary, and you can check it when you encounter problems, which

will be more efficient. It's really unnecessary to read page by page.

For example, if you click Logic Simulation, the following documents will

n view the document

according to your reading habits. For beginners, GetTIng Started is a good part.

There are videos, a Tutorial that teaches you step by step, and a User Guide for

depth learning. For the User Guide, I personally suggest that you can

use it as a dictionary, and you can check it when you encounter problems, which

will be more efficient. It's really unnecessary to read page by page.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

Quickly view document chapter titles

In DocNav, you can quickly vie

downloading the document. As shown in the figure below, click the mark pointed

by the red arrow to display the document chapter titles. To view the content of a

chapter, you can directly click the title name to open th

corresponding chapter.

Figure 2

Find files

- 62 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-53 DocNavDesign Hub

Quickly view document chapter titles

In DocNav, you can quickly view the document chapter titles without

downloading the document. As shown in the figure below, click the mark pointed

by the red arrow to display the document chapter titles. To view the content of a

chapter, you can directly click the title name to open the document and go to the

Figure 2-54 DocNav Directory navigation

w the document chapter titles without

downloading the document. As shown in the figure below, click the mark pointed

by the red arrow to display the document chapter titles. To view the content of a

e document and go to the

MYS-ZU5EV_FPGA Development Manual V2.0.3

If you know the document number (Doc ID) or the keywords in the document

title, such as ug949, you can quickly find the document through the following

three steps.

If you don’t know the document number, you can search for documents

based on keywords. For example, if you need to find documents related to timing

constraints, you can quickly find

For the searched documents, you can further filter, for example, you can filter

according to the matching situation.

Figure 2

Search filters:

- 63 -

ZU5EV_FPGA Development Manual V2.0.3

If you know the document number (Doc ID) or the keywords in the document

title, such as ug949, you can quickly find the document through the following

Figure 2-55DocNav search

Figure 2-56DocNav search results

If you don’t know the document number, you can search for documents

based on keywords. For example, if you need to find documents related to timing

constraints, you can quickly find the documents through the following three steps.

For the searched documents, you can further filter, for example, you can filter

according to the matching situation.

Figure 2-57 DocNav search results filters

If you know the document number (Doc ID) or the keywords in the document

title, such as ug949, you can quickly find the document through the following

If you don’t know the document number, you can search for documents

based on keywords. For example, if you need to find documents related to timing

the documents through the following three steps.

For the searched documents, you can further filter, for example, you can filter

MYS-ZU5EV_FPGA Development Manual V2.0.3

Document Filters are on the f

For example, to view the corresponding documents of Vivado, you can

checkVivado and cancel the others (remove the "√" in the box). This helps narrow

down the search 。

Document Tray

DocumentTray is located at the far right of DocNav, which can display

recently opened documents. The advantage of this is that if you need to find the

recently viewed documents, you can quickly find them here

- 64 -

ZU5EV_FPGA Development Manual V2.0.3

Document Filters are on the far left of DocNav, as shown in the figure below.

For example, to view the corresponding documents of Vivado, you can

checkVivado and cancel the others (remove the "√" in the box). This helps narrow

Figure 2-58 DocNav filter results

DocumentTray is located at the far right of DocNav, which can display

recently opened documents. The advantage of this is that if you need to find the

recently viewed documents, you can quickly find them here 。

ar left of DocNav, as shown in the figure below.

For example, to view the corresponding documents of Vivado, you can

checkVivado and cancel the others (remove the "√" in the box). This helps narrow

DocumentTray is located at the far right of DocNav, which can display

recently opened documents. The advantage of this is that if you need to find the

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2

2.3.4 XDC Constraints File

XDC basis：

XDC constraint file refers to xilinx Design constrains, which is a constraint

design document dedicated to vivado, including physical constraints and timing

constraints.

The traditional ISE UCF constraint docume

difference between them is that XDC is based on the standard Synopsys design

constraint SDC format. SDC has been designed and used for more than 20 years,

so it is the most popular and mature way to describe design constrain

UCF are fundamentally different, and these basic differences need to be

understood. It can be determined that XDC is a combination of the standard

Synopsys design constraints (SDC) of design constraints and xilinx's proprietary

physical constraints.

The SDC here is (SDC1.9 version). The characteristics of the XDC document

are as follows:

1.The commands written in XDC are all commands that follow the TCL syntax.

2. XDC is interpreted like any other command of Vivado Tcl interpreter.

3. The reading and parsing sequence of XDC is the same as other Tcl

commands.

- 65 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 2-59 DocNav histotry documents

2.3.4 XDC Constraints File

XDC constraint file refers to xilinx Design constrains, which is a constraint

design document dedicated to vivado, including physical constraints and timing

The traditional ISE UCF constraint document format is not supported. The

difference between them is that XDC is based on the standard Synopsys design

constraint SDC format. SDC has been designed and used for more than 20 years,

so it is the most popular and mature way to describe design constrain

UCF are fundamentally different, and these basic differences need to be

understood. It can be determined that XDC is a combination of the standard

Synopsys design constraints (SDC) of design constraints and xilinx's proprietary

The SDC here is (SDC1.9 version). The characteristics of the XDC document

The commands written in XDC are all commands that follow the TCL syntax.

2. XDC is interpreted like any other command of Vivado Tcl interpreter.

reading and parsing sequence of XDC is the same as other Tcl

XDC constraint file refers to xilinx Design constrains, which is a constraint

design document dedicated to vivado, including physical constraints and timing

nt format is not supported. The

difference between them is that XDC is based on the standard Synopsys design

constraint SDC format. SDC has been designed and used for more than 20 years,

so it is the most popular and mature way to describe design constraints. XDC and

UCF are fundamentally different, and these basic differences need to be

understood. It can be determined that XDC is a combination of the standard

Synopsys design constraints (SDC) of design constraints and xilinx's proprietary

The SDC here is (SDC1.9 version). The characteristics of the XDC document

The commands written in XDC are all commands that follow the TCL syntax.

2. XDC is interpreted like any other command of Vivado Tcl interpreter.

reading and parsing sequence of XDC is the same as other Tcl

MYS-ZU5EV_FPGA Development Manual V2.0.3

We can enter XDC commands at different points in different ways during the

design process:

1. Design constraints can be divided into one or more XDC documents for

input. In order to add XDC constraints to the memory, one of the following

methods can be used, Use the read_xdc command Add it to one of the constraint

sets of the project. The XDC file only accepts the built

and expr.

2. Use unmanaged Tcl scripts

Tcl script, one of the following operations is sufficient Use the source command

Use the read_xdc -unmanaged command Add Tcl commands to one of the

constraint sets of the project.

Use specific role XDC const

Compilation process design constraints defines the requirements that must

be met in order to play a role in the design of the circuit board. Not all constraints

are used to compile all the steps in the process. For example, physical constraints

used only during implementation steps (i.e., layout and routers). Because Xilinx®

Vivado® Integrated Design Environment (IDE) synthesis and implementation

algorithms are timing-driven, so you have to create the appropriate timing

constraints.

Over-constrained or under

difficult. You must use your application requires corresponding reasonable

constraints.

XDC written in a way:

Physical constraints written in a way: Xilinx pins dedicated physical

constraints comprising: electrical pin location constraints and constraints.

Pin position constraints

［get_ports “Port name”］

Pin electrical constrain

［get_ports “port name”］

For example：

set_property IOSTANDARD LVCMOS33

set_property IOSTANDARD LVCMOS33

set_property IOSTANDARD LVCMOS33

- 66 -

ZU5EV_FPGA Development Manual V2.0.3

We can enter XDC commands at different points in different ways during the

Design constraints can be divided into one or more XDC documents for

XDC constraints to the memory, one of the following

methods can be used, Use the read_xdc command Add it to one of the constraint

sets of the project. The XDC file only accepts the built-in Tcl commands of set, list,

2. Use unmanaged Tcl scripts to generate constraints In order to execute the

Tcl script, one of the following operations is sufficient Use the source command

unmanaged command Add Tcl commands to one of the

constraint sets of the project.

Use specific role XDC constraints:

Compilation process design constraints defines the requirements that must

be met in order to play a role in the design of the circuit board. Not all constraints

are used to compile all the steps in the process. For example, physical constraints

ed only during implementation steps (i.e., layout and routers). Because Xilinx®

Vivado® Integrated Design Environment (IDE) synthesis and implementation

driven, so you have to create the appropriate timing

ed or under-constrained your design makes timing closure

difficult. You must use your application requires corresponding reasonable

XDC written in a way:

Physical constraints written in a way: Xilinx pins dedicated physical

ising: electrical pin location constraints and constraints.

Pin position constraints： set_property PAKAGE_PIN “Pin Number

”］

Pin electrical constraints： set_property IOSTANDARD “Voltage

”］

set_property IOSTANDARD LVCMOS33 ［get_ports sys_clk］

set_property IOSTANDARD LVCMOS33 ［get_ports {led［0

set_property IOSTANDARD LVCMOS33 ［get_ports {led［1

We can enter XDC commands at different points in different ways during the

Design constraints can be divided into one or more XDC documents for

XDC constraints to the memory, one of the following

methods can be used, Use the read_xdc command Add it to one of the constraint

in Tcl commands of set, list,

to generate constraints In order to execute the

Tcl script, one of the following operations is sufficient Use the source command

unmanaged command Add Tcl commands to one of the

Compilation process design constraints defines the requirements that must

be met in order to play a role in the design of the circuit board. Not all constraints

are used to compile all the steps in the process. For example, physical constraints

ed only during implementation steps (i.e., layout and routers). Because Xilinx®

Vivado® Integrated Design Environment (IDE) synthesis and implementation

driven, so you have to create the appropriate timing

constrained your design makes timing closure

difficult. You must use your application requires corresponding reasonable

Physical constraints written in a way: Xilinx pins dedicated physical

ising: electrical pin location constraints and constraints.

Pin Number”

Voltage”

］

0］}］

1］}］

MYS-ZU5EV_FPGA Development Manual V2.0.3

set_property PACKAGE_PIN U18

set_property PACKAGE_PIN M14

set_property PACKAGE_PIN M15

Note：

1) The above grammar is case sensitive;

2) When the port name is an array, it needs to be enclosed in {}, and the port

name cannot be a keyword.

Differential signal constraints

1,Ordinary difference constraint

The differential signal constraint syntax is the same as in section 1. This is

just an example.

1) HR I/O Bank，VCCO = 3.3V

set_property PACKAGE_PIN N1

set_property PACKAGE_PIN V20

set_property IOSTANDARD TMDS_33

set_property IOSTANDARD TMDS_33

2) HP I/O Bank，VCCO = 1.8V

set_property PACKAGE_PIN N18

set_property PACKAGE_PIN V20

set_property IOSTANDARD LVDS

set_property IOSTANDARD LVDS

Note：

Differential signal constraint

matches the N pin constraint, of course, there is no problem if both _P and _N

pins are constrained;

The level of the differential signal should be restricted according to the

VCCO Bank voltage.

Transceiver differential signal constraints

Transceiver MGTREFCLK clock constraint pin location constraint:

set_property LOC “pin number

For example：

set_property LOC G7 ［get_ports Q2_CLK0_GTREFCLK_

- 67 -

ZU5EV_FPGA Development Manual V2.0.3

set_property PACKAGE_PIN U18 ［get_ports sys_clk］

set_property PACKAGE_PIN M14 ［get_ports {led［0］}］

rty PACKAGE_PIN M15 ［get_ports {led［1］}］

The above grammar is case sensitive;

When the port name is an array, it needs to be enclosed in {}, and the port

name cannot be a keyword.

Differential signal constraints ：

Ordinary difference constraint

The differential signal constraint syntax is the same as in section 1. This is

VCCO = 3.3V，HDMI port constraints

set_property PACKAGE_PIN N18 ［get_ports TMDS_clk_p］

set_property PACKAGE_PIN V20 ［get_ports {TMDS_data_p［0］

set_property IOSTANDARD TMDS_33 ［get_ports TMDS_clk_p］

set_property IOSTANDARD TMDS_33 ［get_ports {TMDS_data_p

VCCO = 1.8V，HDMI interface constraints

set_property PACKAGE_PIN N18 ［get_ports TMDS_clk_p］

set_property PACKAGE_PIN V20 ［get_ports {TMDS_data_p［0］

set_property IOSTANDARD LVDS ［get_ports TMDS_clk_p］

set_property IOSTANDARD LVDS ［get_ports {TMDS_data_p［0］

Differential signal constraint, only P pin is required, the system automatically

matches the N pin constraint, of course, there is no problem if both _P and _N

The level of the differential signal should be restricted according to the

ver differential signal constraints：

Transceiver MGTREFCLK clock constraint pin location constraint:

pin number” ［get_ports “pin name

get_ports Q2_CLK0_GTREFCLK_PAD_N_IN

When the port name is an array, it needs to be enclosed in {}, and the port

The differential signal constraint syntax is the same as in section 1. This is

］}］

］

get_ports {TMDS_data_p［0］}］

］}]

］}］

, only P pin is required, the system automatically

matches the N pin constraint, of course, there is no problem if both _P and _N

The level of the differential signal should be restricted according to the

pin name”］

_N_IN ］

MYS-ZU5EV_FPGA Development Manual V2.0.3

set_property LOC G8 ［get_ports Q2_CLK0_GTREFCLK_PAD_P_IN

Transceiver MGT channel constraints

For GTXE2_CHANNEL channel constraints: one method is to use the 7 series

FPGAs transceiver wizard, after configuring

parameters, automatically generate the XDC template, and then apply the

template to your own design; the second method is to write your own XDC

constraint file, its position constraint position should refer to the specific

schematic signal pin to write the constraint file. Example: For the four

transceiver in Figure 1, the GTXE2_CHANNEL constraint.

Figure 2

Transceiver MGT channel constraints location

set_property LOC “ GTXE2_CHANNEL_X* Y *

inst/location”］

For example：

- 68 -

ZU5EV_FPGA Development Manual V2.0.3

get_ports Q2_CLK0_GTREFCLK_PAD_P_IN

r MGT channel constraints：

For GTXE2_CHANNEL channel constraints: one method is to use the 7 series

FPGAs transceiver wizard, after configuring the transceiver configuration

parameters, automatically generate the XDC template, and then apply the

template to your own design; the second method is to write your own XDC

constraint file, its position constraint position should refer to the specific

hematic signal pin to write the constraint file. Example: For the four

transceiver in Figure 1, the GTXE2_CHANNEL constraint.

Figure 2-60 GTXE2_ChANNEL

r MGT channel constraints location：

GTXE2_CHANNEL_X* Y * ” ［get_cells “gtxe_2

get_ports Q2_CLK0_GTREFCLK_PAD_P_IN ］

For GTXE2_CHANNEL channel constraints: one method is to use the 7 series

the transceiver configuration

parameters, automatically generate the XDC template, and then apply the

template to your own design; the second method is to write your own XDC

constraint file, its position constraint position should refer to the specific

hematic signal pin to write the constraint file. Example: For the four-channel

gtxe_2

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 2-61 Pin constraints of high

Note：gtxe_2Refer to Figure

modified according to the specific project implementation

Figure 2-62 Pin constraints of high

Timing Constraints：

Timing constrains include several types below

Input Path.

Register-to-Register Path.

Output Path.

Path specific exceptions.

Input Constraint:

The input signal din is captured by the register FD0 on the rising edge of the

clock clk. The input delay constraint describes the delay between the start edge of

the clock and the time when the signal din transitions at the input of the device.

The maximum and minimum input delay must be specified to accurately perform

setup/restore and hold/remove checks, respectively. After selecting the interface

type (system or source synchronization, edge alignment, reference edge, and data

- 69 -

ZU5EV_FPGA Development Manual V2.0.3

Pin constraints of high-speed serial transceivers

Refer to Figure 2-61 for the instantiated path, and the path name is

modified according to the specific project implementation 。

Pin constraints of high-speed serial transceivers

Timing constrains include several types below：

Register Path.

Path specific exceptions.

Figure 2-63 input delay example

The input signal din is captured by the register FD0 on the rising edge of the

clock clk. The input delay constraint describes the delay between the start edge of

the clock and the time when the signal din transitions at the input of the device.

ximum and minimum input delay must be specified to accurately perform

setup/restore and hold/remove checks, respectively. After selecting the interface

type (system or source synchronization, edge alignment, reference edge, and data

speed serial transceivers

for the instantiated path, and the path name is

speed serial transceivers

The input signal din is captured by the register FD0 on the rising edge of the

clock clk. The input delay constraint describes the delay between the start edge of

the clock and the time when the signal din transitions at the input of the device.

ximum and minimum input delay must be specified to accurately perform

setup/restore and hold/remove checks, respectively. After selecting the interface

type (system or source synchronization, edge alignment, reference edge, and data

MYS-ZU5EV_FPGA Development Manual V2.0.3

rate), you must define the various delay parameters required to calculate the

minimum and maximum input delay values. E.g

set_input_delay -clock clk 3.4 [get_ports din]

set_input_delay -clock clk 1.0 [get_ports din]

Register-to-Register Constraint:

Register-to-register constraints often refer to cycle constraints. The coverage

of cycle constraints includes:  Covers the timing requirements of the clock

domain  Covers the transmission of synchronous data between internal

registers Analyze the path in a sin

related clock domains Consider all frequency, phase, and uncertainty differences

between different clock domains

Output Constraint:

The output timing constraints constrain the data from the internal

synchronization components or registers to the device pins. System Synchronous

Output Constraint The simplified model of system synchronization output is

shown in the figure. In the system synchronization output interface, data

transmission and acquisition are based o

Output delay constraint:

The output signal dout is sent by the register FD1 on the rising edge of clk,

and is captured outside the device by the board clock. In most cases, the board

clock is also clk or a phase-

describes the delay between the timedout transition at the device boundary and

the capture edge of the board clock. The maximum and minimum output delay

must be specified to accurately perform set

- 70 -

ZU5EV_FPGA Development Manual V2.0.3

the various delay parameters required to calculate the

minimum and maximum input delay values. E.g ：

clock clk 3.4 [get_ports din] -max

clock clk 1.0 [get_ports din] -min -add

Register Constraint:

register constraints often refer to cycle constraints. The coverage

of cycle constraints includes:  Covers the timing requirements of the clock

domain  Covers the transmission of synchronous data between internal

registers Analyze the path in a single clock domain Analyze all paths between

related clock domains Consider all frequency, phase, and uncertainty differences

between different clock domains

The output timing constraints constrain the data from the internal

ion components or registers to the device pins. System Synchronous

Output Constraint The simplified model of system synchronization output is

shown in the figure. In the system synchronization output interface, data

transmission and acquisition are based on the same clock.

Figure 2-64 output delay example

The output signal dout is sent by the register FD1 on the rising edge of clk,

and is captured outside the device by the board clock. In most cases, the board

-shifted copy of clk. The output delay constraint

describes the delay between the timedout transition at the device boundary and

the capture edge of the board clock. The maximum and minimum output delay

must be specified to accurately perform setup and hold checks. After selecting the

the various delay parameters required to calculate the

register constraints often refer to cycle constraints. The coverage

of cycle constraints includes:  Covers the timing requirements of the clock

domain  Covers the transmission of synchronous data between internal

gle clock domain Analyze all paths between

related clock domains Consider all frequency, phase, and uncertainty differences

The output timing constraints constrain the data from the internal

ion components or registers to the device pins. System Synchronous

Output Constraint The simplified model of system synchronization output is

shown in the figure. In the system synchronization output interface, data

The output signal dout is sent by the register FD1 on the rising edge of clk,

and is captured outside the device by the board clock. In most cases, the board

shifted copy of clk. The output delay constraint

describes the delay between the timedout transition at the device boundary and

the capture edge of the board clock. The maximum and minimum output delay

up and hold checks. After selecting the

MYS-ZU5EV_FPGA Development Manual V2.0.3

interface type (system or source synchronization, edge alignment, reference edge,

and data rate), you must provide the various delay parameters required by the

wizard to calculate the minimum and maximum output delay

set_output_delay -clock clk 5.555 [get_ports dout]

set_output_delay -clock clk 0.905 [get_ports dout]

2.3.5 TCL Brief Introduction to

When you have installed Tcl, the program you will then call to utilize it

is tclsh. For instance, if you write some code to a file "hello.tcl", and you want to

execute it, you would do it like so:

installed, and the operating system distribution you use, the

be a link to the real executable, which may be named

Microsoft Windows.

The tclsh is a simple command

start it with a script on the command line, in which case it runs the script to

completion and then exits, or you can start it without any arguments, in which

case you will be presented with an interactive prompt, usually using a

to prompt for input. In interactive mode, you can type in commands, which Tcl

will then execute and display the

the interpreter, type exit and press Return. Playing around with the interactive

interpreter is a great way to learn how to use Tcl. Most Tcl commands will

produce a helpful error message explaining how th

the command with no arguments. You can get a list of all the commands that

your interpreter knows about by typing

The tclsh executable is just one way of starting a Tcl interpreter. Another

common executable, which may be installed on your system, is the

WIndowing SHell. This is a version of Tcl that automatically loads the Tk extension

for building graphical user interfaces (GUIs). This tutorial does not cover Tk, and

so we will not use the wish

providing more functional environments for developing and debugging code than

that provided by the standard

One very popular choice isthe

Hobbs. The Eclipse IDE offers good Tcl support, in the form of the

- 71 -

ZU5EV_FPGA Development Manual V2.0.3

interface type (system or source synchronization, edge alignment, reference edge,

and data rate), you must provide the various delay parameters required by the

wizard to calculate the minimum and maximum output delay values. E.g:

clock clk 5.555 [get_ports dout] -max

clock clk 0.905 [get_ports dout] -min -add

ntroduction to Grammar

When you have installed Tcl, the program you will then call to utilize it

For instance, if you write some code to a file "hello.tcl", and you want to

execute it, you would do it like so: tclsh hello.tcl. Depending on the version of Tcl

installed, and the operating system distribution you use, the tclsh

the real executable, which may be named tclsh8.6 or

is a simple command-line interactive interpreter. You can either

start it with a script on the command line, in which case it runs the script to

then exits, or you can start it without any arguments, in which

case you will be presented with an interactive prompt, usually using a

to prompt for input. In interactive mode, you can type in commands, which Tcl

will then execute and display the result, or any error messages that result. To exit

and press Return. Playing around with the interactive

interpreter is a great way to learn how to use Tcl. Most Tcl commands will

produce a helpful error message explaining how they are used if you just type in

the command with no arguments. You can get a list of all the commands that

your interpreter knows about by typing info commands.

executable is just one way of starting a Tcl interpreter. Another

which may be installed on your system, is the

WIndowing SHell. This is a version of Tcl that automatically loads the Tk extension

for building graphical user interfaces (GUIs). This tutorial does not cover Tk, and

 interpreter here. Other options are also available,

providing more functional environments for developing and debugging code than

that provided by the standard tclsh.

One very popular choice isthe TkCon enhanced interpreter, written by Jeff

Hobbs. The Eclipse IDE offers good Tcl support, in the form of the

interface type (system or source synchronization, edge alignment, reference edge,

and data rate), you must provide the various delay parameters required by the

values. E.g:

add

When you have installed Tcl, the program you will then call to utilize it

For instance, if you write some code to a file "hello.tcl", and you want to

tclsh hello.tcl. Depending on the version of Tcl

tclsh program may

 tclsh86.exe on

line interactive interpreter. You can either

start it with a script on the command line, in which case it runs the script to

then exits, or you can start it without any arguments, in which

case you will be presented with an interactive prompt, usually using a % symbol

to prompt for input. In interactive mode, you can type in commands, which Tcl

result, or any error messages that result. To exit

and press Return. Playing around with the interactive

interpreter is a great way to learn how to use Tcl. Most Tcl commands will

ey are used if you just type in

the command with no arguments. You can get a list of all the commands that

executable is just one way of starting a Tcl interpreter. Another

which may be installed on your system, is the wish, or

WIndowing SHell. This is a version of Tcl that automatically loads the Tk extension

for building graphical user interfaces (GUIs). This tutorial does not cover Tk, and

preter here. Other options are also available,

providing more functional environments for developing and debugging code than

interpreter, written by Jeff

Hobbs. The Eclipse IDE offers good Tcl support, in the form of the DLTK extension,

MYS-ZU5EV_FPGA Development Manual V2.0.3

and the Tcl'ers Wiki offers a list of IDEs with Tcl support

comprehensive catalogue of Tcl source code editors

don't know how to use a sophisticated development environment, it is still very

easy to write Tcl code by hand in a simple text edito

Basis usage in Tcl：

1.output：tcl use ”puts"

Usage : puts -nonewline

The output command of Tcl is "puts", which outputs the string to the

standard output channelId. The parameter between the two question

syntax is optional.
puts hello

=> hello

puts –nonewline "hello hello"

=>hello hello

But if you output a piece of text with spaces, you must enclose it in double

quotes or curly braces The

returns and line feeds. Note: The function of double quotation marks and curly

braces is to organize multiple words into one argument, but they are different!

This difference is that when dealing with "replacement operations", the former

allows replacement to occur, while the latter may prevent replacement. The usage

and differences between the two will be discussed in the future. Both have the

same effect here.

2. Assignment: tcl uses the "set" keyword to define parameters, without

specifying the type of variable value, because there is only one type of variable

value-string. When assigning a value to a variable, a section of memory space is

opened for the variable to store the variable value

set varName [value]

set a Hello ;#Define variable

puts $a ;#output variable value

set a “Hello world” ;#

set a “Hello world” => Test Tcl ;#

don’t add ”$” this place

- 72 -

ZU5EV_FPGA Development Manual V2.0.3

a list of IDEs with Tcl support and a

catalogue of Tcl source code editors. Don't panic, though! If you

don't know how to use a sophisticated development environment, it is still very

easy to write Tcl code by hand in a simple text editor (such as Notepad).

”puts"keyword

nonewline -channelId -string

The output command of Tcl is "puts", which outputs the string to the

standard output channelId. The parameter between the two question

nonewline "hello hello"

But if you output a piece of text with spaces, you must enclose it in double

quotes or curly braces The -nonewline option tells puts not to output carriage

returns and line feeds. Note: The function of double quotation marks and curly

braces is to organize multiple words into one argument, but they are different!

This difference is that when dealing with "replacement operations", the former

t to occur, while the latter may prevent replacement. The usage

and differences between the two will be discussed in the future. Both have the

2. Assignment: tcl uses the "set" keyword to define parameters, without

variable value, because there is only one type of variable

string. When assigning a value to a variable, a section of memory space is

opened for the variable to store the variable value.

Define variable “a”and assign =>Hello

output variable value =>Hello

set a “Hello world” ;#assignment again =>Hello world

set a “Hello world” => Test Tcl ;#output variables

this place

. Don't panic, though! If you

don't know how to use a sophisticated development environment, it is still very

r (such as Notepad).

The output command of Tcl is "puts", which outputs the string to the

standard output channelId. The parameter between the two question marks in the

But if you output a piece of text with spaces, you must enclose it in double

nonewline option tells puts not to output carriage

returns and line feeds. Note: The function of double quotation marks and curly

braces is to organize multiple words into one argument, but they are different!

This difference is that when dealing with "replacement operations", the former

t to occur, while the latter may prevent replacement. The usage

and differences between the two will be discussed in the future. Both have the

2. Assignment: tcl uses the "set" keyword to define parameters, without

variable value, because there is only one type of variable

string. When assigning a value to a variable, a section of memory space is

=>Hello

output variables，

MYS-ZU5EV_FPGA Development Manual V2.0.3

puts $a =>Hello world ;#

puts a => a ;#

set b $a =>Hello world

puts $b =>Hello world ;#

3.replacement

(1):$

The "$" character implements reference replacement and is

parameter values. Also used above Tcl only explains the replacement once, and

ignores the nested "$".

set foo oo =>oo

set dollar foo =>foo

set x $$dollar =>$foo ;#

command is equivalent to set x {$foo}, and braces prevent substitution.

set x {$foo} =>$foo

set y $x =>$foo ; #

(2) :[]

The square brackets "[]" complete the command substitution. Enclose a

command with "[]". After the command is executed, the result will be returned.

set b [set a 5] ;#set a 5

puts $b =>5

set c [expr 5 * 10] ;#

c =>50

(3): ""and{}

Double quotation marks and curly braces organize multiple words into one

parameter, which is also a substitution operation. "" and how to replace within {}?

The general principle is that the replacement within "" will proceed normally, and

the replacement within {} may

set a 123

=>123

puts "$a" #replace

puts {$a} #=>$a

In summary ：

- 73 -

ZU5EV_FPGA Development Manual V2.0.3

puts $a =>Hello world ;#output variables，need to add

puts a => a ;#output character ”a”

set b $a =>Hello world

puts $b =>Hello world ;#puts the value of “a” to

The "$" character implements reference replacement and is used to quote

parameter values. Also used above Tcl only explains the replacement once, and

set x $$dollar =>$foo ;#Replace "$dollar" with the dollar value (foo). The ;#

equivalent to set x {$foo}, and braces prevent substitution.

set x {$foo} =>$foo

set y $x =>$foo ; #First round of substitution

The square brackets "[]" complete the command substitution. Enclose a

the command is executed, the result will be returned.

set b [set a 5] ;#set a 5 outputs assinged to

set c [expr 5 * 10] ;#Assign the result of the multiplication to

on marks and curly braces organize multiple words into one

parameter, which is also a substitution operation. "" and how to replace within {}?

The general principle is that the replacement within "" will proceed normally, and

the replacement within {} may be blocked.

replace =>123

puts {$a} #=>$a

need to add ”$”

 b

used to quote

parameter values. Also used above Tcl only explains the replacement once, and

Replace "$dollar" with the dollar value (foo). The ;#

equivalent to set x {$foo}, and braces prevent substitution.

The square brackets "[]" complete the command substitution. Enclose a

the command is executed, the result will be returned.

outputs assinged to b =>5

Assign the result of the multiplication to

on marks and curly braces organize multiple words into one

parameter, which is also a substitution operation. "" and how to replace within {}?

The general principle is that the replacement within "" will proceed normally, and

MYS-ZU5EV_FPGA Development Manual V2.0.3

The order of execution of the TCL language is: first group, then replace, and

finally execute No substitutions in curly braces Double quotation marks and cu

braces are used for grouping, but the difference lies in whether to support the

operation of the replacement statement is divided into three steps:

First group

Replace next

 Last run The role of $ is the variable leader.

If you want to replace a vari

define the start and end of the variable. There are three ways to group: spaces,

double quotes and curly braces. In addition, the escape character

improve or eliminate the ability of character

2.4 Sections of this Chapter
This chapter mainly introduces some basic knowledge, including the

precautions for installation and use of basic tools (vivado and modelsim), and

explains some common problems encountered in use, and the places that need

attention are specially explained. A more in

you are not very clear about digital logic circuits, you need to learn digital logic

circuits first. There are some basic timing

hold time. The physical constraints are well understood, that is, the consistency of

the output and input pin assignments and electrical characteristics with the chip

data sheet, which facilitates the implementation process. The subsequent layout is

a more in-depth problem, and interested friends can try to explore by themselves.

- 74 -

ZU5EV_FPGA Development Manual V2.0.3

The order of execution of the TCL language is: first group, then replace, and

finally execute No substitutions in curly braces Double quotation marks and cu

braces are used for grouping, but the difference lies in whether to support the

operation of the replacement statement is divided into three steps:

Last run The role of $ is the variable leader.

If you want to replace a variable in the string, you may also need to use {} to

define the start and end of the variable. There are three ways to group: spaces,

double quotes and curly braces. In addition, the escape character

improve or eliminate the ability of characters.

2.4 Sections of this Chapter
This chapter mainly introduces some basic knowledge, including the

precautions for installation and use of basic tools (vivado and modelsim), and

explains some common problems encountered in use, and the places that need

tention are specially explained. A more in-depth knowledge is the constraint. If

you are not very clear about digital logic circuits, you need to learn digital logic

circuits first. There are some basic timing-related concepts such as setup time and

ime. The physical constraints are well understood, that is, the consistency of

the output and input pin assignments and electrical characteristics with the chip

data sheet, which facilitates the implementation process. The subsequent layout is

pth problem, and interested friends can try to explore by themselves.

The order of execution of the TCL language is: first group, then replace, and

finally execute No substitutions in curly braces Double quotation marks and curly

braces are used for grouping, but the difference lies in whether to support the

operation of the replacement statement is divided into three steps:

able in the string, you may also need to use {} to

define the start and end of the variable. There are three ways to group: spaces,

double quotes and curly braces. In addition, the escape character \ here is to

This chapter mainly introduces some basic knowledge, including the

precautions for installation and use of basic tools (vivado and modelsim), and

explains some common problems encountered in use, and the places that need

depth knowledge is the constraint. If

you are not very clear about digital logic circuits, you need to learn digital logic

related concepts such as setup time and

ime. The physical constraints are well understood, that is, the consistency of

the output and input pin assignments and electrical characteristics with the chip

data sheet, which facilitates the implementation process. The subsequent layout is

pth problem, and interested friends can try to explore by themselves.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Chapter 3 Detailed Configuration of
Hardware Platform

The main advantage of ZYNQ is the reasonable combination of FPGA and

ARM, which places higher requirements on developers.

Starting from this chapter, we need FPGA engineers and software engineers

to work together. FPGA engineers are responsible for setting up the Vivado

project and providing good hardware to software developers, who can then

develop applications on this basis. A

the advancement of the project. If it is a software developer who wants to do

everything, it may take a lot of time and energy to learn FPGA knowledge. It is a

painful process to change from software thinking to

learning and time, then It's another matter. Professional people are a good choice

to do professional things.

3.1 The First Project is Established
3.1.1 Vivado Project New

Open vivado，selcet Create Project

Click Next

- 75 -

ZU5EV_FPGA Development Manual V2.0.3

Chapter 3 Detailed Configuration of
Hardware Platform

The main advantage of ZYNQ is the reasonable combination of FPGA and

ARM, which places higher requirements on developers.

rting from this chapter, we need FPGA engineers and software engineers

to work together. FPGA engineers are responsible for setting up the Vivado

project and providing good hardware to software developers, who can then

develop applications on this basis. A good division of labor is also conducive to

the advancement of the project. If it is a software developer who wants to do

everything, it may take a lot of time and energy to learn FPGA knowledge. It is a

painful process to change from software thinking to hardware thinking. If pure

learning and time, then It's another matter. Professional people are a good choice

3.1 The First Project is Established

3.1.1 Vivado Project New

selcet Create Project

Figure 3-1 vivado page begin

Chapter 3 Detailed Configuration of

The main advantage of ZYNQ is the reasonable combination of FPGA and

rting from this chapter, we need FPGA engineers and software engineers

to work together. FPGA engineers are responsible for setting up the Vivado

project and providing good hardware to software developers, who can then

good division of labor is also conducive to

the advancement of the project. If it is a software developer who wants to do

everything, it may take a lot of time and energy to learn FPGA knowledge. It is a

hardware thinking. If pure

learning and time, then It's another matter. Professional people are a good choice

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3
Design project name and location

Figure 3
Click Next

- 76 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-2 vivado page to buit project
Design project name and location

Figure 3-3 vivado page to built new

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

In this place don’t Add Sources or Add Constraints

Figure 3-5 vivado

- 77 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-4 vivado built new project -usage RTL

t Add Sources or Add Constraints，click Next。

5 vivado-add existing files or constrains ,next

add existing files or constrains ,next

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

Int Default Part，select xczu5ev

Figure 3

Summary page，You can check the various setting options when

project. After confirming that they are correct, click Finish.

- 78 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-6 vivado built new project
select xczu5ev-sfvc784-1-i ，click Next

Figure 3-7 vivado built new project

You can check the various setting options when

project. After confirming that they are correct, click Finish.

You can check the various setting options when creating the

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

The vivado page after built project

Figure 3

Below IP INTEGRATOR，click Create Block Design

- 79 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-8 vivado summary page
The vivado page after built project。

Figure 3-9 vivado begin page after built project
click Create Block Design。

MYS-ZU5EV_FPGA Development Manual V2.0.3

Design name remain design_1，

Figure 3

3.1.2 PS Detail Configuration

Click Add IP to add IP

- 80 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-10

，click OK。

Figure 3-11 fill Block design name

3.1.2 PS Detail Configuration

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

Chose mpsoc，then double click Zynq UltraScale+MPSoC to add mpso IP

Zynq mpsoc Ip show as below

- 81 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-12 usage of Block design

then double click Zynq UltraScale+MPSoC to add mpso IP

Figure 3-13 Add MPSOC IP
Zynq mpsoc Ip show as below

MYS-ZU5EV_FPGA Development Manual V2.0.3

Double click zynq mpsoc IP to configuration

The first interface that appears is the architecture diagram of the ZYNQ hard

core. You can clearly see its structure. Refer to the ug1085

contains a detailed introduction to ZYNQ. The green part in the picture is the

configurable module, you can click to enter the corresponding editing interface,

of course, you can also enter the editing in the left window. The functions of e

window are introduced below.

Figure 3

- 82 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-14 MPSOC IP

Double click zynq mpsoc IP to configuration。

The first interface that appears is the architecture diagram of the ZYNQ hard

core. You can clearly see its structure. Refer to the ug1085 document, which

contains a detailed introduction to ZYNQ. The green part in the picture is the

configurable module, you can click to enter the corresponding editing interface,

of course, you can also enter the editing in the left window. The functions of e

window are introduced below.

Figure 3-15 configuration MPSOC IP page

The first interface that appears is the architecture diagram of the ZYNQ hard

document, which

contains a detailed introduction to ZYNQ. The green part in the picture is the

configurable module, you can click to enter the corresponding editing interface,

of course, you can also enter the editing in the left window. The functions of each

MYS-ZU5EV_FPGA Development Manual V2.0.3

1、 Voltage configuration

2、 In the I/O Configuration window, configure the BANK0~BANK3 voltage

LVCMOS33 according to the actual voltage of the hardware circuit.

3、 Low Speed configuration

Select QSPI，”Single

- 83 -

ZU5EV_FPGA Development Manual V2.0.3

Voltage configuration

In the I/O Configuration window, configure the BANK0~BANK3 voltage

LVCMOS33 according to the actual voltage of the hardware circuit.

Figure 3-16 configuration IO

Low Speed configuration

Single”mode， Data Mode is”x4“

In the I/O Configuration window, configure the BANK0~BANK3 voltage

LVCMOS33 according to the actual voltage of the hardware circuit.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

Check SD 0 to configure eMMC. Select MIO13..22, Slot Type select eMMC,

Data Transfer Mode is 8Bit, check Reset, and select MIO23.

- 84 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-17 Configuration QSPI

Check SD 0 to configure eMMC. Select MIO13..22, Slot Type select eMMC,

Data Transfer Mode is 8Bit, check Reset, and select MIO23.

Figure 3-18 Configuration SD

Check SD 0 to configure eMMC. Select MIO13..22, Slot Type select eMMC,

MYS-ZU5EV_FPGA Development Manual V2.0.3

Check SD 1 to configure SD card.

Transfer Mode select 4Bit, check CD, used to detect SD card insertion, select

MIO45, check WP, select MIO44, used for SD card write protection

Check CAN 1, select MIO 28..29

port UART 0, select MIO 26..27, check UART 1, select MIO 8..9 Check GPIO1 MIO,

GPIO0 MIO

Figure 3-20 configuration CAN

- 85 -

ZU5EV_FPGA Development Manual V2.0.3

Check SD 1 to configure SD card. Select MIO 46..51, Slot Type select SD 2.0, Data

Transfer Mode select 4Bit, check CD, used to detect SD card insertion, select

MIO45, check WP, select MIO44, used for SD card write protection

Figure 3-19 Configuration SD1

Check CAN 1, select MIO 28..29 Check I2C 1, select MIO24..25 Check the serial

port UART 0, select MIO 26..27, check UART 1, select MIO 8..9 Check GPIO1 MIO,

20 configuration CAN、I2C、UART、GPIO

Select MIO 46..51, Slot Type select SD 2.0, Data

Transfer Mode select 4Bit, check CD, used to detect SD card insertion, select

MIO45, check WP, select MIO44, used for SD card write protection 。

Check I2C 1, select MIO24..25 Check the serial

port UART 0, select MIO 26..27, check UART 1, select MIO 8..9 Check GPIO1 MIO,

GPIO

MYS-ZU5EV_FPGA Development Manual V2.0.3

 Check SWDT 0、SWDT 1
Check TTC 0~TTC 3

Figure 3

4、 High Speed Configuration

In the High Speed section, first configure the PS side Ethernet, check GEM 3,

select MIO 64..75, check MDIO3, select MIO 76..77

Figure 3

 Check USB 0，select MIO 52..63

- 86 -

ZU5EV_FPGA Development Manual V2.0.3

SWDT 1

Figure 3-21 configuration SWDT、TTC

High Speed Configuration

In the High Speed section, first configure the PS side Ethernet, check GEM 3,

select MIO 64..75, check MDIO3, select MIO 76..77

Figure 3-22 Configuration GEM

select MIO 52..63，In USB 3.0，select GT Lane1

In the High Speed section, first configure the PS side Ethernet, check GEM 3,

select GT Lane1

MYS-ZU5EV_FPGA Development Manual V2.0.3

Check Display Port，DPAUX select MIO 34..37

Figure 3

Then ，IO configuration finished

4．Clock Configuration
In the Clock Configuration interface, the Input Clocks window configures the

reference clock, where PSS_REF_CLOCK is the ARM reference clock, the default is

33.333MHz; Display Port selects Ref Clk2, 27MHz; USB0 selects Ref Clk1, 26MHz.

- 87 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-23 Configuration USB

DPAUX select MIO 34..37， Lane Selection is Dual Higher

Figure 3-24 configuration Display Port

IO configuration finished。

Clock Configuration
In the Clock Configuration interface, the Input Clocks window configures the

reference clock, where PSS_REF_CLOCK is the ARM reference clock, the default is

33.333MHz; Display Port selects Ref Clk2, 27MHz; USB0 selects Ref Clk1, 26MHz.

Lane Selection is Dual Higher

In the Clock Configuration interface, the Input Clocks window configures the

reference clock, where PSS_REF_CLOCK is the ARM reference clock, the default is

33.333MHz; Display Port selects Ref Clk2, 27MHz; USB0 selects Ref Clk1, 26MHz.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

The PL clock keeps the default, which is the clock provided to the PL side logic

Figure 3

Full Power domain，keep default except DP_VIDEO change to VPLL

and DP_STC change to RPLL

- 88 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-25 Configuration PS side input clock
The PL clock keeps the default, which is the clock provided to the PL side logic

Figure 3-26 Configure to PL clock

keep default except DP_VIDEO change to VPLL

and DP_STC change to RPLL。

The PL clock keeps the default, which is the clock provided to the PL side logic。

keep default except DP_VIDEO change to VPLL， DP_AUDIO

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

 Interconnect changed shows as below

Figure 3-28 Configure the module clock that requires interconnection structure

Keep the other parts as default, so far, the clock part configuration is complete

- 89 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-27 Configure Peripheral IO clock

Interconnect changed shows as below

28 Configure the module clock that requires interconnection structure

Keep the other parts as default, so far, the clock part configuration is complete

28 Configure the module clock that requires interconnection structure

Keep the other parts as default, so far, the clock part configuration is complete。

MYS-ZU5EV_FPGA Development Manual V2.0.3

5、DDR configuration

In the window of DDR Configuration

DDR4_MICRON_MT40A256M16GE_083E

Figure 3

Some changes to the parameters are as follows

4G memory version:

Figure 3-30 configuration of DDR width and capa

8G memory version：

- 90 -

ZU5EV_FPGA Development Manual V2.0.3

In the window of DDR Configuration， Load DDR Presets select”

DDR4_MICRON_MT40A256M16GE_083E”。

Figure 3-29 Configuration -DDR manufacturers
Some changes to the parameters are as follows:

30 configuration of DDR width and capacity

”

city

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3-31 configuration DDR width and capacity

Keep other defaults, click OK, the configuration is complete, and connect the

clock as follows：

Figure 3

3.1.3 Generate XSA File

Right click design_1.bd ->Generate Output Products

- 91 -

ZU5EV_FPGA Development Manual V2.0.3

31 configuration DDR width and capacity
Keep other defaults, click OK, the configuration is complete, and connect the

Figure 3-32 After auto interconnection

3.1.3 Generate XSA File

>Generate Output Products->Generate

Keep other defaults, click OK, the configuration is complete, and connect the

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3
Click Generate

Figure 3-34 Synthesis Options Out of context per IP
Check design_1.bd,right click --

- 92 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-33 Generate output products

34 Synthesis Options Out of context per IP
--CreateHDL Wrapper

34 Synthesis Options Out of context per IP

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3
Click OK

Figure

Click built button。

- 93 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-35 Create HDL Wrapper

Figure 3-36 auto-update HDL Wrapper file

MYS-ZU5EV_FPGA Development Manual V2.0.3

Click Yes

Click OK

- 94 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-37 generate bitstream

Figure 3-38 click YES

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3-
Click Cancel

Figure 3
bitstream generate successfully.

- 95 -

ZU5EV_FPGA Development Manual V2.0.3

-39 start synthesis、and implementation

Figure 3-40 generate bitstream successfully

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3
In the menu of File->Export

platform

Figure 3-

Chose fixed，click Next

Select include bitstream，click Next

- 96 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-41 bitstream generate successfully
>Export->Export Hardware->OK export hardware configuration

-42 export the hardware design platform

Figure 3-43 chose Fixed

click Next

>OK export hardware configuration

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3-

Select the export file name and export path.

default, and the path is the newly created vitis folder under the project file

3.1.4 Built Vitis Application

Vitis is a stand-alone software, you can double

or you can open the Vitis software by selecting Tools

software

- 97 -

ZU5EV_FPGA Development Manual V2.0.3

-44 select the platform include bitstream

Select the export file name and export path. Here the file name is selected by

default, and the path is the newly created vitis folder under the project file

Figure 3-45 export file location

3.1.4 Built Vitis Application

alone software, you can double-click the Vitis software to open it,

or you can open the Vitis software by selecting Tools--Launch Vitis in the Vivado

Here the file name is selected by

default, and the path is the newly created vitis folder under the project file

click the Vitis software to open it,

Launch Vitis in the Vivado

MYS-ZU5EV_FPGA Development Manual V2.0.3

Select the newly created vitis folder and click "Launch"

Figure 3

After starting Vitis, the interface is as follows, click "Create Application

Project", this option will generate APP project and Platfrom project, P

project is similar to previous version of hardware platform, including hardware

support related files and BSP

- 98 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-46 vivado to start vitis

Select the newly created vitis folder and click "Launch"

Figure 3-47 chose vitis work directory

After starting Vitis, the interface is as follows, click "Create Application

Project", this option will generate APP project and Platfrom project, P

project is similar to previous version of hardware platform, including hardware

support related files and BSP。

After starting Vitis, the interface is as follows, click "Create Application

Project", this option will generate APP project and Platfrom project, Platform

project is similar to previous version of hardware platform, including hardware

MYS-ZU5EV_FPGA Development Manual V2.0.3

Click Next

Figure 3

select“Create a new platform from hardware(XSA)
which was generated just now.

- 99 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-48 Vitis page begin

Figure 3-49 built new application

Create a new platform from hardware(XSA)”，click“Browse”，

”，find the xsa file

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3-50 select vivado export xsa file as the platform

At the bottom of the Generate boot components option, if checked, the

software will automatically generate the fsbl project. We generally choo

check it by default. Click next

- 100 -

ZU5EV_FPGA Development Manual V2.0.3

50 select vivado export xsa file as the platform

At the bottom of the Generate boot components option, if checked, the

software will automatically generate the fsbl project. We generally choo

check it by default. Click next.

50 select vivado export xsa file as the platform

At the bottom of the Generate boot components option, if checked, the

software will automatically generate the fsbl project. We generally choose to

MYS-ZU5EV_FPGA Development Manual V2.0.3

Fill in the APP project name hello_world, click on the box to select the

corresponding processor, we keep the default here (note that the app project

name and platform name cannot be the

Figure 3

- 101 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-51 select XSA file

Fill in the APP project name hello_world, click on the box to select the

corresponding processor, we keep the default here (note that the app project

name and platform name cannot be the same, otherwise an error will occur

Figure 3-52 vitis application name

Fill in the APP project name hello_world, click on the box to select the

corresponding processor, we keep the default here (note that the app project

same, otherwise an error will occur)

MYS-ZU5EV_FPGA Development Manual V2.0.3

In this interface, you can modify the Domain name, select the operating system,

ARM architecture, etc., keep the default here, and select standalone as the

operating system, which is

Select ”Hellow World”template

Figure 3

- 102 -

ZU5EV_FPGA Development Manual V2.0.3

In this interface, you can modify the Domain name, select the operating system,

ARM architecture, etc., keep the default here, and select standalone as the

 bare metal.

Figure 3-53 select OS for CPU
template，click“Finish”

Figure 3-54 select application template

In this interface, you can modify the Domain name, select the operating system,

ARM architecture, etc., keep the default here, and select standalone as the

MYS-ZU5EV_FPGA Development Manual V2.0.3

After the completion, you can see that two projects have been generated,

one is the hardware platform project, which is the P

before, and the other is the APP project

After unfolding the Platform project, you can see that it contains the BSP project

and the zynq_fsbl project (this project is the result of selecting Generate boot

components). Double-click platform.spr to see the corresponding BSP project

generated by the Platform. You can perform the BSP project here. Configuration.

BSP is also the meaning of Board Support Package, which contains the driver files

needed for development and is used for application development. You can see

that there are multiple BSPs under the Platform, which is different from the

previous SDK software. Among them, zynqmp_fsbl is the BSP of fsbl, and

domain_psu_cortexa53_0 is the BSP of the APP proj

- 103 -

ZU5EV_FPGA Development Manual V2.0.3

After the completion, you can see that two projects have been generated,

one is the hardware platform project, which is the Platfrom project mentioned

before, and the other is the APP project

Figure 3-55 application
After unfolding the Platform project, you can see that it contains the BSP project

and the zynq_fsbl project (this project is the result of selecting Generate boot

click platform.spr to see the corresponding BSP project

generated by the Platform. You can perform the BSP project here. Configuration.

BSP is also the meaning of Board Support Package, which contains the driver files

pment and is used for application development. You can see

that there are multiple BSPs under the Platform, which is different from the

previous SDK software. Among them, zynqmp_fsbl is the BSP of fsbl, and

domain_psu_cortexa53_0 is the BSP of the APP project.

After the completion, you can see that two projects have been generated,

latfrom project mentioned

After unfolding the Platform project, you can see that it contains the BSP project

and the zynq_fsbl project (this project is the result of selecting Generate boot

click platform.spr to see the corresponding BSP project

generated by the Platform. You can perform the BSP project here. Configuration.

BSP is also the meaning of Board Support Package, which contains the driver files

pment and is used for application development. You can see

that there are multiple BSPs under the Platform, which is different from the

previous SDK software. Among them, zynqmp_fsbl is the BSP of fsbl, and

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

Click on the BSP, you can see the peripheral drivers of the project, where

Documentation is the driver documentation provided by xilinx, and Import

Examples is the example project provided by xilinx to speed up

In the APP project, right

the menu bar to compile the project

- 104 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-56 BSP、FSBL file folder

Click on the BSP, you can see the peripheral drivers of the project, where

Documentation is the driver documentation provided by xilinx, and Import

Examples is the example project provided by xilinx to speed up learning

Figure 3-57 BSP example

In the APP project, right-click Build Project, or click the "hammer" button in

the menu bar to compile the project

Click on the BSP, you can see the peripheral drivers of the project, where

Documentation is the driver documentation provided by xilinx, and Import

learning。

click Build Project, or click the "hammer" button in

MYS-ZU5EV_FPGA Development Manual V2.0.3

After built，generate elf folder

Figure 3

3.1.5 Debug

Connect the JTAG line to the development board, and the UART USB line to

the PC.

Use PuTTY software as a serial terminal debugging too

- 105 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-58 built

generate elf folder

Figure 3-59 elf folder generate console window

Connect the JTAG line to the development board, and the UART USB line to

Use PuTTY software as a serial terminal debugging tool

Connect the JTAG line to the development board, and the UART USB line to

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

Figure 3

- 106 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-60 PC resource manager

Figure 3-61 PuTTY configuration

MYS-ZU5EV_FPGA Development Manual V2.0.3

Select "hello", right click, and you can s

used in this experiment is to run the program. There are many options in "Run as".

Select the first "Launch onHardware(Single

debugging to run the program directly

Figure 3

In order to ensure the reliable debugging of the system, it is best to right

"Run As -> Run Configuration..."

We can take a look at the configuration inside, where Reset entire system is

selected by default, which is different from the pre

still a PL design in the system, you must also select "Program FPGA"

- 107 -

ZU5EV_FPGA Development Manual V2.0.3

Select "hello", right click, and you can see many options. The "Run as" that is

used in this experiment is to run the program. There are many options in "Run as".

Select the first "Launch onHardware(Single Application Debug)", use system

debugging to run the program directly

Figure 3-62 download and debug

In order to ensure the reliable debugging of the system, it is best to right

> Run Configuration..."

We can take a look at the configuration inside, where Reset entire system is

selected by default, which is different from the previous SDK software. If there is

still a PL design in the system, you must also select "Program FPGA"

Figure 3-63 debug

ee many options. The "Run as" that is

used in this experiment is to run the program. There are many options in "Run as".

Application Debug)", use system

In order to ensure the reliable debugging of the system, it is best to right-click

We can take a look at the configuration inside, where Reset entire system is

vious SDK software. If there is

still a PL design in the system, you must also select "Program FPGA"

MYS-ZU5EV_FPGA Development Manual V2.0.3

3.1.6Serial Print Output

The serial output print result is as follows

3.1.7Program Curing

Since the Generate boot components option was selected when creating a

new one, Platform has imported the fsbl project and generated the corresponding

elf file。

- 108 -

ZU5EV_FPGA Development Manual V2.0.3

3.1.6Serial Print Output“Hello World”

The serial output print result is as follows。

Figure 3-64 Serial output result

Since the Generate boot components option was selected when creating a

new one, Platform has imported the fsbl project and generated the corresponding

Figure 3-65 Generate fsbl.elf

Since the Generate boot components option was selected when creating a

new one, Platform has imported the fsbl project and generated the corresponding

MYS-ZU5EV_FPGA Development Manual V2.0.3

Modify the debug macro definition FSBL_DEBUG_INFO_VAL to

output some status information of FSBL at startup, which is conducive to

debugging, but it will cause the startup time to become longer

Figure 3

Right-click the hardware platform project hello_world and select Bu

Click the system of the APP project, right

- 109 -

ZU5EV_FPGA Development Manual V2.0.3

Modify the debug macro definition FSBL_DEBUG_INFO_VAL to

output some status information of FSBL at startup, which is conducive to

debugging, but it will cause the startup time to become longer.

Figure 3-66 Modify macro definition

click the hardware platform project hello_world and select Bu

Figure 3-67 built
Click the system of the APP project, right-click and select Build project

Modify the debug macro definition FSBL_DEBUG_INFO_VAL to 1, which can

output some status information of FSBL at startup, which is conducive to

click the hardware platform project hello_world and select Build Project

click and select Build project

MYS-ZU5EV_FPGA Development Manual V2.0.3

At this time, there will be an extra Debug folder, and the corresponding

BOOT.BIN will be generated

Figure 3

Another way is to click the system right button of the APP project and select

Create Boot Image. In the pop

BIF file. The BIF file is the configuration file for generating the BOOT file,

the path of the generated BOOT.bin file. The BOOT.bin file is the boot file we

need. It can be placed on the SD card to boot, or it can be programmed to QSPI

Flash.

- 110 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-68 Re-built

At this time, there will be an extra Debug folder, and the corresponding

BOOT.BIN will be generated

Figure 3-69 SD card start with the BOOT.BIN
Another way is to click the system right button of the APP project and select

Create Boot Image. In the pop-up window, you can see the path of the generated

BIF file. The BIF file is the configuration file for generating the BOOT file,

the path of the generated BOOT.bin file. The BOOT.bin file is the boot file we

need. It can be placed on the SD card to boot, or it can be programmed to QSPI

At this time, there will be an extra Debug folder, and the corresponding

Another way is to click the system right button of the APP project and select

up window, you can see the path of the generated

BIF file. The BIF file is the configuration file for generating the BOOT file, as well as

the path of the generated BOOT.bin file. The BOOT.bin file is the boot file we

need. It can be placed on the SD card to boot, or it can be programmed to QSPI

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

There are files to be synthesized in the Boot

must be the bootloader file, which is the fsbl.elf file generated above, the second

file is the FPGA configuration file bitstream, and the third is the application

program. In this experiment The middle is hello_world.

generate BOOT.bin.

- 111 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-70 Generate BOOT.bin
There are files to be synthesized in the Boot image partitions list. The first file

must be the bootloader file, which is the fsbl.elf file generated above, the second

file is the FPGA configuration file bitstream, and the third is the application

program. In this experiment The middle is hello_world.elf. Click Create Image to

Figure 3-71 BOOT.bin

image partitions list. The first file

must be the bootloader file, which is the fsbl.elf file generated above, the second

file is the FPGA configuration file bitstream, and the third is the application

elf. Click Create Image to

MYS-ZU5EV_FPGA Development Manual V2.0.3

Switch the development board to SD card startup mode, and then copy the

BOOT.bin file to the SD card and put it on the development board to run.

3.2 Data Interaction Between PL and PS
There are direct and indirect ways of data interaction between PS and PL. The

direct way is through the design of EMIO. The PS terminal can directly access the

registers of the PL terminal through a physical connection. Indirectly

exchange data by sending interrupts and AXI4 bus interface, bus protocol, and

bus.

3.2.1 Direct Data Exchange Between PL and PS

zynq's GPIO is divided into two types, MIO (multiuse I/O) and EMIO

(extendable multiuse I/O)

- 112 -

ZU5EV_FPGA Development Manual V2.0.3

Switch the development board to SD card startup mode, and then copy the

BOOT.bin file to the SD card and put it on the development board to run.

Figure 3-72 Output result

raction Between PL and PS
There are direct and indirect ways of data interaction between PS and PL. The

direct way is through the design of EMIO. The PS terminal can directly access the

registers of the PL terminal through a physical connection. Indirectly

exchange data by sending interrupts and AXI4 bus interface, bus protocol, and

3.2.1 Direct Data Exchange Between PL and PS

zynq's GPIO is divided into two types, MIO (multiuse I/O) and EMIO

Switch the development board to SD card startup mode, and then copy the

BOOT.bin file to the SD card and put it on the development board to run.

raction Between PL and PS
There are direct and indirect ways of data interaction between PS and PL. The

direct way is through the design of EMIO. The PS terminal can directly access the

registers of the PL terminal through a physical connection. Indirectly is to

exchange data by sending interrupts and AXI4 bus interface, bus protocol, and

zynq's GPIO is divided into two types, MIO (multiuse I/O) and EMIO

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

There are 96 EMIOs of BANK3~BANK5, which can be directly accessed by the

PS side. The advantage of using EMIO is that when MIO is not enough, PS can

control the pins of PL part through EMIO. Of course, in addition to the direct GPIO

interface, there are other interface methods that can directly access the resources

of the PL end through the PS if the design meets the requirements.

3.2.2 Configurable Bus Between PS and PL

The AXI bus protocol is implemented with hardware inside the ZYNQ chip,

including 12 physical interfaces, namely S_AXI_HP{0:3}_FPD, S_AXI_LPD,

S_AXI_ACE_FPD, S_AXI_ACP_FPD, S_AXI_HPC{0,1}_FPD, M_AXI_HPM{0,1}_FPD,

M_AXI_HPM0_LPD interface. S_AXI_HP{0:3}_FPD interface: It is a high

performance/bandwidth AXI4 standard interface, th

PL module is connected as the main device. Mainly used for PL to access memory

on PS (DDR and FPD Main Switch) S_AXI_LPD interface: high

connect PL to LPD. Low-latency access to OCM and TCM, access to PS sid

S_AXI_HPC{0,1}_FPD interface: connect PL to FPD, connect to CCI, and access L1

and L2Cache. Due to CCI, access to DDR controller will be delayed.

- 113 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-73 MIO and EMIO architecture
There are 96 EMIOs of BANK3~BANK5, which can be directly accessed by the

PS side. The advantage of using EMIO is that when MIO is not enough, PS can

control the pins of PL part through EMIO. Of course, in addition to the direct GPIO

there are other interface methods that can directly access the resources

of the PL end through the PS if the design meets the requirements.

3.2.2 Configurable Bus Between PS and PL

The AXI bus protocol is implemented with hardware inside the ZYNQ chip,

cluding 12 physical interfaces, namely S_AXI_HP{0:3}_FPD, S_AXI_LPD,

S_AXI_ACE_FPD, S_AXI_ACP_FPD, S_AXI_HPC{0,1}_FPD, M_AXI_HPM{0,1}_FPD,

M_AXI_HPM0_LPD interface. S_AXI_HP{0:3}_FPD interface: It is a high

performance/bandwidth AXI4 standard interface, there are four in total, and the

PL module is connected as the main device. Mainly used for PL to access memory

on PS (DDR and FPD Main Switch) S_AXI_LPD interface: high-performance port,

latency access to OCM and TCM, access to PS sid

S_AXI_HPC{0,1}_FPD interface: connect PL to FPD, connect to CCI, and access L1

and L2Cache. Due to CCI, access to DDR controller will be delayed.

There are 96 EMIOs of BANK3~BANK5, which can be directly accessed by the

PS side. The advantage of using EMIO is that when MIO is not enough, PS can

control the pins of PL part through EMIO. Of course, in addition to the direct GPIO

there are other interface methods that can directly access the resources

of the PL end through the PS if the design meets the requirements.

The AXI bus protocol is implemented with hardware inside the ZYNQ chip,

cluding 12 physical interfaces, namely S_AXI_HP{0:3}_FPD, S_AXI_LPD,

S_AXI_ACE_FPD, S_AXI_ACP_FPD, S_AXI_HPC{0,1}_FPD, M_AXI_HPM{0,1}_FPD,

M_AXI_HPM0_LPD interface. S_AXI_HP{0:3}_FPD interface: It is a high-

ere are four in total, and the

PL module is connected as the main device. Mainly used for PL to access memory

performance port,

latency access to OCM and TCM, access to PS side DDR.

S_AXI_HPC{0,1}_FPD interface: connect PL to FPD, connect to CCI, and access L1

and L2Cache. Due to CCI, access to DDR controller will be delayed.

MYS-ZU5EV_FPGA Development Manual V2.0.3

M_AXI_HPM{0,1}_FPD interface: high

to PL, and can be used for CPU, DMA, PCIe, etc. to push large amounts of data

from PS to PL.

M_AXI_HPM0_LPD interface: low

connects LPD to PL, can directly access BRAM, DDR, etc. on the PL side, and is

often used to configure the registers

and M_AXI_HPM0_LPD are Master Ports, namely host interfaces, and the rest are

Slave Ports (slave interfaces).

The host interface has the authority to initiate reading and writing. ARM can

use the two host interfaces to actively access the PL logic. In fact, it maps the PL

to a certain address, and reading and writing the PL register is like reading and

writing its own memory. The other slave interfaces are passive interfaces,

accepting reads and writes from the PL,

interconnection applications, the most used interfaces are S_AXI_HP{0:3}_FPD,

M_AXI_HPM{0,1}_FPD and M_AXI_HPM0_LPD.

The ARM on the PS side directly supports the AXI interface with hardware,

while the PL needs to use logic to implement the corresponding AXI protocol.

Xilinx provides ready-made IP such as AXI

Stream in the Vivado development environment to implement the corresponding

interfaces. When in use, you can directly add them f

achieve the corresponding functions. The following picture shows various DMA

IPs under Vivado:

- 114 -

ZU5EV_FPGA Development Manual V2.0.3

M_AXI_HPM{0,1}_FPD interface: high-performance bus, PS is master, connects FPD

or CPU, DMA, PCIe, etc. to push large amounts of data

M_AXI_HPM0_LPD interface: low-latency interface bus, PS is the master,

connects LPD to PL, can directly access BRAM, DDR, etc. on the PL side, and is

often used to configure the registers on the PL side. Only M_AXI_HPM{0,1}_FPD

and M_AXI_HPM0_LPD are Master Ports, namely host interfaces, and the rest are

Slave Ports (slave interfaces).

The host interface has the authority to initiate reading and writing. ARM can

s to actively access the PL logic. In fact, it maps the PL

to a certain address, and reading and writing the PL register is like reading and

writing its own memory. The other slave interfaces are passive interfaces,

accepting reads and writes from the PL, and accept them in reverse. In PS and PL

interconnection applications, the most used interfaces are S_AXI_HP{0:3}_FPD,

M_AXI_HPM{0,1}_FPD and M_AXI_HPM0_LPD.

The ARM on the PS side directly supports the AXI interface with hardware,

e logic to implement the corresponding AXI protocol.

made IP such as AXI-DMA, AXI-GPIO, AXI-Dataover, AXI

Stream in the Vivado development environment to implement the corresponding

interfaces. When in use, you can directly add them from the Vivado IP list to

achieve the corresponding functions. The following picture shows various DMA

performance bus, PS is master, connects FPD

or CPU, DMA, PCIe, etc. to push large amounts of data

latency interface bus, PS is the master,

connects LPD to PL, can directly access BRAM, DDR, etc. on the PL side, and is

on the PL side. Only M_AXI_HPM{0,1}_FPD

and M_AXI_HPM0_LPD are Master Ports, namely host interfaces, and the rest are

The host interface has the authority to initiate reading and writing. ARM can

s to actively access the PL logic. In fact, it maps the PL

to a certain address, and reading and writing the PL register is like reading and

writing its own memory. The other slave interfaces are passive interfaces,

and accept them in reverse. In PS and PL

interconnection applications, the most used interfaces are S_AXI_HP{0:3}_FPD,

The ARM on the PS side directly supports the AXI interface with hardware,

e logic to implement the corresponding AXI protocol.

Dataover, AXI-

Stream in the Vivado development environment to implement the corresponding

rom the Vivado IP list to

achieve the corresponding functions. The following picture shows various DMA

MYS-ZU5EV_FPGA Development Manual V2.0.3

The following is an introduction to the functions of several commonly used

AXI interface IP: AXI-DMA: Rea

speed transmission high-speed channel AXI

MM2S: Realize the conversion from PS memory to PL general transmission

channel AXI-HPM<----->AXI

Realize the conversion from PS memory to PL high

speed channel AXI-HP<----

by PL, and PS is completely passive. AXI

memory to PL high-speed transmission high

Stream, but it is specifically for video, image and other two

CDMA:

This is done by the PL to move the data from one location in the memory to

another, without the CPU's intervention. , We will talk about i

later chapter. Sometimes, users need to develop their own defined IP to

communicate with the PS, then you can use the wizard to generate the

corresponding IP.

 User-defined IP cores can have AXI4

interfaces. The latter two are not used because they are not supported by ARM.

With the above official IP and the custom IP generated by the wizard, users

- 115 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-74 select DMA IP

The following is an introduction to the functions of several commonly used

DMA: Realize the conversion from PS memory to PL high

speed channel AXI-HP<---->AXI-Stream AXI

MM2S: Realize the conversion from PS memory to PL general transmission

>AXI-Stream AXI-Datamover:

on from PS memory to PL high-speed transmission high

---->AXI-Stream, but this time it is completely controlled

by PL, and PS is completely passive. AXI-VDMA: Realize the conversion from PS

speed transmission high-speed channel AXI-

Stream, but it is specifically for video, image and other two-dimensional data. AXI

This is done by the PL to move the data from one location in the memory to

another, without the CPU's intervention. , We will talk about it as an example in a

Sometimes, users need to develop their own defined IP to

communicate with the PS, then you can use the wizard to generate the

defined IP cores can have AXI4-Lite, AXI4, AXI-Stream, PLB and FSL

terfaces. The latter two are not used because they are not supported by ARM.

With the above official IP and the custom IP generated by the wizard, users

The following is an introduction to the functions of several commonly used

lize the conversion from PS memory to PL high-

Stream AXI-FIFO-

MM2S: Realize the conversion from PS memory to PL general transmission

speed transmission high-

Stream, but this time it is completely controlled

VDMA: Realize the conversion from PS

-HP<---->AXI-

dimensional data. AXI-

This is done by the PL to move the data from one location in the memory to

t as an example in a

Sometimes, users need to develop their own defined IP to

communicate with the PS, then you can use the wizard to generate the

Stream, PLB and FSL

terfaces. The latter two are not used because they are not supported by ARM.

With the above official IP and the custom IP generated by the wizard, users

MYS-ZU5EV_FPGA Development Manual V2.0.3

don’t actually need to know much about AXI timing (unless they do encounter

problems), because Xilinx h

timing, users only need Just focus on your own logic implementation. Strictly

speaking, the AXI protocol is a point

When multiple peripherals need to exchange data

add an AXI Interconnect module, which is the AXI interconnect matrix. The

function is to provide one or more AXI master devices. A switching mechanism

connected to one or more AXI slave devices (somewhat similar to the switchin

matrix in a switch). This AXI Interconnect IP core can support up to 16 master

devices and 16 slave devices. If you need more interfaces, you can add more IP

cores.

The basic connection modes of AXI Interconnect are as follows:

N to-1 Interconnect to

N-to-M Interconnect (Crossbar Mode)

N-to-M Interconnect (Shared Access Mode)

- 116 -

ZU5EV_FPGA Development Manual V2.0.3

don’t actually need to know much about AXI timing (unless they do encounter

problems), because Xilinx has already encapsulated the details related to AXI

timing, users only need Just focus on your own logic implementation. Strictly

speaking, the AXI protocol is a point-to-point master-slave interface protocol.

When multiple peripherals need to exchange data with each other, we need to

add an AXI Interconnect module, which is the AXI interconnect matrix. The

function is to provide one or more AXI master devices. A switching mechanism

connected to one or more AXI slave devices (somewhat similar to the switchin

matrix in a switch). This AXI Interconnect IP core can support up to 16 master

devices and 16 slave devices. If you need more interfaces, you can add more IP

The basic connection modes of AXI Interconnect are as follows:

1 Interconnect to-N Interconnect

M Interconnect (Crossbar Mode)

M Interconnect (Shared Access Mode)

Figure 3-75 AXI interconnect

don’t actually need to know much about AXI timing (unless they do encounter

as already encapsulated the details related to AXI

timing, users only need Just focus on your own logic implementation. Strictly

slave interface protocol.

with each other, we need to

add an AXI Interconnect module, which is the AXI interconnect matrix. The

function is to provide one or more AXI master devices. A switching mechanism

connected to one or more AXI slave devices (somewhat similar to the switching

matrix in a switch). This AXI Interconnect IP core can support up to 16 master

devices and 16 slave devices. If you need more interfaces, you can add more IP

The basic connection modes of AXI Interconnect are as follows:

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 3

ZYNQ's internal AXI interface devices are interconnected by means of

interconnection matrix, which not only ensures the efficiency of data transmission,

but also ensures the flexibility of connection. In Xilinx Vivado, we provide the IP

core axi_interconnect that realizes this interconnection matrix, and we only need

to call it.

Figure 3

3.3 Introduction to AXI4 Bus
3.3.1 AXI4 Protocol

Since XILINX launched the VIVADO development environment for 7 series

FPGAs and SOCs, FPGA development tends

engineering construction and verification, reducing the workload of code writing,

especially in the use of ZYNQ. .

Almost all IP cores in the Vivado development environment support the AXI

bus, and the IP core interface is sta

the AXI bus, and almost master the use of all IP core interfaces. Such

standardization also makes it possible to build a system faster and more

- 117 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 3-76 AXI interconnect structure

ZYNQ's internal AXI interface devices are interconnected by means of

hich not only ensures the efficiency of data transmission,

but also ensures the flexibility of connection. In Xilinx Vivado, we provide the IP

core axi_interconnect that realizes this interconnection matrix, and we only need

Figure 3-77 AXI interconnect select IP

3.3 Introduction to AXI4 Bus

Since XILINX launched the VIVADO development environment for 7 series

FPGAs and SOCs, FPGA development tends to use existing IP cores for

engineering construction and verification, reducing the workload of code writing,

especially in the use of ZYNQ. .

Almost all IP cores in the Vivado development environment support the AXI

bus, and the IP core interface is standardized. FPGA engineers only need to learn

the AXI bus, and almost master the use of all IP core interfaces. Such

standardization also makes it possible to build a system faster and more

ZYNQ's internal AXI interface devices are interconnected by means of

hich not only ensures the efficiency of data transmission,

but also ensures the flexibility of connection. In Xilinx Vivado, we provide the IP

core axi_interconnect that realizes this interconnection matrix, and we only need

Since XILINX launched the VIVADO development environment for 7 series

to use existing IP cores for

engineering construction and verification, reducing the workload of code writing,

Almost all IP cores in the Vivado development environment support the AXI

ndardized. FPGA engineers only need to learn

the AXI bus, and almost master the use of all IP core interfaces. Such

standardization also makes it possible to build a system faster and more

MYS-ZU5EV_FPGA Development Manual V2.0.3

convenient for verification, which is a huge improvement over ISE;

customized functions, there is no well

development environment.

At this time, FPGA engineers may need to self

integrate self-developed logic into the system, and use VIVADO’s design

philosophy is to self-research The logic is standardized, using AXI bus as the

interface, and VIVADO also provides users with corresponding tools. AXI

(Advanced eXtensible Interface) was originally a bus protocol proposed by ARM.

Xilinx started to support the AXI b

uses the AXI4 version.

(1) AXI4: (For high-performance memory

oriented to the needs of high

an address mapping-oriented interface th

data burst transmission;

(2) AXI4-Lite: (For simple, low

is a lightweight address-mapped single transmission interface that occupies very

few logical units.

(3) AXI4-Stream: (For high

For high-speed streaming data transmission; remove the address item,

allowing unlimited data burst transmission mode. The AXI4 bus and the AXI4

bus have the same components:

(1) Read address channel, including ARVALID, ARADD

(2) Read data channel, including RVALID, RDATA, RREADY, RRESP signals;

(3) Write address channel, including AWVALID, AWADDR, AWREADY signals;

(4) Write data channel, including WVALID, WDATA, WSTRB, WREADY signals;

(5) Write response channel, includi

(6) System channels, including: ACLK, ARESETN signals.

The composition of the AXI4

(1) ACLK signal: bus clock, the rising edge is valid;

(2) ARESETN signal: bus reset, active low;

(3) TREADY signal: The slave tells the

(4) TDATA signal: data, optional width 32, 64, 128, 256bit

- 118 -

ZU5EV_FPGA Development Manual V2.0.3

convenient for verification, which is a huge improvement over ISE;

customized functions, there is no well-defined IP core in the VIVADO

development environment.

At this time, FPGA engineers may need to self-research, how to quickly

developed logic into the system, and use VIVADO’s design

research The logic is standardized, using AXI bus as the

interface, and VIVADO also provides users with corresponding tools. AXI

(Advanced eXtensible Interface) was originally a bus protocol proposed by ARM.

Xilinx started to support the AXI bus from the 6 series of FPGAs, and currently

performance memory-mapped requirements.) Mainly

oriented to the needs of high-performance address mapping communication, it is

oriented interface that allows a maximum of 256 rounds of

Lite: (For simple, low-throughput memory-mapped communication)

mapped single transmission interface that occupies very

high-speed streaming data.)

speed streaming data transmission; remove the address item,

allowing unlimited data burst transmission mode. The AXI4 bus and the AXI4

bus have the same components:

Read address channel, including ARVALID, ARADDR, ARREADY signals;

Read data channel, including RVALID, RDATA, RREADY, RRESP signals;

Write address channel, including AWVALID, AWADDR, AWREADY signals;

Write data channel, including WVALID, WDATA, WSTRB, WREADY signals;

Write response channel, including BVALID, BRESP, BREADY signals;

System channels, including: ACLK, ARESETN signals.

The composition of the AXI4-Stream bus is:

ACLK signal: bus clock, the rising edge is valid;

ARESETN signal: bus reset, active low;

TREADY signal: The slave tells the host to prepare for transmission;

TDATA signal: data, optional width 32, 64, 128, 256bit

convenient for verification, which is a huge improvement over ISE; For some

defined IP core in the VIVADO

research, how to quickly

developed logic into the system, and use VIVADO’s design

research The logic is standardized, using AXI bus as the

interface, and VIVADO also provides users with corresponding tools. AXI

(Advanced eXtensible Interface) was originally a bus protocol proposed by ARM.

us from the 6 series of FPGAs, and currently

mapped requirements.) Mainly

performance address mapping communication, it is

at allows a maximum of 256 rounds of

mapped communication)

mapped single transmission interface that occupies very

speed streaming data transmission; remove the address item,

allowing unlimited data burst transmission mode. The AXI4 bus and the AXI4-Lite

R, ARREADY signals;

Read data channel, including RVALID, RDATA, RREADY, RRESP signals;

Write address channel, including AWVALID, AWADDR, AWREADY signals;

Write data channel, including WVALID, WDATA, WSTRB, WREADY signals;

ng BVALID, BRESP, BREADY signals;

host to prepare for transmission;

MYS-ZU5EV_FPGA Development Manual V2.0.3

(5) TSTRB signal: each bit corresponds to a valid byte of TDATA, the width is

TDATA/8;

(6) TLAST signal: the master tells the slave that this transmission is the end

of the burst transmission;

(7) TVALID signal: the master tells the slave that the data is valid for this

transmission;

(8) TUSER signal: user

Figure 3-78 AXI bus read and write channel analysis

- 119 -

ZU5EV_FPGA Development Manual V2.0.3

TSTRB signal: each bit corresponds to a valid byte of TDATA, the width is

TLAST signal: the master tells the slave that this transmission is the end

TVALID signal: the master tells the slave that the data is valid for this

TUSER signal: user-defined signal with a width of 128/8bit.

78 AXI bus read and write channel analysis

TSTRB signal: each bit corresponds to a valid byte of TDATA, the width is

TLAST signal: the master tells the slave that this transmission is the end

TVALID signal: the master tells the slave that the data is valid for this

defined signal with a width of 128/8bit.

78 AXI bus read and write channel analysis

MYS-ZU5EV_FPGA Development Manual V2.0.3

The formulation of the

AXI4, AXI4-Lite, and AXI4-Stream are all AXI4 protocols. The two ends of the AXI

bus protocol can be divided into master (master) and slave (slave). Generally, they

need to be connected through an AXI I

or more AXI master devices to connect to one or An exchange mechanism for

multiple AXI slave devices.

The main function of AXI Interconnect is that when there are multiple masters

and slaves, AXI Interconnect is

Because AXI supports out-of

signal support of the host, and the ID sent by different hosts may be the same,

and AXI Interconnect solves this problem. It will

hosts to make the ID. only.

The AXI protocol separates the read address channel, read data channel, write

address channel, write data channel, and write response channel. Each channel

has its own handshake protocol. Ea

but is dependent on each other. This is one of the reasons why AXI is efficient.

3.3.2 AXI Handshake Protocol

AXI4 uses a READY, VALID handshake communication mechanism. Simply put,

there is a handshake process

communication. The transmission source generates the VLAID signal to indicate

when the data or control information is valid. The destination source generates a

READY signal to indicate that it is ready to recei

The transfer occurs when the VALID and READY signals are high at the same time.

The example in the following figure:

Figure 3

When the address appears on the address bus, the transmitted data will

appear on the read data channel. The device keeps VALID low until the read data

- 120 -

ZU5EV_FPGA Development Manual V2.0.3

 protocol is based on the bus composition. Therefore,

Stream are all AXI4 protocols. The two ends of the AXI

bus protocol can be divided into master (master) and slave (slave). Generally, they

need to be connected through an AXI Interconnect. The function is to provide one

or more AXI master devices to connect to one or An exchange mechanism for

multiple AXI slave devices.

The main function of AXI Interconnect is that when there are multiple masters

and slaves, AXI Interconnect is responsible for connecting and managing them.

of-order sending, out-of-order sending requires the ID

signal support of the host, and the ID sent by different hosts may be the same,

and AXI Interconnect solves this problem. It will process the ID signals of different

hosts to make the ID. only.

The AXI protocol separates the read address channel, read data channel, write

address channel, write data channel, and write response channel. Each channel

has its own handshake protocol. Each channel does not interfere with each other

but is dependent on each other. This is one of the reasons why AXI is efficient.

3.3.2 AXI Handshake Protocol

AXI4 uses a READY, VALID handshake communication mechanism. Simply put,

there is a handshake process before the master and the slave perform data

communication. The transmission source generates the VLAID signal to indicate

when the data or control information is valid. The destination source generates a

READY signal to indicate that it is ready to receive data or control information.

The transfer occurs when the VALID and READY signals are high at the same time.

The example in the following figure:

Figure 3-79 Handshake with Valid before READY

When the address appears on the address bus, the transmitted data will

appear on the read data channel. The device keeps VALID low until the read data

protocol is based on the bus composition. Therefore,

Stream are all AXI4 protocols. The two ends of the AXI

bus protocol can be divided into master (master) and slave (slave). Generally, they

nterconnect. The function is to provide one

or more AXI master devices to connect to one or An exchange mechanism for

The main function of AXI Interconnect is that when there are multiple masters

responsible for connecting and managing them.

order sending requires the ID

signal support of the host, and the ID sent by different hosts may be the same,

process the ID signals of different

The AXI protocol separates the read address channel, read data channel, write

address channel, write data channel, and write response channel. Each channel

ch channel does not interfere with each other

but is dependent on each other. This is one of the reasons why AXI is efficient.

AXI4 uses a READY, VALID handshake communication mechanism. Simply put,

before the master and the slave perform data

communication. The transmission source generates the VLAID signal to indicate

when the data or control information is valid. The destination source generates a

ve data or control information.

The transfer occurs when the VALID and READY signals are high at the same time.

Handshake with Valid before READY

When the address appears on the address bus, the transmitted data will

appear on the read data channel. The device keeps VALID low until the read data

MYS-ZU5EV_FPGA Development Manual V2.0.3

is valid. In order to indicate the completion of a burst read and write

uses the RLAST signal to indicate the last data to be transmitted.

Figure 3-80 Handshake and transmission of READY earlier than VALID

The host sends the address and control information to the write address

channel, and then the host sends each write data to the write data channel. When

the host sends the last data, the WLAST signal goes high. When the device has

received all the data, it sends a write respon

completion of the write transaction.

Figure 3

 The data read and write timing of AXI_LITE is the sam

timing, except that only one data is transmitted at a time; Timing of AXI4

Data stream-oriented transmission mode, the omitted address channel, the

remaining timing is the same as the AXI burst timing;

3.4 Sections of this Chap

- 121 -

ZU5EV_FPGA Development Manual V2.0.3

is valid. In order to indicate the completion of a burst read and write

uses the RLAST signal to indicate the last data to be transmitted.

80 Handshake and transmission of READY earlier than VALID

dress and control information to the write address

channel, and then the host sends each write data to the write data channel. When

the host sends the last data, the WLAST signal goes high. When the device has

received all the data, it sends a write response back to the host to indicate the

completion of the write transaction.

Figure 3-80 Example of data transmission

The data read and write timing of AXI_LITE is the same as the AXI burst

timing, except that only one data is transmitted at a time; Timing of AXI4

oriented transmission mode, the omitted address channel, the

remaining timing is the same as the AXI burst timing;

3.4 Sections of this Chapter

is valid. In order to indicate the completion of a burst read and write, the device

uses the RLAST signal to indicate the last data to be transmitted.

80 Handshake and transmission of READY earlier than VALID

dress and control information to the write address

channel, and then the host sends each write data to the write data channel. When

the host sends the last data, the WLAST signal goes high. When the device has

se back to the host to indicate the

e as the AXI burst

timing, except that only one data is transmitted at a time; Timing of AXI4-Stream:

oriented transmission mode, the omitted address channel, the

MYS-ZU5EV_FPGA Development Manual V2.0.3

This chapter introduces the basic configuration of the hardware platform

establishment project. The configuration is based on the software and hardware

resources of the hardware platform. Secondly, it briefly introduces the

interconnection technology b

refer to ARM's AMBA protocol spec, which describes the bus design method

protocol principle in SOC design in detail. Secondly, the interconnection module

AXI Interconnecter between PS and PL greatly facilita

heterogeneous platform.

- 122 -

ZU5EV_FPGA Development Manual V2.0.3

This chapter introduces the basic configuration of the hardware platform

establishment project. The configuration is based on the software and hardware

resources of the hardware platform. Secondly, it briefly introduces the

interconnection technology between PS and PL. For further study, you need to

refer to ARM's AMBA protocol spec, which describes the bus design method

protocol principle in SOC design in detail. Secondly, the interconnection module

AXI Interconnecter between PS and PL greatly facilitates the use of ARM+FPGA

This chapter introduces the basic configuration of the hardware platform

establishment project. The configuration is based on the software and hardware

resources of the hardware platform. Secondly, it briefly introduces the

etween PS and PL. For further study, you need to

refer to ARM's AMBA protocol spec, which describes the bus design method

protocol principle in SOC design in detail. Secondly, the interconnection module

tes the use of ARM+FPGA

MYS-ZU5EV_FPGA Development Manual V2.0.3

Chapter 4Interface Device Module Based
on AXI4

This chapter is mainly to understand the AXI4

by the PS side and connected to the PL side, and their specific use, focusing on

the introduction of GPIO, AXI UART, AXI IIC and other control buses and general

IO control interfaces.

4.1 AXI UART
4.1.1 AXI UART Basis Knowledge

The Xilinx LogiCORE IP AXI

provides general-purpose input/output interfaces for the AXI interface. This 32

soft intellectual property (IP) core is designed to interface with the AXI4

interface. The specific characteristics are as fol

specification Support configurable single or dual GPIO channels Supports

configurable channel widths from 1 to 32

programming of each GPIO bit as input or output Supports individual

configuration of each channel Support each independent reset value of all

registers Support optional interrupt request generation

Figure 4

Design of AXI UART function: AXI GPIO is designed to provide a general

purpose input/output interface for the AXI4

configured as a single-channel or dual

can be configured independently. By enabling or disabling the tri

port can be dynamically configured

- 123 -

ZU5EV_FPGA Development Manual V2.0.3

Chapter 4Interface Device Module Based
on AXI4-Lite Bus

This chapter is mainly to understand the AXI4-Lite bus interface types reserved

by the PS side and connected to the PL side, and their specific use, focusing on

the introduction of GPIO, AXI UART, AXI IIC and other control buses and general

4.1.1 AXI UART Basis Knowledge

The Xilinx LogiCORE IP AXI general-purpose input/output (GPIO) core

purpose input/output interfaces for the AXI interface. This 32

soft intellectual property (IP) core is designed to interface with the AXI4

interface. The specific characteristics are as follows: Support AXI4

specification Support configurable single or dual GPIO channels Supports

configurable channel widths from 1 to 32-bit GPIO pins Supports dynamic

programming of each GPIO bit as input or output Supports individual

tion of each channel Support each independent reset value of all

registers Support optional interrupt request generation

Figure 4-1 Block diagram of the structure

esign of AXI UART function: AXI GPIO is designed to provide a general

interface for the AXI4-Lite interface. AXI GPIO can be

channel or dual-channel device. The width of each channel

can be configured independently. By enabling or disabling the tri

port can be dynamically configured as input or output. The channel can be

Chapter 4Interface Device Module Based

Lite bus interface types reserved

by the PS side and connected to the PL side, and their specific use, focusing on

the introduction of GPIO, AXI UART, AXI IIC and other control buses and general

purpose input/output (GPIO) core

purpose input/output interfaces for the AXI interface. This 32-bit

soft intellectual property (IP) core is designed to interface with the AXI4-Lite

lows: Support AXI4-Lite interface

specification Support configurable single or dual GPIO channels Supports

bit GPIO pins Supports dynamic

programming of each GPIO bit as input or output Supports individual

tion of each channel Support each independent reset value of all

esign of AXI UART function: AXI GPIO is designed to provide a general-

Lite interface. AXI GPIO can be

channel device. The width of each channel

can be configured independently. By enabling or disabling the tri-state buffer, the

as input or output. The channel can be

MYS-ZU5EV_FPGA Development Manual V2.0.3

configured to generate an interrupt when any of its inputs are converted. The

general-purpose input/output (GPIO) core is an interface that allows easy access

to the internal properties of the device. The same kernel

the behavior of external devices. For further information, please refer to pg144

LogiCORE IP AXI GPIO V2.0 Product Guide(AXI).pdf

4.1.2 Experimental Logical

We want to use this AXI UART to realize ps control the uart IP core on the p

side through the axi bus, output the serial port signal, perform level conversion

through the chip on the hardware, and then output to the port, the port is

connected to the computer with the corresponding serial line, the schematic

diagram Shown:

Figure 4-2 Block diagram of engineering design

4.1.3Experimental Steps

- 124 -

ZU5EV_FPGA Development Manual V2.0.3

configured to generate an interrupt when any of its inputs are converted. The

purpose input/output (GPIO) core is an interface that allows easy access

to the internal properties of the device. The same kernel can be used to control

the behavior of external devices. For further information, please refer to pg144

LogiCORE IP AXI GPIO V2.0 Product Guide(AXI).pdf

4.1.2 Experimental Logical

We want to use this AXI UART to realize ps control the uart IP core on the p

side through the axi bus, output the serial port signal, perform level conversion

through the chip on the hardware, and then output to the port, the port is

connected to the computer with the corresponding serial line, the schematic

2 Block diagram of engineering design

Figure 4-3 Schematic design

Experimental Steps

configured to generate an interrupt when any of its inputs are converted. The

purpose input/output (GPIO) core is an interface that allows easy access

can be used to control

the behavior of external devices. For further information, please refer to pg144-

We want to use this AXI UART to realize ps control the uart IP core on the pl

side through the axi bus, output the serial port signal, perform level conversion

through the chip on the hardware, and then output to the port, the port is

connected to the computer with the corresponding serial line, the schematic

2 Block diagram of engineering design

MYS-ZU5EV_FPGA Development Manual V2.0.3

Vivado project：

Create a new vivado project and name it axi_uart. The basic configuration of

the PS end is the same as the configuration parameters in the "h

project. The corresponding CD

Figure 4

Configure PL interrupt.

- 125 -

ZU5EV_FPGA Development Manual V2.0.3

Create a new vivado project and name it axi_uart. The basic configuration of

the PS end is the same as the configuration parameters in the "h

project. The corresponding CD-ROM project document is axi_uartlite.rar.

Figure 4-4 Vivado design

Figure 4-5 Name of Save As Project

Create a new vivado project and name it axi_uart. The basic configuration of

the PS end is the same as the configuration parameters in the "hello_world"

ROM project document is axi_uartlite.rar.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Add an AXI Uart IP core, here configuration directly

- 126 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 4-6 Add configuration

Add an AXI Uart IP core, here configuration directly select the default.

Figure 4-7 Add serial port IP

select the default.

MYS-ZU5EV_FPGA Development Manual V2.0.3

The concat IP core was added, and the connection was interrupted.

Click Run Connection Automation

Figure 4

After the automatic connection is completed, as shown in the figure below

- 127 -

ZU5EV_FPGA Development Manual V2.0.3

The concat IP core was added, and the connection was interrupted.

Figure 4-8 Add concat cable

Click Run Connection Automation-->OK at the top to automatically connect

Figure 4-9 Automatic connection

After the automatic connection is completed, as shown in the figure below

The concat IP core was added, and the connection was interrupted.

>OK at the top to automatically connect

After the automatic connection is completed, as shown in the figure below

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 4

After the top-level file is generated, the constraint file is added.

Figure 4

Create a src constraint file.

- 128 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 4-10 BD project after connection

level file is generated, the constraint file is added.

Figure 4-11 Adding a constraint document

file.

level file is generated, the constraint file is added.

11 Adding a constraint document

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 4

Add the following content to led.xdc, the port name should be consistent with

the top file port.

The following steps to generate bitstream and export xsa files are the same

those in the first project, so I won’t repeat them here. Vitis project: Enter the

Vitis software, create a new project named axi_uartlite, select the empty template

on the Templates template selection page, and click platform.xprBoard Support

Package(axi_uartlite) Import ExamplesExample Directory.

- 129 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 4-12 Constraining the document name

Add the following content to led.xdc, the port name should be consistent with

Figure 4-12 Add pin assignment

The following steps to generate bitstream and export xsa files are the same

those in the first project, so I won’t repeat them here. Vitis project: Enter the

Vitis software, create a new project named axi_uartlite, select the empty template

on the Templates template selection page, and click platform.xprBoard Support

axi_uartlite) Import ExamplesExample Directory.

12 Constraining the document name

Add the following content to led.xdc, the port name should be consistent with

The following steps to generate bitstream and export xsa files are the same as

those in the first project, so I won’t repeat them here. Vitis project: Enter the

Vitis software, create a new project named axi_uartlite, select the empty template

on the Templates template selection page, and click platform.xprBoard Support

MYS-ZU5EV_FPGA Development Manual V2.0.3

In the opened directory, copy xuartlite_low_level_example.c to our project src

directory.

Figure 4

After compiling, connect the JTAG line to the development board and the

UART USB line to the PC Use PuTTY software as a serial terminal debugging tool.

The Debug mode is the same as the first project. After the program is

- 130 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 4-13 vitis project

In the opened directory, copy xuartlite_low_level_example.c to our project src

Figure 4-14 Official driver porting

After compiling, connect the JTAG line to the development board and the

UART USB line to the PC Use PuTTY software as a serial terminal debugging tool.

The Debug mode is the same as the first project. After the program is

In the opened directory, copy xuartlite_low_level_example.c to our project src

After compiling, connect the JTAG line to the development board and the

UART USB line to the PC Use PuTTY software as a serial terminal debugging tool.

The Debug mode is the same as the first project. After the program is

MYS-ZU5EV_FPGA Development Manual V2.0.3

downloaded, then we can find

software serial port PuTTY.

4.2 IIC
4.2.1 IIC Basis Knowledge

The I2C bus is a serial data bus with only two signal lines, one is the

bidirectional data line SDA, and the other is the clock line SCL. The two lines c

connect multiple devices. There is a fixed address in the IIC device, and it will

respond only when the value transmitted on the two lines is equal to the fixed

address of the IIC device. Usually we divide the IIC device into master device and

slave device for convenience, whoever controls the clock line is the master device.

4.2.2 Experiment Logical

 The work of this experiment is to read and write the EEPROM through the

I2C bus on the PS side after configuring the I2C on the PS side

Figure 4-15 Sche

4.2.3Experiment Steps

Vivado project：

Based on the "hello_world" project, save it as an iic_test project. The name of

the CD is iic_test.rar. Here iic is the IIC derived from the MIO on the PS side. It has

been configured in the first project, so no changes are needed. Generate

bitstream directly and export xsa file. Vitis project: The steps of creating a new

project can refer to the first project. After creating an application project named

iic_test, use the same metho

- 131 -

ZU5EV_FPGA Development Manual V2.0.3

then we can find the debug serial port output results

4.2.1 IIC Basis Knowledge

The I2C bus is a serial data bus with only two signal lines, one is the

bidirectional data line SDA, and the other is the clock line SCL. The two lines c

connect multiple devices. There is a fixed address in the IIC device, and it will

respond only when the value transmitted on the two lines is equal to the fixed

address of the IIC device. Usually we divide the IIC device into master device and

ice for convenience, whoever controls the clock line is the master device.

4.2.2 Experiment Logical

The work of this experiment is to read and write the EEPROM through the

I2C bus on the PS side after configuring the I2C on the PS side.

Schematic diagram of schematic connection

Based on the "hello_world" project, save it as an iic_test project. The name of

the CD is iic_test.rar. Here iic is the IIC derived from the MIO on the PS side. It has

red in the first project, so no changes are needed. Generate

bitstream directly and export xsa file. Vitis project: The steps of creating a new

project can refer to the first project. After creating an application project named

est, use the same method as axi uart, click platform.xprBoard Support

ebug serial port output results with the

The I2C bus is a serial data bus with only two signal lines, one is the

bidirectional data line SDA, and the other is the clock line SCL. The two lines can

connect multiple devices. There is a fixed address in the IIC device, and it will

respond only when the value transmitted on the two lines is equal to the fixed

address of the IIC device. Usually we divide the IIC device into master device and

ice for convenience, whoever controls the clock line is the master device.

The work of this experiment is to read and write the EEPROM through the

matic diagram of schematic connection

Based on the "hello_world" project, save it as an iic_test project. The name of

the CD is iic_test.rar. Here iic is the IIC derived from the MIO on the PS side. It has

red in the first project, so no changes are needed. Generate

bitstream directly and export xsa file. Vitis project: The steps of creating a new

project can refer to the first project. After creating an application project named

d as axi uart, click platform.xprBoard Support

MYS-ZU5EV_FPGA Development Manual V2.0.3

Package(psu_i2c_1)Import ExamplesExample Directory, In the opened directory,

copy xiipcs_eeprom_polled_example.c to our project src directory.

Since the address of our iic device is 0x51, modify the first add

0x51 here, just click compile

Figure 4

The Jtag debugging and SD card startup methods are the same as the first

project. After the program is downloaded, the debugging serial port output

results are as follows.

4.3 Sections of this Chapter

- 132 -

ZU5EV_FPGA Development Manual V2.0.3

Package(psu_i2c_1)Import ExamplesExample Directory, In the opened directory,

copy xiipcs_eeprom_polled_example.c to our project src directory.

Since the address of our iic device is 0x51, modify the first add

0x51 here, just click compile.

Figure 4-16 vitis program design

The Jtag debugging and SD card startup methods are the same as the first

project. After the program is downloaded, the debugging serial port output

Figure 4-17 Results display

4.3 Sections of this Chapter

Package(psu_i2c_1)Import ExamplesExample Directory, In the opened directory,

copy xiipcs_eeprom_polled_example.c to our project src directory.

Since the address of our iic device is 0x51, modify the first address of Eeproto

The Jtag debugging and SD card startup methods are the same as the first

project. After the program is downloaded, the debugging serial port output

MYS-ZU5EV_FPGA Development Manual V2.0.3

This chapter has two sub

controls uart serial port IP printing data through axi bus. The second section is

about some knowledge about IIC, and using the I

write the EEPROM on the board. The knowledge point is the instantiation of the

axi bus IP core on the PL side, which is connected to the PS through the axi bus

and controlled by software.

- 133 -

ZU5EV_FPGA Development Manual V2.0.3

This chapter has two sub-sections. The first section describes how PS

controls uart serial port IP printing data through axi bus. The second section is

about some knowledge about IIC, and using the IIC peripherals of PS to read and

write the EEPROM on the board. The knowledge point is the instantiation of the

axi bus IP core on the PL side, which is connected to the PS through the axi bus

and controlled by software.

sections. The first section describes how PS

controls uart serial port IP printing data through axi bus. The second section is

IC peripherals of PS to read and

write the EEPROM on the board. The knowledge point is the instantiation of the

axi bus IP core on the PL side, which is connected to the PS through the axi bus

MYS-ZU5EV_FPGA Development Manual V2.0.3

Chapter 5Device ModuleBase
High-Speed Data Interface

5.1 BRAM
5.1.1AXI BRAM Contorller Basis Knowledge

BRAM is a RAM resource customized by FPGA, which has a large storage

space and is frequently used in daily projects. BRAM is arranged inside the FPGA

in an array. It is the main part of the FPGA to realize various storage functions. It is

a real synchronous RAM with dual read/write ports.

5.1.2Experiment Logical

The purpose of this article is to use Block Memory for data interaction or

data sharing between PS and PL, th

PS side to control two axi bram controllers, write data to bram through controller

0, and then use controller 1 to The data in bram is read, and the read result is

printed out to the serial port terminal for displa

Figure 5-1 BRAM experimental logic structure block diagram

5.1.3Experiment Steps

Based on the "hello_world" project, save it as a bram_test project.

Corresponding to the CD file bram_test.rar. Enter block in the search bar and

double-click the Block Memory Generator to add the bram core. Double

- 134 -

ZU5EV_FPGA Development Manual V2.0.3

Chapter 5Device ModuleBased on AXI4
Speed Data Interface

5.1.1AXI BRAM Contorller Basis Knowledge

BRAM is a RAM resource customized by FPGA, which has a large storage

space and is frequently used in daily projects. BRAM is arranged inside the FPGA

he main part of the FPGA to realize various storage functions. It is

a real synchronous RAM with dual read/write ports. 。

5.1.2Experiment Logical

The purpose of this article is to use Block Memory for data interaction or

data sharing between PS and PL, through the M_AXI_HPM0_FPD port on the zynq

PS side to control two axi bram controllers, write data to bram through controller

0, and then use controller 1 to The data in bram is read, and the read result is

printed out to the serial port terminal for display.

1 BRAM experimental logic structure block diagram

Based on the "hello_world" project, save it as a bram_test project.

Corresponding to the CD file bram_test.rar. Enter block in the search bar and

emory Generator to add the bram core. Double

d on AXI4
Speed Data Interface

BRAM is a RAM resource customized by FPGA, which has a large storage

space and is frequently used in daily projects. BRAM is arranged inside the FPGA

he main part of the FPGA to realize various storage functions. It is

The purpose of this article is to use Block Memory for data interaction or

rough the M_AXI_HPM0_FPD port on the zynq

PS side to control two axi bram controllers, write data to bram through controller

0, and then use controller 1 to The data in bram is read, and the read result is

1 BRAM experimental logic structure block diagram

Based on the "hello_world" project, save it as a bram_test project.

Corresponding to the CD file bram_test.rar. Enter block in the search bar and

emory Generator to add the bram core. Double-click the

MYS-ZU5EV_FPGA Development Manual V2.0.3

bram core, the configuration is as follows. Set Memory Type to True Dual Port

RAM.

Uncheck Enable Safety Circuit and click OK.

(2) Keep other options as default, click ok to complete the configuration.

Enter axi_bram in the search bar, double

axi_bram_controller core. Double

- 135 -

ZU5EV_FPGA Development Manual V2.0.3

bram core, the configuration is as follows. Set Memory Type to True Dual Port

Figure 5-2 Configure axi BRAM

Uncheck Enable Safety Circuit and click OK.

Figure 5-3 Configure AXI BRAM

ther options as default, click ok to complete the configuration.

Enter axi_bram in the search bar, double-click AXI BRAM Controller to add the

axi_bram_controller core. Double-click axi_bram_controller to set the parameters,

bram core, the configuration is as follows. Set Memory Type to True Dual Port

ther options as default, click ok to complete the configuration.

click AXI BRAM Controller to add the

click axi_bram_controller to set the parameters,

MYS-ZU5EV_FPGA Development Manual V2.0.3

set the Number of BRAM interfac

like this

Figure 5

Click Run Block Automation

same as in uart, check all the options, and click OK. Set address

Figure 5

 The following process is consistent with the uart project, but since bram

test does not use the pl-side io, there is no need to perform io constraints. To

Vitis project: Enter the Vitis software, create a new project named bram_te

- 136 -

ZU5EV_FPGA Development Manual V2.0.3

set the Number of BRAM interfaces to 1, the other axi_bram_controller is also set

Figure 5-4 Configure BRAM controller

Click Run Block Automation->OK to automatically connect, the way is the

same as in uart, check all the options, and click OK. Set address

Figure 5-5 Allocating address space

The following process is consistent with the uart project, but since bram

side io, there is no need to perform io constraints. To

Vitis project: Enter the Vitis software, create a new project named bram_te

es to 1, the other axi_bram_controller is also set

>OK to automatically connect, the way is the

The following process is consistent with the uart project, but since bram

side io, there is no need to perform io constraints. To

Vitis project: Enter the Vitis software, create a new project named bram_test,

MYS-ZU5EV_FPGA Development Manual V2.0.3

select the empty template on the Templates template selection page, and then

copy the program files in the routine in the generated project. The code is as

follows, which is to write the numbers 0

out, and then print out the read data.

The Jtag debugging and SD card startup methods are the same as the first

project. After the program is downloaded, the debugging serial port output

results are as follows.

- 137 -

ZU5EV_FPGA Development Manual V2.0.3

select the empty template on the Templates template selection page, and then

copy the program files in the routine in the generated project. The code is as

follows, which is to write the numbers 0-15 into the bram register, then read them

print out the read data.

Figure 5-6 vitis code design

The Jtag debugging and SD card startup methods are the same as the first

project. After the program is downloaded, the debugging serial port output

Figure 5-7 result display

select the empty template on the Templates template selection page, and then

copy the program files in the routine in the generated project. The code is as

15 into the bram register, then read them

The Jtag debugging and SD card startup methods are the same as the first

project. After the program is downloaded, the debugging serial port output

MYS-ZU5EV_FPGA Development Manual V2.0.3

5.2 AXI DMA
5.2.1AXI DMA Basis Knowledge

The background of DMA: DMA (Direct Memory Access) refers to an interface

technology in which external devices directly exchange data with system memory

without passing through the CPU. To read the peripheral dat

transfer the memory to the peripheral, generally it must be controlled by the CPU,

such as query or interrupt mode. Although the interrupt mode can improve the

utilization of the CPU, there are also efficiency problems. For the case of

data transfer, the DMA method can solve the efficiency and speed problems.

The CPU only needs to provide the address and length to the DMA, and the

DMA can take over the bus. , Access the memory, and after the DMA finishes its

work, inform the CPU to hand over bus control. DMA workflow: First, the CPU

must receive the DMA request interrupt from the peripheral, and then the CPU

interrupt, set the DMA transmission address, length, interrupt and other

information, and start the DMA transmission. The ne

other things. Peripherals use DMA for data transfer. Finally, the peripheral data

transfer is completed, and the interrupt is sent to the CPU for the completion of

the transfer. After the CPU has processed the interrupt, it wil

following mainly introduces the basic situation of AXI DMA IP, here is mainly an

excerpt from the content in PG021. 1.

The AXI DMA module uses three types of buses. AXI4

configure registers, and AXI4 Memory Map is us

this module, two interfaces, AXI4 Memory Map Read and AXI4 Memory Map

Write, are separated. , And they are called M_AXI_MM2S and M_AXI_S2MM

respectively.

One is to read and the other is to write. This should be clear and not

The AXI4 Stream interface is used to read and write to peripherals, where

AXI4 Stream Master (MM2S) is used to write to the peripherals, and AXI4

Slave (S2MM) is used to read to the peripherals.

It also supports Scatter/Gather functions

Stream, S2MM stands for Stream to Memory Map).

AXI Memory Map data width supports 32, 64, 128, 256, 512, 1024bits

AXI Stream data width supports 8, 16, 32, 64, 128, 256, 512, 1024bits

- 138 -

ZU5EV_FPGA Development Manual V2.0.3

5.2.1AXI DMA Basis Knowledge

The background of DMA: DMA (Direct Memory Access) refers to an interface

technology in which external devices directly exchange data with system memory

without passing through the CPU. To read the peripheral data into the memory or

transfer the memory to the peripheral, generally it must be controlled by the CPU,

such as query or interrupt mode. Although the interrupt mode can improve the

utilization of the CPU, there are also efficiency problems. For the case of

data transfer, the DMA method can solve the efficiency and speed problems.

The CPU only needs to provide the address and length to the DMA, and the

DMA can take over the bus. , Access the memory, and after the DMA finishes its

to hand over bus control. DMA workflow: First, the CPU

must receive the DMA request interrupt from the peripheral, and then the CPU

interrupt, set the DMA transmission address, length, interrupt and other

information, and start the DMA transmission. The next step is for the CPU to do

other things. Peripherals use DMA for data transfer. Finally, the peripheral data

transfer is completed, and the interrupt is sent to the CPU for the completion of

the transfer. After the CPU has processed the interrupt, it will do other things. The

following mainly introduces the basic situation of AXI DMA IP, here is mainly an

excerpt from the content in PG021. 1.

The AXI DMA module uses three types of buses. AXI4-Lite is used to

configure registers, and AXI4 Memory Map is used to interact with memory. In

this module, two interfaces, AXI4 Memory Map Read and AXI4 Memory Map

Write, are separated. , And they are called M_AXI_MM2S and M_AXI_S2MM

One is to read and the other is to write. This should be clear and not

The AXI4 Stream interface is used to read and write to peripherals, where

AXI4 Stream Master (MM2S) is used to write to the peripherals, and AXI4

Slave (S2MM) is used to read to the peripherals.

It also supports Scatter/Gather functions. (MM2S stands for Memory Map to

Stream, S2MM stands for Stream to Memory Map).

AXI Memory Map data width supports 32, 64, 128, 256, 512, 1024bits

AXI Stream data width supports 8, 16, 32, 64, 128, 256, 512, 1024bits

The background of DMA: DMA (Direct Memory Access) refers to an interface

technology in which external devices directly exchange data with system memory

a into the memory or

transfer the memory to the peripheral, generally it must be controlled by the CPU,

such as query or interrupt mode. Although the interrupt mode can improve the

utilization of the CPU, there are also efficiency problems. For the case of batch

data transfer, the DMA method can solve the efficiency and speed problems.

The CPU only needs to provide the address and length to the DMA, and the

DMA can take over the bus. , Access the memory, and after the DMA finishes its

to hand over bus control. DMA workflow: First, the CPU

must receive the DMA request interrupt from the peripheral, and then the CPU

interrupt, set the DMA transmission address, length, interrupt and other

xt step is for the CPU to do

other things. Peripherals use DMA for data transfer. Finally, the peripheral data

transfer is completed, and the interrupt is sent to the CPU for the completion of

l do other things. The

following mainly introduces the basic situation of AXI DMA IP, here is mainly an

Lite is used to

ed to interact with memory. In

this module, two interfaces, AXI4 Memory Map Read and AXI4 Memory Map

Write, are separated. , And they are called M_AXI_MM2S and M_AXI_S2MM

One is to read and the other is to write. This should be clear and not confused.

The AXI4 Stream interface is used to read and write to peripherals, where

AXI4 Stream Master (MM2S) is used to write to the peripherals, and AXI4-Stream

. (MM2S stands for Memory Map to

AXI Memory Map data width supports 32, 64, 128, 256, 512, 1024bits

AXI Stream data width supports 8, 16, 32, 64, 128, 256, 512, 1024bits

MYS-ZU5EV_FPGA Development Manual V2.0.3

2，The direct register mode is used in this experiment. The following figure

shows the register description. It is mainly divided into two parts. One is MM2S,

which includes Control Register, Status Register, Source Address, and Transfer

Length. The other is S2MM, which also includes Control Register and Status

Register. , Destination Address, Buffer Length four parts, note that the Source

Address and Destination Address here refer to the memory address.

Figure 5-9 Direct Register Mode Register Address Map

- 139 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 5-8 AXI DMA Block Diagram

The direct register mode is used in this experiment. The following figure

shows the register description. It is mainly divided into two parts. One is MM2S,

which includes Control Register, Status Register, Source Address, and Transfer

S2MM, which also includes Control Register and Status

Register. , Destination Address, Buffer Length four parts, note that the Source

Address and Destination Address here refer to the memory address.

9 Direct Register Mode Register Address Map

The direct register mode is used in this experiment. The following figure

shows the register description. It is mainly divided into two parts. One is MM2S,

which includes Control Register, Status Register, Source Address, and Transfer

S2MM, which also includes Control Register and Status

Register. , Destination Address, Buffer Length four parts, note that the Source

Address and Destination Address here refer to the memory address.

9 Direct Register Mode Register Address Map

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 5-10 Direct Register Mode Register Address Map

3，The following is the description of the MM2S_DMACR control register. The

more important ones are Bit0, Run/Stop, which means to start or stop DMA. The

other content will not be described.

Figure 5

Figure 5

There are several interrupts that can be set here, IOC_IrqEn, enable completion

interrupt, Dly_IrqEn enable delayed interrupt, and Err_IrqEn enable error interrupt

- 140 -

ZU5EV_FPGA Development Manual V2.0.3

10 Direct Register Mode Register Address Map

The following is the description of the MM2S_DMACR control register. The

more important ones are Bit0, Run/Stop, which means to start or stop DMA. The

other content will not be described.

Figure 5-11 MM2S_DMACR register

Figure 5-12 MM2S_DMACR register details
There are several interrupts that can be set here, IOC_IrqEn, enable completion

interrupt, Dly_IrqEn enable delayed interrupt, and Err_IrqEn enable error interrupt

10 Direct Register Mode Register Address Map

The following is the description of the MM2S_DMACR control register. The

more important ones are Bit0, Run/Stop, which means to start or stop DMA. The

There are several interrupts that can be set here, IOC_IrqEn, enable completion

interrupt, Dly_IrqEn enable delayed interrupt, and Err_IrqEn enable error interrupt.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 5

4，MM2S_DMASR is the description of the status register. Bits 12, 13, and 14 are

the interrupt status. Write 1 to clear the interrupt

Figure 5

- 141 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 5-13 MM2S_DMACR reg details
MM2S_DMASR is the description of the status register. Bits 12, 13, and 14 are

the interrupt status. Write 1 to clear the interrupt.

Figure 5-14 MM2S_DMASR register

MM2S_DMASR is the description of the status register. Bits 12, 13, and 14 are

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 5

5.2.2 Experiment Logical

 This experiment is to instantiate the dma IP core on the pl side, and test the

data transmission of the dma IP core through the axi bus on the PS side. The

function of this experiment is that MM2S reads data from DDR3, writes to AXI

Stream Data FIFO, and then f

loop-through test, you need to turn on the IOC_Irq of S2MM_DMACR, that is,

write memory end interrupt. The functional block diagram is as follows:

5.2.3 Experiment Steps

- 142 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 5-14 MM2S_DMASR register details

5.2.2 Experiment Logical

experiment is to instantiate the dma IP core on the pl side, and test the

data transmission of the dma IP core through the axi bus on the PS side. The

function of this experiment is that MM2S reads data from DDR3, writes to AXI

Stream Data FIFO, and then from FIFO. To read and write to DDR3, to realize the

through test, you need to turn on the IOC_Irq of S2MM_DMACR, that is,

write memory end interrupt. The functional block diagram is as follows:

Figure 5-15 design structure

experiment is to instantiate the dma IP core on the pl side, and test the

data transmission of the dma IP core through the axi bus on the PS side. The

function of this experiment is that MM2S reads data from DDR3, writes to AXI

rom FIFO. To read and write to DDR3, to realize the

through test, you need to turn on the IOC_Irq of S2MM_DMACR, that is,

write memory end interrupt. The functional block diagram is as follows:

MYS-ZU5EV_FPGA Development Manual V2.0.3

Vivado engineering:

Based on the "hello_world" project, save it as a dma_loop project. The

corresponding design document on the CD is dma_loop.rar. Open reset, HPM0,

HP0, PL to PS interrupt IRQ0. Enter dma in the search bar to call the dma IP core

Double-click the DMA IP core to set the parameters, and the configuration is as

follows.

Figure 5-

Add the AXI Stream Data FIFO module and set it as follows, set the depth to

1024, TDATA Width to 4 bytes, and turn on TKEEP and

- 143 -

ZU5EV_FPGA Development Manual V2.0.3

Based on the "hello_world" project, save it as a dma_loop project. The

corresponding design document on the CD is dma_loop.rar. Open reset, HPM0,

HP0, PL to PS interrupt IRQ0. Enter dma in the search bar to call the dma IP core

click the DMA IP core to set the parameters, and the configuration is as

-16 DMA configuration block diagram

Add the AXI Stream Data FIFO module and set it as follows, set the depth to

1024, TDATA Width to 4 bytes, and turn on TKEEP and TLAST.

Based on the "hello_world" project, save it as a dma_loop project. The

corresponding design document on the CD is dma_loop.rar. Open reset, HPM0,

HP0, PL to PS interrupt IRQ0. Enter dma in the search bar to call the dma IP core

click the DMA IP core to set the parameters, and the configuration is as

16 DMA configuration block diagram

Add the AXI Stream Data FIFO module and set it as follows, set the depth to

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 5

- 144 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 5-17 Configure FIFO

Figure 5-18 FIFO configuration

MYS-ZU5EV_FPGA Development Manual V2.0.3

Automatically connect, and connect S_AXIS and M_AXIS of FIFO to dma, add

Concat, connect MM2S and S2MM interrupt to pl_ps_irq, the final result is as

shown in the figure below.

Figure

The following process is consistent with the uart project, and the same as

bram test, it also does not require pin constraints. Vitis project: For the steps of

creating a new project, please refer to the first project. After cr

application project named dma_loop, open the Example Directory folder

corresponding to dma in the same way as axi uart. In the opened directory, copy

xaxidma_example_simple_poll.c to our project. src directory. Add a Tries Count

print statement in the position below, and click Compile.

Figure 5

- 145 -

ZU5EV_FPGA Development Manual V2.0.3

Automatically connect, and connect S_AXIS and M_AXIS of FIFO to dma, add

Concat, connect MM2S and S2MM interrupt to pl_ps_irq, the final result is as

Figure 5-19 BD design block diagram

The following process is consistent with the uart project, and the same as

bram test, it also does not require pin constraints. Vitis project: For the steps of

creating a new project, please refer to the first project. After creating a new

application project named dma_loop, open the Example Directory folder

corresponding to dma in the same way as axi uart. In the opened directory, copy

xaxidma_example_simple_poll.c to our project. src directory. Add a Tries Count

t in the position below, and click Compile.

Figure 5-20 Vitis source code design

Automatically connect, and connect S_AXIS and M_AXIS of FIFO to dma, add

Concat, connect MM2S and S2MM interrupt to pl_ps_irq, the final result is as

The following process is consistent with the uart project, and the same as

bram test, it also does not require pin constraints. Vitis project: For the steps of

eating a new

application project named dma_loop, open the Example Directory folder

corresponding to dma in the same way as axi uart. In the opened directory, copy

xaxidma_example_simple_poll.c to our project. src directory. Add a Tries Count

MYS-ZU5EV_FPGA Development Manual V2.0.3

The Jtag debugging and SD card startup methods are the same as the first project.

After the program is downloaded, the debugging serial port output results are as

follows.

5.3Sections of this Chapter
In the first section, PS and PL realize the experiment of low

interaction through BRAM. The two are interconnected through the GP port,

which can realize small-batch data interaction.

The second section uses DMA to access memory. DMA is a way of data

interaction between PS and PL. The control of DMA is mainly on the PS side, and

the PS configures the read and write of DMA.

- 146 -

ZU5EV_FPGA Development Manual V2.0.3

The Jtag debugging and SD card startup methods are the same as the first project.

After the program is downloaded, the debugging serial port output results are as

Figure 5-21 Result display

5.3Sections of this Chapter
In the first section, PS and PL realize the experiment of low-

interaction through BRAM. The two are interconnected through the GP port,

batch data interaction.

The second section uses DMA to access memory. DMA is a way of data

interaction between PS and PL. The control of DMA is mainly on the PS side, and

the PS configures the read and write of DMA.

The Jtag debugging and SD card startup methods are the same as the first project.

After the program is downloaded, the debugging serial port output results are as

-bandwidth data

interaction through BRAM. The two are interconnected through the GP port,

The second section uses DMA to access memory. DMA is a way of data

interaction between PS and PL. The control of DMA is mainly on the PS side, and

MYS-ZU5EV_FPGA Development Manual V2.0.3

Chapter 6 Device Module Based on AXI
Stream

6.1 MIPI
This project is a sample project of MIPI, here is a brief introduction to the

MIPI physical layer protocol. MIPI (Mobile Industry Processor Interface) is the

abbreviation of Mobile Industry Processor Interface. MIPI (Mobile Industry

Processor Interface) is an open standard for mobile application processors

initiated by the MIPI Alliance. MIPI Alliance’s MIPI DSI Specification

1. Noun explanation

• DCS (DisplayCommandSet): DCS is a standardized command set for display

modules in command mod

• DSI, CSI (DisplaySerialInterface, CameraSerialInterface

• DSI defines a high-speed serial interface between the processor and the display

module.

• CSI defines a high-speed serial interface between the processor and the camera

module.

• D-PHY: Provides the physical layer definition of DSI and CSI 2. DSI layered

structure DSI is divided into four layers, corresponding to D

specifications, and the layered structure diagram is as follows:

• PHY defines the transmission medium, input/out

mechanisms.

• Lane Management layer: Send and collect data streams to each lane.

• Low Level Protocol layer: defines how to frame and parse, and error detection.

• Application layer: describe the high

- 147 -

ZU5EV_FPGA Development Manual V2.0.3

Chapter 6 Device Module Based on AXI
Stream Interface

This project is a sample project of MIPI, here is a brief introduction to the

MIPI physical layer protocol. MIPI (Mobile Industry Processor Interface) is the

abbreviation of Mobile Industry Processor Interface. MIPI (Mobile Industry

essor Interface) is an open standard for mobile application processors

initiated by the MIPI Alliance. MIPI Alliance’s MIPI DSI Specification

• DCS (DisplayCommandSet): DCS is a standardized command set for display

modules in command mode.

• DSI, CSI (DisplaySerialInterface, CameraSerialInterface

speed serial interface between the processor and the display

speed serial interface between the processor and the camera

vides the physical layer definition of DSI and CSI 2. DSI layered

structure DSI is divided into four layers, corresponding to D-PHY, DSI, DCS

specifications, and the layered structure diagram is as follows:

• PHY defines the transmission medium, input/output circuits and clock and signal

• Lane Management layer: Send and collect data streams to each lane.

• Low Level Protocol layer: defines how to frame and parse, and error detection.

• Application layer: describe the high-level coding and parsing data flow

Chapter 6 Device Module Based on AXI-

This project is a sample project of MIPI, here is a brief introduction to the

MIPI physical layer protocol. MIPI (Mobile Industry Processor Interface) is the

abbreviation of Mobile Industry Processor Interface. MIPI (Mobile Industry

essor Interface) is an open standard for mobile application processors

initiated by the MIPI Alliance. MIPI Alliance’s MIPI DSI Specification

• DCS (DisplayCommandSet): DCS is a standardized command set for display

speed serial interface between the processor and the display

speed serial interface between the processor and the camera

vides the physical layer definition of DSI and CSI 2. DSI layered

PHY, DSI, DCS

put circuits and clock and signal

• Lane Management layer: Send and collect data streams to each lane.

• Low Level Protocol layer: defines how to frame and parse, and error detection.

arsing data flow.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 6

Command and Video mode

 • DSI compatible peripherals support Command or Video operation mode,

which mode is determined by the architecture of the peripheral

• Command mode refers to the use of sending commands and data to the

controller with display buffer. The host indirectly controls peripherals through

commands. Command mode uses bidirectional interface

• Video mode refers to the stream of real pixels when

host to the peripherals. This mode can only transmit at high speed. In order to

reduce complexity and save costs, a system that only uses Video mode may have

only one unidirectional data path.

D-PHY introduction

1. D-PHY describes a synch

• A PHY configuration includes

• A clock lane

• One or more data lanes

• The PHY configuration of two Lanes is shown below

- 148 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 6-1 MIPI CSI-2 layer definitions

Command and Video mode

• DSI compatible peripherals support Command or Video operation mode,

which mode is determined by the architecture of the peripheral

• Command mode refers to the use of sending commands and data to the

controller with display buffer. The host indirectly controls peripherals through

commands. Command mode uses bidirectional interface

• Video mode refers to the stream of real pixels when transmitted from the

host to the peripherals. This mode can only transmit at high speed. In order to

reduce complexity and save costs, a system that only uses Video mode may have

only one unidirectional data path.

PHY describes a synchronous, high-speed, low-power, low

• A PHY configuration includes

• The PHY configuration of two Lanes is shown below

• DSI compatible peripherals support Command or Video operation mode,

which mode is determined by the architecture of the peripheral

• Command mode refers to the use of sending commands and data to the

controller with display buffer. The host indirectly controls peripherals through

transmitted from the

host to the peripherals. This mode can only transmit at high speed. In order to

reduce complexity and save costs, a system that only uses Video mode may have

power, low-cost PHY.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 6

• Three main types of lanes

• One-way clock Lane

• One-way data Lane

• Two-way data Lane

• D-PHY transmission mode

• Low-Power signal mode (for control): 10MHz (max)

• High-Speed signal mode (for high

1Gbps/Lane

• The D-PHY low-level protocol stipulates tha

• When sending data, the low bit must be in front and the high bit in the back.

• D-PHY is suitable for mobile applications

• DSI: display serial interface

• One clock lane, one or more data lanes

• CSI: Camera serial interface

2. Lane module

• PHY consists of D-PHY (Lane module)

• D-PHY may include:

• Low-power transmitter (LP

• Low power receiver (LP-RX)

• High-speed transmitter (HS

- 149 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 6-1 TWO lane PHY Configuration

• Three main types of lanes

PHY transmission mode

Power signal mode (for control): 10MHz (max)

signal mode (for high-speed data transmission): 80Mbps ~

level protocol stipulates that the minimum data unit is one byte

• When sending data, the low bit must be in front and the high bit in the back.

PHY is suitable for mobile applications

• DSI: display serial interface

• One clock lane, one or more data lanes

• CSI: Camera serial interface

PHY (Lane module)

power transmitter (LP-TX)

RX)

speed transmitter (HS-TX)

speed data transmission): 80Mbps ~

t the minimum data unit is one byte

• When sending data, the low bit must be in front and the high bit in the back.

MYS-ZU5EV_FPGA Development Manual V2.0.3

• High-speed receiver (HS-RX)

• Low-power contention detector (LP

• Three main lane types

• One-way clock Lane

• Master: HS-TX, LP-TX

• Slave: HS-RX, LP-RX

• One-way data Lane

• Master: HS-TX, LP-TX

• Slave: HS-RX, LP-RX

• Two-way data Lane

• Master, Slave: HS-TX, LP-TX, H

3. Lane status and voltage

• Lane status

• LP-00, LP-01, LP-10, LP-11 (single

• HS-0, HS-1 (differential)

• Lane voltage (typical)

• LP: 0-1.2V

 • HS: 100-300mV (200mV)

4. Operation mode

• Three operating modes of Data Lane

• Escape mode, High-Speed(Burst) mode, Control mode

• The possible events starting from the stop state of the control mode are:

• Escape mode request (LP-

• High-Speed mode request (LP

• Turnaround request (LP-11→LP

• Escape mode is a special operation of Data Lane in LP state

 • In this mode, you can enter some additional functions: LPDT, ULPS, Trigger

 • Data Lane enters Escape mode through LP

 • Once entering Escape mode, the sender must send an 8

respond to the requested action

 • Escape mode uses Spaced

•Ultra-Low Power State

• In this state, lines are in an empty state (LP

- 150 -

ZU5EV_FPGA Development Manual V2.0.3

RX)

power contention detector (LP-CD)

TX, HS-RX, LP-RX, LP-CD

3. Lane status and voltage

11 (single-ended)

300mV (200mV)

• Three operating modes of Data Lane

Speed(Burst) mode, Control mode

• The possible events starting from the stop state of the control mode are:

-11→LP-10→LP-00→LP-01→LP-00)

mode request (LP-11→LP-01→LP-00)

11→LP-10→LP-00→LP-10→LP-00)

• Escape mode is a special operation of Data Lane in LP state

• In this mode, you can enter some additional functions: LPDT, ULPS, Trigger

• Data Lane enters Escape mode through LP-11→LP-10→LP-00→LP

• Once entering Escape mode, the sender must send an 8-bit command to

respond to the requested action

• Escape mode uses Spaced-One-Hot Encoding

• In this state, lines are in an empty state (LP-00)

• The possible events starting from the stop state of the control mode are:

• In this mode, you can enter some additional functions: LPDT, ULPS, Trigger

00→LP-01→LP-00

bit command to

MYS-ZU5EV_FPGA Development Manual V2.0.3

• Ultra-low power consumption state of clock Lane • Clock Lane enters ULPS state

through LP-11→LP-10→LP-

11, the minimum TWAKEUP time is 1ms • High

• The act of sending high-speed serial da

or burst

• All Lanes gates start synchronously, and the end time may be different.

• The clock should be in high

• Transmission process under each mode operation mode

•The process of entering Escape

00→Entry Code → LPD (10MHz)

•The process of exiting Escape mode: LP

•The process of entering high

→ HSD (80Mbps ~ 1Gbps)

•The process of exiting high

 •Control mode-BTA transmission process: LP

•Control mode-BTA receiving process: LP

• State transition diagram

- 151 -

ZU5EV_FPGA Development Manual V2.0.3

low power consumption state of clock Lane • Clock Lane enters ULPS state

-00 • Exit this state through LP-10 → TWAKEUP → LP

11, the minimum TWAKEUP time is 1ms • High-speed data transmission

speed serial data is called high-speed data transmission

• All Lanes gates start synchronously, and the end time may be different.

• The clock should be in high-speed mode

• Transmission process under each mode operation mode

•The process of entering Escape mode: LP-11→LP-10→LP-00→LP

00→Entry Code → LPD (10MHz)

•The process of exiting Escape mode: LP-10→LP-11

•The process of entering high-speed mode: LP-11→LP-01→LP-00→SoT(00011101)

→ HSD (80Mbps ~ 1Gbps)

•The process of exiting high-speed mode: EoT→LP-11

BTA transmission process: LP-11→LP-10→LP-00→LP

BTA receiving process: LP-00→LP-10→LP-11

low power consumption state of clock Lane • Clock Lane enters ULPS state

10 → TWAKEUP → LP-

speed data transmission

speed data transmission

• All Lanes gates start synchronously, and the end time may be different.

00→LP-01→LP-

00→SoT(00011101)

00→LP-10→LP-00

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 6

DSI introduction

1. DSI is a Lane expandable interface, 1 clock Lane/1

 • DSI compatible peripherals support 1 or 2 basic operation modes:

• Command Mode (similar to MPU interface)

 • Video Mode (similar to RGB interface)

data, support 3 formats of data transmission 

 • Non-Burst sync pulse mode 

• Non-Burst synchronous event mode 

 • Burst mode

• Transmission mode:

• High-Speed signaling mode

• Low-Power signaling mode

the exclusive OR of DP and DN).

• Frame type

• Short frame: 4 bytes (fixed)

• Long frame: 6~65541 bytes (variable)

• Two data Lane high-speed transmission examples

2. Short frame structure

• Frame header (4 bytes)

• Data identification (DI) 1 by

• Frame data-2 bytes (the length is fixed at 2 bytes)

• Error detection (ECC) 1 byte

• Frame size

• The length is fixed at 4 bytes

3. Long frame structure

• Frame header (4 bytes)

• Data identification (DI) 1 byte

• Data count-2 bytes (number of

• Error detection (ECC) 1 byte

• Data filling (0~65535 bytes)

• Length=WC*Byte

 • End of frame: checksum (2 bytes)

• Frame size:

- 152 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 6-3 Data lane Module state diagram

DSI is a Lane expandable interface, 1 clock Lane/1-4 data Lanes

• DSI compatible peripherals support 1 or 2 basic operation modes:

• Command Mode (similar to MPU interface)

• Video Mode (similar to RGB interface)-must use high-speed mode to transmit

a, support 3 formats of data transmission 

Burst sync pulse mode 

Burst synchronous event mode 

signaling mode

Power signaling mode-Only data lane 0 is used (the clock is derived f

the exclusive OR of DP and DN).

• Short frame: 4 bytes (fixed)

• Long frame: 6~65541 bytes (variable)

speed transmission examples

• Data identification (DI) 1 byte

2 bytes (the length is fixed at 2 bytes)

• Error detection (ECC) 1 byte

• The length is fixed at 4 bytes

• Data identification (DI) 1 byte

2 bytes (number of data filling)

• Error detection (ECC) 1 byte

• Data filling (0~65535 bytes)

• End of frame: checksum (2 bytes)

4 data Lanes

• DSI compatible peripherals support 1 or 2 basic operation modes:

speed mode to transmit

Only data lane 0 is used (the clock is derived from

MYS-ZU5EV_FPGA Development Manual V2.0.3

• 4 + (0~65535) + 2 = 6 ~ 65541 bytes

4. Frame data type

- 153 -

ZU5EV_FPGA Development Manual V2.0.3

• 4 + (0~65535) + 2 = 6 ~ 65541 bytes

MYS-ZU5EV_FPGA Development Manual V2.0.3

6.1.1 MIPI_CSI2_Rx_Subsystem Basis Knowledge

The Xilinx MIPI CSI-2 RX controller implements a camera serial interface

between the camera sensor and the programmable device that performs

baseband processing. Due to the development of higher resolution cameras, the

bandwidth requirements of camera sens

Traditional parallel interfaces require more and more signal lines, resulting in

higher power consumption. New high

specification, can meet these ever

sacrificing power.

MIPI is a set of protocols defined by mobile industry organizations to

standardize all interfaces in mobile platforms such as mobile phones and tablets.

However, the large capacity and economies of scale in the mobile indus

forcing other applications to adopt these standards.

Therefore, MIPI-based camera sensors are increasingly used in emerging

applications such as driver assistance technology, video security surveillance

cameras, video conferencing, and virtual and

applications. Block diagram of delay calculation about IP

- 154 -

ZU5EV_FPGA Development Manual V2.0.3

6.1.1 MIPI_CSI2_Rx_Subsystem Basis Knowledge

2 RX controller implements a camera serial interface

between the camera sensor and the programmable device that performs

baseband processing. Due to the development of higher resolution cameras, the

bandwidth requirements of camera sensor interfaces have increased.

Traditional parallel interfaces require more and more signal lines, resulting in

higher power consumption. New high-speed serial interfaces, such as the MIPI CSI

specification, can meet these ever-expanding bandwidth requirem

MIPI is a set of protocols defined by mobile industry organizations to

standardize all interfaces in mobile platforms such as mobile phones and tablets.

However, the large capacity and economies of scale in the mobile indus

forcing other applications to adopt these standards.

based camera sensors are increasingly used in emerging

applications such as driver assistance technology, video security surveillance

cameras, video conferencing, and virtual and augmented reality in automotive

applications. Block diagram of delay calculation about IP

2 RX controller implements a camera serial interface

between the camera sensor and the programmable device that performs

baseband processing. Due to the development of higher resolution cameras, the

or interfaces have increased.

Traditional parallel interfaces require more and more signal lines, resulting in

speed serial interfaces, such as the MIPI CSI

expanding bandwidth requirements without

MIPI is a set of protocols defined by mobile industry organizations to

standardize all interfaces in mobile platforms such as mobile phones and tablets.

However, the large capacity and economies of scale in the mobile industry are

based camera sensors are increasingly used in emerging

applications such as driver assistance technology, video security surveillance

augmented reality in automotive

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 6-

Interface：

- 155 -

ZU5EV_FPGA Development Manual V2.0.3

-4 MIPI CSI-2 Rx Subsystem latency calculation

Figure 6-5 Port description

2 Rx Subsystem latency calculation

MYS-ZU5EV_FPGA Development Manual V2.0.3

- 156 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 6-6 Port description

MYS-ZU5EV_FPGA Development Manual V2.0.3

- 157 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 6-7 Clock description

Figure 6-8 Reset description

MYS-ZU5EV_FPGA Development Manual V2.0.3

6.1.2 Experiment Logical

This example uses the camera of IMX334, the MIPI physical interface of the

board, as shown in the figure

Figure 6-9 The physical and MIPI interface of the MIPI camera daughter board

used

MIPI physical interface on the hardware platform used

Figure 6

- 158 -

ZU5EV_FPGA Development Manual V2.0.3

6.1.2 Experiment Logical

This example uses the camera of IMX334, the MIPI physical interface of the

board, as shown in the figure

9 The physical and MIPI interface of the MIPI camera daughter board

MIPI physical interface on the hardware platform used ，

Figure 6-10 MIPI physical interface on schematic

This example uses the camera of IMX334, the MIPI physical interface of the

9 The physical and MIPI interface of the MIPI camera daughter board

on schematic

MYS-ZU5EV_FPGA Development Manual V2.0.3

ZU5EV pins for MIPI ：

Figure 6-11 Schematic diagram of XAZU5EV MIPI pin connection

The pin instantiated by Xilinx MIPI CSI

aboveTherefore, MIPI is linked to the IP of the receiving end of the FPGA chip on

the hardware, and the subsequent processing is some processing on the MIPI

access data format, and the purpose is to output the video taken by the MIPI

camera to the display. Here is a solution: MIPI's RAW10 format data

axis_subset_converter-Sensor Demosaic

(RAW2RGB)-embedded white balance module

Video Frame Buffer Write-

display.

6.1.3Experiment Steps

1. According to the "Hello world" basic configuration project in Chapter 3,

save a file and rename it MIPI_DP_4G, which corresponds to MIPI_DP_4G.rar in the

CD-ROM file.

2. Establish a data processing link on the PL side according to the above

solution. The configuration of each module is not described in detail here. Please

configure it according to the actual situation in the project. As shown below:

- 159 -

ZU5EV_FPGA Development Manual V2.0.3

11 Schematic diagram of XAZU5EV MIPI pin connection

The pin instantiated by Xilinx MIPI CSI-2 RX is the MIPI access

aboveTherefore, MIPI is linked to the IP of the receiving end of the FPGA chip on

the hardware, and the subsequent processing is some processing on the MIPI

access data format, and the purpose is to output the video taken by the MIPI

ra to the display. Here is a solution: MIPI's RAW10 format data

Sensor Demosaic-Gamma LUT-Video processing system

embedded white balance module-Video processing system (Scale)

 -Axi data fifo-AXI Inteconnection-PS DDR

According to the "Hello world" basic configuration project in Chapter 3,

save a file and rename it MIPI_DP_4G, which corresponds to MIPI_DP_4G.rar in the

processing link on the PL side according to the above

solution. The configuration of each module is not described in detail here. Please

configure it according to the actual situation in the project. As shown below:

11 Schematic diagram of XAZU5EV MIPI pin connection

2 RX is the MIPI access pin in the figure

aboveTherefore, MIPI is linked to the IP of the receiving end of the FPGA chip on

the hardware, and the subsequent processing is some processing on the MIPI

access data format, and the purpose is to output the video taken by the MIPI

ra to the display. Here is a solution: MIPI's RAW10 format data-

Video processing system

Video processing system (Scale)-

PS DDR-DP interface-

According to the "Hello world" basic configuration project in Chapter 3,

save a file and rename it MIPI_DP_4G, which corresponds to MIPI_DP_4G.rar in the

processing link on the PL side according to the above

solution. The configuration of each module is not described in detail here. Please

configure it according to the actual situation in the project. As shown below:

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 6-12 MIPI video capture design

Pay attention to the clock connection and reset in the project. After

completing the module configuration and wiring, you can perform physical

constraints and timing constraints. Because the total project resource

consumption is not very larg

After passing, there is no timing violation Can generate bitstream. Then export the

hardware platform document XSA document. The follow

development of the linux system. The modules using

driven and developed, and then start the production of the boot.bin file. The

production process is described in detail in the linux document, how to use the

xsa document to make BOOT.bin. This piece is software

refer to our software-related documents. The update process will not be

described in detail, and the final result will be an output of successful update.

Secondly, power off the hardware platform and set it to QSPI startup. After power

on again, enter /mnt/mmcblk1p1 to do the necessary work for program operation.

After correctly connecting the dp cable of the hardware and the monitor, you can

see the image output of the monitor.

- 160 -

ZU5EV_FPGA Development Manual V2.0.3

12 MIPI video capture design block diagram

Pay attention to the clock connection and reset in the project. After

completing the module configuration and wiring, you can perform physical

constraints and timing constraints. Because the total project resource

consumption is not very large, you can automatically select layout and routing.

After passing, there is no timing violation Can generate bitstream. Then export the

hardware platform document XSA document. The follow-up is the driver

development of the linux system. The modules using the AXI-lite bus need to be

driven and developed, and then start the production of the boot.bin file. The

production process is described in detail in the linux document, how to use the

xsa document to make BOOT.bin. This piece is software-related content,

related documents. The update process will not be

described in detail, and the final result will be an output of successful update.

Secondly, power off the hardware platform and set it to QSPI startup. After power

nter /mnt/mmcblk1p1 to do the necessary work for program operation.

After correctly connecting the dp cable of the hardware and the monitor, you can

see the image output of the monitor.

block diagram

Pay attention to the clock connection and reset in the project. After

completing the module configuration and wiring, you can perform physical

constraints and timing constraints. Because the total project resource

e, you can automatically select layout and routing.

After passing, there is no timing violation Can generate bitstream. Then export the

up is the driver

lite bus need to be

driven and developed, and then start the production of the boot.bin file. The

production process is described in detail in the linux document, how to use the

related content, you can

related documents. The update process will not be

described in detail, and the final result will be an output of successful update.

Secondly, power off the hardware platform and set it to QSPI startup. After power

nter /mnt/mmcblk1p1 to do the necessary work for program operation.

After correctly connecting the dp cable of the hardware and the monitor, you can

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 6

6.1.4How to Add White

In the vivado project, a design file is added, and then right

design block diagram to choose to add a module, as shown in the figure

- 161 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 6-13 DP display link display result

6.1.4How to Add White Balance Module

In the vivado project, a design file is added, and then right-click in the block

design block diagram to choose to add a module, as shown in the figure

click in the block

design block diagram to choose to add a module, as shown in the figure

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 6

RTL module The way of adding here is added in block

position is after conversion to RGB format data. You can also choose to create a

new project, custom IP, and there are two custom IPs. The first chapter is the IP

defined by user logic, and the second is to define an AXI peripheral.

6.2 VCU

6.2.1VCU Basis Knowledge

The LogiCORE™ IP H.264/H.265 Video Codec Unit (VCU) core supports multi

standard videoencoding and decoding, including support for the high

Video Coding (HEVC) andAdvanced Video Coding (AVC) H.264 standards. The uni

contains both encode (compress) anddecode (decompress) functions, and is

capable of simultaneous encode and decode.

The VCU is an integrated block in the programmable logic (PL) of selected

Zynq UltraScale+MPSoCs with no direct connections to the process

(PS), and contains encoder anddecoder interfaces. The VCU also contains

additional functions that facilitate the interfacebetween the VCU and the PL. VCU

- 162 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 6-14 Block diagram of adding

RTL module The way of adding here is added in block design. The added

position is after conversion to RGB format data. You can also choose to create a

new project, custom IP, and there are two custom IPs. The first chapter is the IP

defined by user logic, and the second is to define an AXI peripheral.

6.2.1VCU Basis Knowledge

IP H.264/H.265 Video Codec Unit (VCU) core supports multi

standard videoencoding and decoding, including support for the high

Video Coding (HEVC) andAdvanced Video Coding (AVC) H.264 standards. The uni

contains both encode (compress) anddecode (decompress) functions, and is

capable of simultaneous encode and decode.

The VCU is an integrated block in the programmable logic (PL) of selected

Zynq UltraScale+MPSoCs with no direct connections to the process

(PS), and contains encoder anddecoder interfaces. The VCU also contains

additional functions that facilitate the interfacebetween the VCU and the PL. VCU

design. The added

position is after conversion to RGB format data. You can also choose to create a

new project, custom IP, and there are two custom IPs. The first chapter is the IP

defined by user logic, and the second is to define an AXI peripheral.

IP H.264/H.265 Video Codec Unit (VCU) core supports multi-

standard videoencoding and decoding, including support for the high-efficiency

Video Coding (HEVC) andAdvanced Video Coding (AVC) H.264 standards. The unit

contains both encode (compress) anddecode (decompress) functions, and is

The VCU is an integrated block in the programmable logic (PL) of selected

Zynq UltraScale+MPSoCs with no direct connections to the processing system

(PS), and contains encoder anddecoder interfaces. The VCU also contains

additional functions that facilitate the interfacebetween the VCU and the PL. VCU

MYS-ZU5EV_FPGA Development Manual V2.0.3

operation requires the application processing unit (APU) toservice interrupts to

coordinate data transfer. The encoder is controlled by the APU through atask list

prepared in advance, and the APU response time is not in the execution critical

path. TheVCU has no audio support. Audio encoding and decoding can be done

in software using the PSor th

the top-level block diagram with the VCUcore.

Figure 6

The encoder engine is designed to process video streams using the HEVC

(ISO/IEC 23008-2high-efficiency Video Coding) an

Advanced Video Coding) standards. Itprovides complete support for these

standards, including support for 8

4:2:0 and 4:2:2 Chroma formats, up to 4K UHD at 60 Hz performance. Theencoder

contains global registers, an interrupt controller, and a timer. The encoder is

controlledby a microcontroller (MCU) subsystem. VCU applications running on the

- 163 -

ZU5EV_FPGA Development Manual V2.0.3

operation requires the application processing unit (APU) toservice interrupts to

data transfer. The encoder is controlled by the APU through atask list

prepared in advance, and the APU response time is not in the execution critical

path. TheVCU has no audio support. Audio encoding and decoding can be done

in software using the PSor through soft IP in the PL. The following figure shows

level block diagram with the VCUcore.

Figure 6-15 Top-level block diagram

The encoder engine is designed to process video streams using the HEVC

efficiency Video Coding) and AVC (ISO/IEC 14496

Advanced Video Coding) standards. Itprovides complete support for these

standards, including support for 8-bit and 10-bit color, Y-only(monochrome),

4:2:0 and 4:2:2 Chroma formats, up to 4K UHD at 60 Hz performance. Theencoder

ins global registers, an interrupt controller, and a timer. The encoder is

controlledby a microcontroller (MCU) subsystem. VCU applications running on the

operation requires the application processing unit (APU) toservice interrupts to

data transfer. The encoder is controlled by the APU through atask list

prepared in advance, and the APU response time is not in the execution critical

path. TheVCU has no audio support. Audio encoding and decoding can be done

rough soft IP in the PL. The following figure shows

The encoder engine is designed to process video streams using the HEVC

d AVC (ISO/IEC 14496-10

Advanced Video Coding) standards. Itprovides complete support for these

only(monochrome),

4:2:0 and 4:2:2 Chroma formats, up to 4K UHD at 60 Hz performance. Theencoder

ins global registers, an interrupt controller, and a timer. The encoder is

controlledby a microcontroller (MCU) subsystem. VCU applications running on the

MYS-ZU5EV_FPGA Development Manual V2.0.3

APU use the Xilinx®VCU Control Software library API to interact with the encoder

microcontroller. Themicrocontroller firmware (MCU Firmware) is not user

modifiable.

A 32-bit AXI4-Lite interface is used by the APU to control the MCU (to

configure encodingparameters). Two 128

move video data and metadata toand from the

master interface is used to fetch the MCU software(instruction cache interface)

and load/store additional MCU data (data cache interface).

The Decoder block is capable of processing video streams using the HEVC

(ISO/IEC 23008-2High Efficiency Video Coding) and AVC (ISO/IEC 14496

Advanced Video Coding) standards.It provides a complete support for these

standards, including support for 8

(monochrome), 4:2:0 and 4:2:2 Chroma formats, up to 4K U

Hzperformance. It also contains global registers, an interrupt controller, and a

timer.

The VCU decoder is controlled by a microcontroller (MCU) subsystem. A 32

bit AXI4-Lite slaveinterface is used by the APU to control the MCU. Two 128

AXI4 master interfaces are used tomove video data and metadata to and from the

system memory. A 32-bit AXI4 master interfaceis used to fetch the MCU software

(instruction cache interface) and load/store additional MCUdata (data cache

interface). VCU applications

Software library API to interact with the decoder microcontroller. The

microcontroller firmware is not user modifiable.The decoder includes control

registers, a bridge unit and a set of internal memories. The

the request arbitration, burst addresses, and burst lengths for all external

memoryaccesses required by the decoder.

The encoder and decoder blocks each implement a 32

unit (MCU) to handleinteraction with the hardware

commands from the APU, parses thecommand into multiple slice

commands, and executes them on the encoder anddecoder blocks. After the

command is executed, the MCU communicates the status to the APUand the

process is repeated.

- 164 -

ZU5EV_FPGA Development Manual V2.0.3

APU use the Xilinx®VCU Control Software library API to interact with the encoder

microcontroller firmware (MCU Firmware) is not user

Lite interface is used by the APU to control the MCU (to

configure encodingparameters). Two 128-bit AXI4 master interfaces are used to

move video data and metadata toand from the system memory. A 32

master interface is used to fetch the MCU software(instruction cache interface)

and load/store additional MCU data (data cache interface).

The Decoder block is capable of processing video streams using the HEVC

2High Efficiency Video Coding) and AVC (ISO/IEC 14496

Advanced Video Coding) standards.It provides a complete support for these

standards, including support for 8-bit and 10-bit colordepth, Y-only

(monochrome), 4:2:0 and 4:2:2 Chroma formats, up to 4K UHD at 60

Hzperformance. It also contains global registers, an interrupt controller, and a

The VCU decoder is controlled by a microcontroller (MCU) subsystem. A 32

Lite slaveinterface is used by the APU to control the MCU. Two 128

aster interfaces are used tomove video data and metadata to and from the

bit AXI4 master interfaceis used to fetch the MCU software

(instruction cache interface) and load/store additional MCUdata (data cache

interface). VCU applications running on the APU use the Xilinx VCU Control

Software library API to interact with the decoder microcontroller. The

microcontroller firmware is not user modifiable.The decoder includes control

registers, a bridge unit and a set of internal memories. The bridgeunit manages

the request arbitration, burst addresses, and burst lengths for all external

memoryaccesses required by the decoder.

The encoder and decoder blocks each implement a 32-bit microcontroller

unit (MCU) to handleinteraction with the hardware blocks. The MCU receives

commands from the APU, parses thecommand into multiple slice

commands, and executes them on the encoder anddecoder blocks. After the

command is executed, the MCU communicates the status to the APUand the

APU use the Xilinx®VCU Control Software library API to interact with the encoder

microcontroller firmware (MCU Firmware) is not user

Lite interface is used by the APU to control the MCU (to

bit AXI4 master interfaces are used to

system memory. A 32-bit AXI4

master interface is used to fetch the MCU software(instruction cache interface)

The Decoder block is capable of processing video streams using the HEVC

2High Efficiency Video Coding) and AVC (ISO/IEC 14496-10

Advanced Video Coding) standards.It provides a complete support for these

only

HD at 60

Hzperformance. It also contains global registers, an interrupt controller, and a

The VCU decoder is controlled by a microcontroller (MCU) subsystem. A 32-

Lite slaveinterface is used by the APU to control the MCU. Two 128-bit

aster interfaces are used tomove video data and metadata to and from the

bit AXI4 master interfaceis used to fetch the MCU software

(instruction cache interface) and load/store additional MCUdata (data cache

running on the APU use the Xilinx VCU Control

Software library API to interact with the decoder microcontroller. The

microcontroller firmware is not user modifiable.The decoder includes control

bridgeunit manages

the request arbitration, burst addresses, and burst lengths for all external

bit microcontroller

blocks. The MCU receives

commands from the APU, parses thecommand into multiple slice- or tile-level

commands, and executes them on the encoder anddecoder blocks. After the

command is executed, the MCU communicates the status to the APUand the

MYS-ZU5EV_FPGA Development Manual V2.0.3

The VCU core is a dedicated circuitry located in the PL to enable maximum

flexibility for a wideselection of use cases, memory bandwidth being a key driver.

Whether the application requiressimultaneous 4K UHD at 60 Hz encoding and

decoding or a single SD stream to be processed, asystem design and memory

topology can be implemented that balances performance,optimization, and

integration for the specific use case. The following figure shows the use

caseexample where the VCU core works with the PS an

memory.

The typical clock frequencies for the target devices are described in the Zynq

UltraScale+ MPSoCData Sheet:

maximum achievable clockfrequency of the system can vary. The maximum

achievable clock frequency and all resourcecounts can be affected by other tool

options, additional logic in the device, using a differe

other factors.

The VCU supports simultaneous encoding and decoding up to 4K UHD

resolution at 60 Hz. Thisthroughput can be a single stream at 4K UHD or can be

divided into up to 32 smaller streams ofup to 480p at 30 Hz. Severa

- 165 -

ZU5EV_FPGA Development Manual V2.0.3

The VCU core is a dedicated circuitry located in the PL to enable maximum

flexibility for a wideselection of use cases, memory bandwidth being a key driver.

Whether the application requiressimultaneous 4K UHD at 60 Hz encoding and

ingle SD stream to be processed, asystem design and memory

topology can be implemented that balances performance,optimization, and

integration for the specific use case. The following figure shows the use

caseexample where the VCU core works with the PS and the PL DDR external

Figure 6-16 VCU Application

The typical clock frequencies for the target devices are described in the Zynq

UltraScale+ MPSoCData Sheet: DC and AC Switching Characteristics (DS925). The

maximum achievable clockfrequency of the system can vary. The maximum

achievable clock frequency and all resourcecounts can be affected by other tool

options, additional logic in the device, using a differentversion of Xilinx tools and

The VCU supports simultaneous encoding and decoding up to 4K UHD

resolution at 60 Hz. Thisthroughput can be a single stream at 4K UHD or can be

divided into up to 32 smaller streams ofup to 480p at 30 Hz. Severa

The VCU core is a dedicated circuitry located in the PL to enable maximum

flexibility for a wideselection of use cases, memory bandwidth being a key driver.

Whether the application requiressimultaneous 4K UHD at 60 Hz encoding and

ingle SD stream to be processed, asystem design and memory

topology can be implemented that balances performance,optimization, and

integration for the specific use case. The following figure shows the use

d the PL DDR external

The typical clock frequencies for the target devices are described in the Zynq

DC and AC Switching Characteristics (DS925). The

maximum achievable clockfrequency of the system can vary. The maximum

achievable clock frequency and all resourcecounts can be affected by other tool

ntversion of Xilinx tools and

The VCU supports simultaneous encoding and decoding up to 4K UHD

resolution at 60 Hz. Thisthroughput can be a single stream at 4K UHD or can be

divided into up to 32 smaller streams ofup to 480p at 30 Hz. Several combinations

MYS-ZU5EV_FPGA Development Manual V2.0.3

of one to 32 streams can be supported with differentresolutions provided the

cumulative throughput does not exceed 4K UHD at 60 Hz.

Streams of 4K UHD at 60 Hz consume significant amounts of the bandwidth

of the externalmemory interfaces and

AXI4 bus bandwidth betweenthe Processing System and the Programmable

Logic.For simultaneous encoder and decoder operation (including transcode use

cases), consider usingboth a Xilinx PS Memory Controller and dedicated

VCU Memory Controller.

The VCU core top-level signaling interface is shown in the following figure.

Figure 6-17

The following table summarizes the core interfaces

- 166 -

ZU5EV_FPGA Development Manual V2.0.3

of one to 32 streams can be supported with differentresolutions provided the

cumulative throughput does not exceed 4K UHD at 60 Hz.

Streams of 4K UHD at 60 Hz consume significant amounts of the bandwidth

of the externalmemory interfaces and significant amounts of the Arm® AMBA®

AXI4 bus bandwidth betweenthe Processing System and the Programmable

Logic.For simultaneous encoder and decoder operation (including transcode use

cases), consider usingboth a Xilinx PS Memory Controller and dedicated

level signaling interface is shown in the following figure.

17 VCU Core Top-Level Signaling Interface

The following table summarizes the core interfaces：

of one to 32 streams can be supported with differentresolutions provided the

Streams of 4K UHD at 60 Hz consume significant amounts of the bandwidth

significant amounts of the Arm® AMBA®

AXI4 bus bandwidth betweenthe Processing System and the Programmable

Logic.For simultaneous encoder and decoder operation (including transcode use

cases), consider usingboth a Xilinx PS Memory Controller and dedicated a Xilinx

level signaling interface is shown in the following figure.

Level Signaling Interface

MYS-ZU5EV_FPGA Development Manual V2.0.3

6.2.2 Experiment Logical

According to the basic knowledge of the VCU hard core, it is understood that

to use the codec function of the VCU hard core, the first need to have video data

input to the VCU, the video input path can be externally input through the HD

interface on the PL end, and then stored to the DDR on the PL end , And then

read the encoder interface input to the VCU from the DDR through the AXI4 bus,

and then write it into the DDR after the encoding is completed. The PS terminal is

only used as a simple control and communication with the MCU. The process of

using decoding is similar. Another way is to use the DDR on the PS side as storage,

because the AXI bus of the vcu can be in read and write mode. The PS side is the

control center for video enc

data transmission, but it occupies the DDR bandwidth resources and AXI bus

resources on the PS side. Either way, the data source of the VCU and the data

completed by encoding and decoding are stored in t

uses the PS terminal as a data access and control center for operation. The

specific project implementation plan is as follows:

The data read by the first VCU is from the DDR on the PS side, and the data

after the encoding is compl

The data decoded by the second VCU is the DDR from the PS side, and the

data after the decoding is completed is stored in the DDR on the PS side.

The data completed from the VCU encoding and decoding in the middl

pass through an axi register slice module.

The function of this module is to connect an AXI memory

device to an AXI memory-mapped slave device through a set of pipeline registers,

- 167 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 6-18,19 VCU Interfaces

Experiment Logical

According to the basic knowledge of the VCU hard core, it is understood that

to use the codec function of the VCU hard core, the first need to have video data

input to the VCU, the video input path can be externally input through the HD

interface on the PL end, and then stored to the DDR on the PL end , And then

read the encoder interface input to the VCU from the DDR through the AXI4 bus,

and then write it into the DDR after the encoding is completed. The PS terminal is

simple control and communication with the MCU. The process of

using decoding is similar. Another way is to use the DDR on the PS side as storage,

because the AXI bus of the vcu can be in read and write mode. The PS side is the

control center for video encoding and decoding, AXI bus interaction, control and

data transmission, but it occupies the DDR bandwidth resources and AXI bus

resources on the PS side. Either way, the data source of the VCU and the data

completed by encoding and decoding are stored in the DDR. This experiment

uses the PS terminal as a data access and control center for operation. The

specific project implementation plan is as follows:

The data read by the first VCU is from the DDR on the PS side, and the data

after the encoding is completed is stored in the DDR on the PS side.

The data decoded by the second VCU is the DDR from the PS side, and the

data after the decoding is completed is stored in the DDR on the PS side.

The data completed from the VCU encoding and decoding in the middl

pass through an axi register slice module.

The function of this module is to connect an AXI memory-mapped master

mapped slave device through a set of pipeline registers,

According to the basic knowledge of the VCU hard core, it is understood that

to use the codec function of the VCU hard core, the first need to have video data

input to the VCU, the video input path can be externally input through the HDMI

interface on the PL end, and then stored to the DDR on the PL end , And then

read the encoder interface input to the VCU from the DDR through the AXI4 bus,

and then write it into the DDR after the encoding is completed. The PS terminal is

simple control and communication with the MCU. The process of

using decoding is similar. Another way is to use the DDR on the PS side as storage,

because the AXI bus of the vcu can be in read and write mode. The PS side is the

oding and decoding, AXI bus interaction, control and

data transmission, but it occupies the DDR bandwidth resources and AXI bus

resources on the PS side. Either way, the data source of the VCU and the data

he DDR. This experiment

uses the PS terminal as a data access and control center for operation. The

The data read by the first VCU is from the DDR on the PS side, and the data

eted is stored in the DDR on the PS side.

The data decoded by the second VCU is the DDR from the PS side, and the

data after the decoding is completed is stored in the DDR on the PS side.

The data completed from the VCU encoding and decoding in the middle will

mapped master

mapped slave device through a set of pipeline registers,

MYS-ZU5EV_FPGA Development Manual V2.0.3

usually used to interrupt critical timing paths. Simil

Interconnect.

As for the internal structure of VCU, I will not introduce it in detail. Customers

can refer to the product documentation of VCU.

6.2.3 Experiment Steps

1，According to the "Hello world" basic configuration project in C

save a file and rename it project_fz5_vcu_707, which corresponds to

project_fz5_vcu_707.rar in the CD file.

2，Establish the data processing link at the PL end according to the above

solution. The configuration of each module is not described in d

configure it according to the actual situation in the project. As shown below.

Figure 6

1，Here is a detailed introduction to the clock system: the clock of the control

route is the 100MHz clock output from

required for VCU work varies according to the use. Here, the output clk_out2 from

the PLL is the 332MHz clock used by the VCU , Which is the input of the three

clocks of m_axi_mcu, m_axis_enc, and m_axi_dec. The re

33MHz, which is used as the reference clock input of the entire VCU, that is,

pll_ref_clk.

2，Regarding the data path: As can be seen from the block diagram of the

project, the VCU does not have a separate data input interface. It

directly from the memory DDR4. After the encoding or decoding is completed,

- 168 -

ZU5EV_FPGA Development Manual V2.0.3

usually used to interrupt critical timing paths. Similar to the role of AXI

As for the internal structure of VCU, I will not introduce it in detail. Customers

can refer to the product documentation of VCU.

According to the "Hello world" basic configuration project in C

save a file and rename it project_fz5_vcu_707, which corresponds to

project_fz5_vcu_707.rar in the CD file.

Establish the data processing link at the PL end according to the above

solution. The configuration of each module is not described in detail here, please

configure it according to the actual situation in the project. As shown below.

Figure 6-20 VCU BD design block diagram

Here is a detailed introduction to the clock system: the clock of the control

route is the 100MHz clock output from the PS side to the PL side, and the clock

required for VCU work varies according to the use. Here, the output clk_out2 from

the PLL is the 332MHz clock used by the VCU , Which is the input of the three

clocks of m_axi_mcu, m_axis_enc, and m_axi_dec. The reference clock of the PLL is

33MHz, which is used as the reference clock input of the entire VCU, that is,

Regarding the data path: As can be seen from the block diagram of the

project, the VCU does not have a separate data input interface. It

directly from the memory DDR4. After the encoding or decoding is completed,

ar to the role of AXI

As for the internal structure of VCU, I will not introduce it in detail. Customers

According to the "Hello world" basic configuration project in Chapter 3,

save a file and rename it project_fz5_vcu_707, which corresponds to

Establish the data processing link at the PL end according to the above

etail here, please

configure it according to the actual situation in the project. As shown below.

Here is a detailed introduction to the clock system: the clock of the control

the PS side to the PL side, and the clock

required for VCU work varies according to the use. Here, the output clk_out2 from

the PLL is the 332MHz clock used by the VCU , Which is the input of the three

ference clock of the PLL is

33MHz, which is used as the reference clock input of the entire VCU, that is,

Regarding the data path: As can be seen from the block diagram of the

project, the VCU does not have a separate data input interface. It reads data

directly from the memory DDR4. After the encoding or decoding is completed,

MYS-ZU5EV_FPGA Development Manual V2.0.3

the data is directly written to the DDR4, so that it can be It is confirmed that there

is a DDR4 SDRAM controller inside the VCU.

According to the official PG252, this

used for other purposes. After the project is completed, you can refer to the

content of the VCU part in the software usage document. There is a detailed

content introduction and operation details on the software PS s

6.3 Sections of this Chapter
This chapter mainly introduces the use of MIPI and some introductory

physical layer protocol knowledge. For further study, you need to view the

specialized physical layer protocol documents. The newly introduced knowledge

to add a custom RTL module, or create a new project to define an IP. Then add

the IP generation path to the MIPI project, so that we can embed our logic design

into the entire solution design process

- 169 -

ZU5EV_FPGA Development Manual V2.0.3

the data is directly written to the DDR4, so that it can be It is confirmed that there

is a DDR4 SDRAM controller inside the VCU.

According to the official PG252, this controller is customized and cannot be

used for other purposes. After the project is completed, you can refer to the

content of the VCU part in the software usage document. There is a detailed

content introduction and operation details on the software PS side

6.3 Sections of this Chapter
This chapter mainly introduces the use of MIPI and some introductory

physical layer protocol knowledge. For further study, you need to view the

specialized physical layer protocol documents. The newly introduced knowledge

to add a custom RTL module, or create a new project to define an IP. Then add

the IP generation path to the MIPI project, so that we can embed our logic design

into the entire solution design process。

the data is directly written to the DDR4, so that it can be It is confirmed that there

controller is customized and cannot be

used for other purposes. After the project is completed, you can refer to the

content of the VCU part in the software usage document. There is a detailed

ide.

This chapter mainly introduces the use of MIPI and some introductory

physical layer protocol knowledge. For further study, you need to view the

specialized physical layer protocol documents. The newly introduced knowledge is

to add a custom RTL module, or create a new project to define an IP. Then add

the IP generation path to the MIPI project, so that we can embed our logic design

MYS-ZU5EV_FPGA Development Manual V2.0.3

Chapter 7 How to Use Xilinx Official

7.1 User Guide
7.1.1How to Use “User Guide

In the design process, we usually encounter some problems, sometimes these

problems are because we don

configurations, so we need to check the user manual,

user manual The required information is the key. For example, we need to find out

the interface of PS-GTR and how to verify it.

Open a user manual as follows:

Figure 7-

After opening the user manual, you can see the contents in the catalog. Some

user manuals have less content, and some have more. If we need to find the

corresponding content quickly, we need the customer to have a certain English

reading ability, and then we will use

- 170 -

ZU5EV_FPGA Development Manual V2.0.3

Chapter 7 How to Use Xilinx Official
Information

User Guide”

In the design process, we usually encounter some problems, sometimes these

problems are because we don’t know the specific IP timing or some specific

configurations, so we need to check the user manual, how to quickly find us in the

user manual The required information is the key. For example, we need to find out

GTR and how to verify it.

Open a user manual as follows:

-1 Directory structure of xilinx user manual

ng the user manual, you can see the contents in the catalog. Some

user manuals have less content, and some have more. If we need to find the

corresponding content quickly, we need the customer to have a certain English

reading ability, and then we will use the corresponding search tool. Click next:

Chapter 7 How to Use Xilinx Official

In the design process, we usually encounter some problems, sometimes these

t know the specific IP timing or some specific

how to quickly find us in the

user manual The required information is the key. For example, we need to find out

1 Directory structure of xilinx user manual

ng the user manual, you can see the contents in the catalog. Some

user manuals have less content, and some have more. If we need to find the

corresponding content quickly, we need the customer to have a certain English

the corresponding search tool. Click next:

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 7

You can find the location of the PS

the interface of the link, and so on. Click Next again:

Figure 7

- 171 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 7-2 Jump to the specified chapter

You can find the location of the PS-GTR that appears in the block diagram,

the interface of the link, and so on. Click Next again:

Figure 7-3 Find the required interface jump

GTR that appears in the block diagram,

ce jump

MYS-ZU5EV_FPGA Development Manual V2.0.3

 See the corresponding level standard and the next place where PS

appears:

Figure 7-4 Find the chapter of high

In Chapter 13 of the document, click on the table of contents in Chapter 13 to

see what physical interfaces are using the PS

that you can find the corresponding introduction, and then use the document

finder to find Corresponding verification and debugging documents:

- 172 -

ZU5EV_FPGA Development Manual V2.0.3

See the corresponding level standard and the next place where PS

4 Find the chapter of high-speed bus interface

In Chapter 13 of the document, click on the table of contents in Chapter 13 to

see what physical interfaces are using the PS-GTR high-speed serial interface, so

that you can find the corresponding introduction, and then use the document

esponding verification and debugging documents:

See the corresponding level standard and the next place where PS-GTR

speed bus interface

In Chapter 13 of the document, click on the table of contents in Chapter 13 to

speed serial interface, so

that you can find the corresponding introduction, and then use the document

esponding verification and debugging documents:

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 7-5 DocNav search for PS

Figure 7-6 Find the corresponding document experiment

7.2 Product Guide

- 173 -

ZU5EV_FPGA Development Manual V2.0.3

5 DocNav search for PS-GTR filtering results

6 Find the corresponding document experiment-analyze the PS

link experiment

7.2 Product Guide

GTR filtering results

analyze the PS-GTR

MYS-ZU5EV_FPGA Development Manual V2.0.3

7.2.1 How to Use the “Product Guide

In the design process, we usually encounter some problems. Sometimes these

problems are because we are not clear about the specific IP timing or some

specific configurations. At this time, we need to read the corresponding IP

product manual to find information,

product manual, look at how this IP is configured to 4lane, physical layer protocol

configuration, and so on.

First find the product manual, as follows

You can see the corresponding introduction to this IP from the catalog,

including summary, physical layer structure block diagram, physical layer protocol

used, interface and timing, and IP configuration process, etc. You can find the

information we need.

7.3 Reference Design
7.3.1Reference Design for Vivado Project Usage

There are some development kits on the official website of xilinx, and the

corresponding development kits have also made some reference designs. These

reference designs are usually demos for a certain i

hardware modules are used. If you need to reproduce this demo If you need the

corresponding hardware environment, we generally just refer to it. For example,

some reference designs of the UltraScale+ MPSOC series are placed o

- 174 -

ZU5EV_FPGA Development Manual V2.0.3

Product Guide”

e design process, we usually encounter some problems. Sometimes these

problems are because we are not clear about the specific IP timing or some

specific configurations. At this time, we need to read the corresponding IP

product manual to find information, such as looking up MIPI -CSI2

product manual, look at how this IP is configured to 4lane, physical layer protocol

First find the product manual, as follows：

Figure 7-7 IP product manual

corresponding introduction to this IP from the catalog,

including summary, physical layer structure block diagram, physical layer protocol

used, interface and timing, and IP configuration process, etc. You can find the

Design
7.3.1Reference Design for Vivado Project Usage

There are some development kits on the official website of xilinx, and the

corresponding development kits have also made some reference designs. These

reference designs are usually demos for a certain interface or protocol, and some

hardware modules are used. If you need to reproduce this demo If you need the

corresponding hardware environment, we generally just refer to it. For example,

some reference designs of the UltraScale+ MPSOC series are placed o

e design process, we usually encounter some problems. Sometimes these

problems are because we are not clear about the specific IP timing or some

specific configurations. At this time, we need to read the corresponding IP

CSI2-Subsystem's

product manual, look at how this IP is configured to 4lane, physical layer protocol

corresponding introduction to this IP from the catalog,

including summary, physical layer structure block diagram, physical layer protocol

used, interface and timing, and IP configuration process, etc. You can find the

There are some development kits on the official website of xilinx, and the

corresponding development kits have also made some reference designs. These

nterface or protocol, and some

hardware modules are used. If you need to reproduce this demo If you need the

corresponding hardware environment, we generally just refer to it. For example,

some reference designs of the UltraScale+ MPSOC series are placed on Wikipedia

MYS-ZU5EV_FPGA Development Manual V2.0.3

at https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages

/444006775/Zynq+UltraScale+MPSoC;

Figure 7

After finding the corresponding reference design, download the

corresponding document, then open vivado, follow the introduction in the

readme of the downloaded reference design material, find the corresponding

engineering document Tcl document, and use the corresponding command to

reconstruct the vivado project under vivado:

- 175 -

ZU5EV_FPGA Development Manual V2.0.3

wiki.atlassian.net/wiki/spaces/A/pages

/444006775/Zynq+UltraScale+MPSoC;

Figure 7-8 download reference design

Figure 7-9 Find the reference design

After finding the corresponding reference design, download the

g document, then open vivado, follow the introduction in the

readme of the downloaded reference design material, find the corresponding

engineering document Tcl document, and use the corresponding command to

reconstruct the vivado project under vivado:

After finding the corresponding reference design, download the

g document, then open vivado, follow the introduction in the

readme of the downloaded reference design material, find the corresponding

engineering document Tcl document, and use the corresponding command to

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 7-10 Find the project generated by the practical tcl document of the

Then you can view some of the corresponding design ideas and actual

configurations in the project. The reference design can help us solve some

references to the IP configuration, IP module sequence, and clock in the design.

7.3Xilinx Community Forum

7.3.1 How to Ask Questions in the Community Forum

Regarding the use of the design

forums. The online time of xilinx technical support engineers is working hours,

and they usually don't work overtime to solve them. Of course, ask questions on it,

and sometimes enthusiastic netizens will give good

the same question, you can see how the predecessors solved similar problems.

 As follows

- 176 -

ZU5EV_FPGA Development Manual V2.0.3

10 Find the project generated by the practical tcl document of the

reference design

Then you can view some of the corresponding design ideas and actual

configurations in the project. The reference design can help us solve some

configuration, IP module sequence, and clock in the design.

7.3Xilinx Community Forum

7.3.1 How to Ask Questions in the Community Forum

Regarding the use of the design forum, you can ask questions like normal

forums. The online time of xilinx technical support engineers is working hours,

and they usually don't work overtime to solve them. Of course, ask questions on it,

and sometimes enthusiastic netizens will give good answers. Or if you search for

the same question, you can see how the predecessors solved similar problems.

10 Find the project generated by the practical tcl document of the

Then you can view some of the corresponding design ideas and actual

configurations in the project. The reference design can help us solve some

configuration, IP module sequence, and clock in the design.

forum, you can ask questions like normal

forums. The online time of xilinx technical support engineers is working hours,

and they usually don't work overtime to solve them. Of course, ask questions on it,

answers. Or if you search for

the same question, you can see how the predecessors solved similar problems.

MYS-ZU5EV_FPGA Development Manual V2.0.3

Figure 7

For example, we look for questions about 10GEthernet subsystem

Figure 7

We can see many questions and resolved questions about 10GEthernet

subsystem

- 177 -

ZU5EV_FPGA Development Manual V2.0.3

Figure 7-11 Community Forum Home Page

For example, we look for questions about 10GEthernet subsystem

Figure 7-12 Search for similar questions

We can see many questions and resolved questions about 10GEthernet

11 Community Forum Home Page

For example, we look for questions about 10GEthernet subsystem

We can see many questions and resolved questions about 10GEthernet

MYS-ZU5EV_FPGA Development Manual V2.0.3

chapter 8 Conclusion
8.1 Conclusion

This document gives some introductions to customers who use this

hardware platform, and briefly talks about some knowledge and pro

learning FPGA. Of course, there is more to learn, mainly in the following aspects:

1. Regarding the syntax of verilog, further in

further, system verilog can be studied systematically.

2. Regarding Tcl, for those engaged

a script tool is very helpful to improve work efficiency.

3. Regarding the knowledge of constraints, no specific engineering examples

are provided here to give an introduction. The space is limited. However, when

you refer to xilinx official documents on constraints and documents and sample

projects on timing closure, there should be a more in

4. For the knowledge of AXI bus, interface and protocol, it is recommended

to refer to the official ARM pr

5. Regarding the sample projects we have given, some are relatively simple

and some are more complicated. It is recommended that customers study

carefully. Finally, I hope that customers can gain something after studying this

document.

- 178 -

ZU5EV_FPGA Development Manual V2.0.3

chapter 8 Conclusion

This document gives some introductions to customers who use this

hardware platform, and briefly talks about some knowledge and pro

learning FPGA. Of course, there is more to learn, mainly in the following aspects:

Regarding the syntax of verilog, further in-depth study is needed, and

further, system verilog can be studied systematically.

Regarding Tcl, for those engaged in large and complex designs, mastering

a script tool is very helpful to improve work efficiency.

Regarding the knowledge of constraints, no specific engineering examples

are provided here to give an introduction. The space is limited. However, when

fer to xilinx official documents on constraints and documents and sample

projects on timing closure, there should be a more in-depth To understanding.

For the knowledge of AXI bus, interface and protocol, it is recommended

to refer to the official ARM protocol document.

Regarding the sample projects we have given, some are relatively simple

and some are more complicated. It is recommended that customers study

carefully. Finally, I hope that customers can gain something after studying this

This document gives some introductions to customers who use this

hardware platform, and briefly talks about some knowledge and problems about

learning FPGA. Of course, there is more to learn, mainly in the following aspects:

depth study is needed, and

in large and complex designs, mastering

Regarding the knowledge of constraints, no specific engineering examples

are provided here to give an introduction. The space is limited. However, when

fer to xilinx official documents on constraints and documents and sample

depth To understanding.

For the knowledge of AXI bus, interface and protocol, it is recommended

Regarding the sample projects we have given, some are relatively simple

and some are more complicated. It is recommended that customers study

carefully. Finally, I hope that customers can gain something after studying this

MYS-ZU5EV_FPGA Development Manual V2.0.3

Reference

 Official Xilinx WiKi: https://xilinx

 DocNav Finder 

 ds891-zynq-ultrascale-plus

 ug1137-zynq-ultrascale

 ug1085-zynq-ultrascale

 Verilog User Manual 

 MYS-ZU5EV schematic diagram

 MYS-ZU5EV hardware manual

 Little Mei Ge FPGA Tutorial

 Wei San Academy FPGA Tutorial

 Wu Houhang. Learning FPGA in simple language[M]. Beijing University of

Aeronautics and Astronautics Press, 2013.

 Xia Yuwen. Verilog Digital System De

University of Aeronautics and Astronautics Press, 2013.

 Han Bin, Yu Xiaoyu, Zhang Leiming. FPGA design skills and case development

detailed explanation[M]. Publishing House of Electronics Industry, 2014.

 TclTk Introduction Classic_Second Edition_Chinese.pdf

 Vivado Design Suite User GuideDesign Analysis and Closure Techniques.pdf

 Vivado Design Suite UserGuideUsing Tcl Scripting.pdf

 Vivado Design Suite User GuideUsing Constraints

 Vivado Design Suite User

- 179 -

ZU5EV_FPGA Development Manual V2.0.3

Official Xilinx WiKi: https://xilinx-wiki.atlassian.net/wiki/home

plus-overview.pdf 

ultrascale-mpsoc-swdev.pdf 

ultrascale-trm.pdf 



atic diagram 

ZU5EV hardware manual 

Little Mei Ge FPGA Tutorial 

Wei San Academy FPGA Tutorial 

Wu Houhang. Learning FPGA in simple language[M]. Beijing University of

Aeronautics and Astronautics Press, 2013. 

Xia Yuwen. Verilog Digital System Design Tutorial. 3rd Edition [M]. Beijing

University of Aeronautics and Astronautics Press, 2013. 

Han Bin, Yu Xiaoyu, Zhang Leiming. FPGA design skills and case development

detailed explanation[M]. Publishing House of Electronics Industry, 2014.

troduction Classic_Second Edition_Chinese.pdf 

Vivado Design Suite User GuideDesign Analysis and Closure Techniques.pdf

Vivado Design Suite UserGuideUsing Tcl Scripting.pdf 

Vivado Design Suite User GuideUsing Constraints 

Vivado Design Suite UserGuideRelease Notes, Installation, andLicensing

wiki.atlassian.net/wiki/home 

Wu Houhang. Learning FPGA in simple language[M]. Beijing University of

sign Tutorial. 3rd Edition [M]. Beijing

Han Bin, Yu Xiaoyu, Zhang Leiming. FPGA design skills and case development

detailed explanation[M]. Publishing House of Electronics Industry, 2014. 

Vivado Design Suite User GuideDesign Analysis and Closure Techniques.pdf

GuideRelease Notes, Installation, andLicensing 

MYS-ZU5EV_FPGA Development Manual V2.0.3

 Vivado Design Suite TutorialUsing Constraints

 Timing Closure User Guide

 AXI4-Stream Video IP and System Design Guide

- 180 -

ZU5EV_FPGA Development Manual V2.0.3

Vivado Design Suite TutorialUsing Constraints 

Timing Closure User Guide 

Stream Video IP and System Design Guide

MYS-ZU5EV_FPGA Development Manual V2.0.3

Appendix A

Warranty & Technical Support Services

MYIR Electronics Limited is a global provider of ARM hardware and software tools, design

solutions for embedded applications. We support our customers in a wide range of services

to accelerate your time to market.

MYIR is an ARM Connected Community Member and work closely with A

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

prototype, and system integration or creating your own applications. Our

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has an

experienced team and provides custom design services based on A

customers make your idea a reality.

The contents below introduce to customers the warranty and technical support services

provided by MYIR as well as the matters needing attention in using MYIR

Service Guarantee

MYIR regards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

packaging, shipping and other aspects and strive to provide products with best

customers. We believe that only quality products and excellent services can ensure the long

term cooperation and mutual benefit.

Price

MYIR insists on providing customers with the most valuable products. We do not pursue

excess profits which we think only for short

- 181 -

ZU5EV_FPGA Development Manual V2.0.3

Warranty & Technical Support Services

is a global provider of ARM hardware and software tools, design

solutions for embedded applications. We support our customers in a wide range of services

to accelerate your time to market.
MYIR is an ARM Connected Community Member and work closely with ARM and many

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

prototype, and system integration or creating your own applications. Our

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has an

experienced team and provides custom design services based on ARM processors to help

customers make your idea a reality.
The contents below introduce to customers the warranty and technical support services

provided by MYIR as well as the matters needing attention in using MYIR’

gards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

packaging, shipping and other aspects and strive to provide products with best

customers. We believe that only quality products and excellent services can ensure the long

term cooperation and mutual benefit.

MYIR insists on providing customers with the most valuable products. We do not pursue

e think only for short-time cooperation. Instead, we hope to establish

Warranty & Technical Support Services

is a global provider of ARM hardware and software tools, design

solutions for embedded applications. We support our customers in a wide range of services

RM and many

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

prototype, and system integration or creating your own applications. Our products are used

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has an

RM processors to help

The contents below introduce to customers the warranty and technical support services

’s products.

gards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

packaging, shipping and other aspects and strive to provide products with best quality to

customers. We believe that only quality products and excellent services can ensure the long-

MYIR insists on providing customers with the most valuable products. We do not pursue

time cooperation. Instead, we hope to establish

MYS-ZU5EV_FPGA Development Manual V2.0.3

long-term cooperation and win

prices in the hope of making the business greater with the customers together hand in hand.

Delivery Time

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

quantity is greater than the number of inventory, the deliver

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

in advance.
Technical Support

MYIR has a professional technical support team. Customer can contact us by email

(support@myirtech.com), we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

production.
After-sale Service

MYIR offers one year free technical support and after

purchase date. The service covers:

Technical support service

MYIR offers technical support for the hardware and software materials which have provided

to customers:
 To help customers compile and run the source code we offer;

 To help customers solve problems occurred during operations if users follow the user

manual documents;
 To judge whether the failure exists;

 To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical support

service:

- 182 -

ZU5EV_FPGA Development Manual V2.0.3

term cooperation and win-win business with customers. So we will offer reasonable

prices in the hope of making the business greater with the customers together hand in hand.

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

quantity is greater than the number of inventory, the delivery time would be always four to six

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

MYIR has a professional technical support team. Customer can contact us by email

ech.com), we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

MYIR offers one year free technical support and after-sales maintenance service from the

purchase date. The service covers:

MYIR offers technical support for the hardware and software materials which have provided

To help customers compile and run the source code we offer;
To help customers solve problems occurred during operations if users follow the user

To judge whether the failure exists;
To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical support

win business with customers. So we will offer reasonable

prices in the hope of making the business greater with the customers together hand in hand.

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

y time would be always four to six

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

MYIR has a professional technical support team. Customer can contact us by email

ech.com), we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

intenance service from the

MYIR offers technical support for the hardware and software materials which have provided

To help customers solve problems occurred during operations if users follow the user

However, the following situations are not included in the scope of our free technical support

MYS-ZU5EV_FPGA Development Manual V2.0.3

 Hardware or software problems occurred during customers

 Problems occurred when customers compile or run the OS which is tailored by t

 Problems occurred during customers

 Problems occurred during the modification of MYIR

After-sales maintenance service

The products except LCD, which are not used properly, will take the t

maintenance service since the purchase date. But following situations are not included in the

scope of our free maintenance service:

 The warranty period is expired;

 The customer cannot provide proof

 The customer has not followed the instruction of the manual which has caused the damage

the product;

 Due to the natural disasters (unexpected matters), or natural attrition of the components, or

unexpected matters leads the defects of appeara

 Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards,

all those reasons which have caused the damage of the products or defects of appearance;

 Due to unauthorized weld or dismantle parts or repair the

damage of the products or defects of appearance;

 Due to unauthorized installation of the software, system or incorrect configuration or

computer virus which has caused the damage of products.

Warm tips

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the

LCD when receiving the goods. In case the LCD cannot run or no display, customer should

contact MYIR within 7 business days from the moment get the goods.

2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.

- 183 -

ZU5EV_FPGA Development Manual V2.0.3

Hardware or software problems occurred during customers’ own development;

Problems occurred when customers compile or run the OS which is tailored by t

Problems occurred during customers’ own applications development;

Problems occurred during the modification of MYIR’s software source code.

sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free

maintenance service since the purchase date. But following situations are not included in the

scope of our free maintenance service:
The warranty period is expired;

The customer cannot provide proof-of-purchase or the product has no ser

The customer has not followed the instruction of the manual which has caused the damage

Due to the natural disasters (unexpected matters), or natural attrition of the components, or

unexpected matters leads the defects of appearance/function;

Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards,

all those reasons which have caused the damage of the products or defects of appearance;

Due to unauthorized weld or dismantle parts or repair the products which has caused the

damage of the products or defects of appearance;

Due to unauthorized installation of the software, system or incorrect configuration or

computer virus which has caused the damage of products.

y maintenance service to LCD. We suggest the customer first check the

LCD when receiving the goods. In case the LCD cannot run or no display, customer should

contact MYIR within 7 business days from the moment get the goods.
ils or hard sharp object to touch the surface of the LCD.

own development;

Problems occurred when customers compile or run the OS which is tailored by themselves;

own applications development;

s software source code.

welve months free

maintenance service since the purchase date. But following situations are not included in the

purchase or the product has no serial number;

The customer has not followed the instruction of the manual which has caused the damage

Due to the natural disasters (unexpected matters), or natural attrition of the components, or

Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards,

all those reasons which have caused the damage of the products or defects of appearance;

products which has caused the

Due to unauthorized installation of the software, system or incorrect configuration or

y maintenance service to LCD. We suggest the customer first check the

LCD when receiving the goods. In case the LCD cannot run or no display, customer should

ils or hard sharp object to touch the surface of the LCD.

MYS-ZU5EV_FPGA Development Manual V2.0.3

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

please avoid clean the surface with fingers or hands to leave fingerprint.

4. Do not clean the surface of the screen with chemicals.

5. Please read through the product user manual before you using MYIR

6. For any maintenance service, customers should communicate with MYIR to confirm the

issue first. MYIR’s support team will judge the failure

for repair service, we will issue you RMA number for return maintenance service after

confirmation.
Maintenance period and charges

 MYIR will test the products within three days after receipt

customer the testing result. Then we will arrange shipment within one week for the repaired

goods to the customer. For any special failure, we will negotiate with customers to confirm

the maintenance period.

 For products within warranty period and caused by quality problem, MYIR offers free

maintenance service; for products within warranty period but out of free maintenance

service scope, MYIR provides maintenance service but shall charge some basic material cost;

for products out of warranty period, MYIR provides maintenance service but shall charge

some basic material cost and handling fee.

Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be responsible

by user; MYIR will pay for the return shipping cost to users when the product is repaired. If

the warranty period is expired, all the shipping cost will be responsible by users.

Products Life Cycle

MYIR will always select mainstream chips for our design, thus to ensure at least t

continuous supply; if meeting some main chip stopping production, we will inform customers

in time and assist customers with products updating and upgrading.

- 184 -

ZU5EV_FPGA Development Manual V2.0.3

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

please avoid clean the surface with fingers or hands to leave fingerprint.
e of the screen with chemicals.

5. Please read through the product user manual before you using MYIR’s products.

6. For any maintenance service, customers should communicate with MYIR to confirm the

s support team will judge the failure to see if the goods need to be returned

for repair service, we will issue you RMA number for return maintenance service after

Maintenance period and charges

MYIR will test the products within three days after receipt of the returned goods and inform

customer the testing result. Then we will arrange shipment within one week for the repaired

goods to the customer. For any special failure, we will negotiate with customers to confirm

ithin warranty period and caused by quality problem, MYIR offers free

maintenance service; for products within warranty period but out of free maintenance

service scope, MYIR provides maintenance service but shall charge some basic material cost;

cts out of warranty period, MYIR provides maintenance service but shall charge

some basic material cost and handling fee.

During the warranty period, the shipping cost which delivered to MYIR should be responsible

the return shipping cost to users when the product is repaired. If

the warranty period is expired, all the shipping cost will be responsible by users.

MYIR will always select mainstream chips for our design, thus to ensure at least t

continuous supply; if meeting some main chip stopping production, we will inform customers

in time and assist customers with products updating and upgrading.

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

s products.
6. For any maintenance service, customers should communicate with MYIR to confirm the

to see if the goods need to be returned

for repair service, we will issue you RMA number for return maintenance service after

of the returned goods and inform

customer the testing result. Then we will arrange shipment within one week for the repaired

goods to the customer. For any special failure, we will negotiate with customers to confirm

ithin warranty period and caused by quality problem, MYIR offers free

maintenance service; for products within warranty period but out of free maintenance

service scope, MYIR provides maintenance service but shall charge some basic material cost;

cts out of warranty period, MYIR provides maintenance service but shall charge

During the warranty period, the shipping cost which delivered to MYIR should be responsible

the return shipping cost to users when the product is repaired. If

the warranty period is expired, all the shipping cost will be responsible by users.

MYIR will always select mainstream chips for our design, thus to ensure at least ten years

continuous supply; if meeting some main chip stopping production, we will inform customers

MYS-ZU5EV_FPGA Development Manual V2.0.3

Value-added Services

1. MYIR provides services of driver development base on MYIR

USB, Ethernet, LCD, etc.
2. MYIR provides the services of OS porting, BSP drivers

development, etc.
3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

4. ODM/OEM services.
MYIR Electronics Limited
Room 04, 6th Floor, Building No.2, Fada Road,

Yunli Inteiligent Park, Bantian, Longgang District.

Support Email: support@myirtech.com

Sales Email: sales@myirtech.com

Phone: +86-755-22984836
Fax: +86-755-25532724
Website: www.myirtech.com

- 185 -

ZU5EV_FPGA Development Manual V2.0.3

1. MYIR provides services of driver development base on MYIR’s products, like serial port,

2. MYIR provides the services of OS porting, BSP drivers’ development, API software

3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

Room 04, 6th Floor, Building No.2, Fada Road,
Yunli Inteiligent Park, Bantian, Longgang District.
Support Email: support@myirtech.com
Sales Email: sales@myirtech.com

ducts, like serial port,

development, API software

3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

