
MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Linux Development Guide

File Status：

[] Draft

[√] Release

VERSION

AUTHOR

CREATED

UPDATED

Copyright © MYIR Electronics Limited 2011

L5.4.0_V1.11

 - 1 -

MYS-ZU5EV

Development Guide

FILE ID： MYIR-MYS-ZU5EV-SW-DG-EN

VERSION： V1.11

AUTHOR： Fengyong

CREATED： 2021-05-25

UPDATED： 2021-05-25

Copyright © MYIR Electronics Limited 2011-2020 all rights reserved.

Development Guide

EN-L5.4.0

2020 all rights reserved.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Revision History

VERSION AUTHOR

V1.10 Fengyong

V1.11 Fengyong

L5.4.0_V1.11

 - 2 -

Revision History

AUTHOR PARTICIPANT DATE DESCRIPTION

 20210525 Initial version for MYS

 20210721 Add vcu example

DESCRIPTION

Initial version for MYS-ZU5EV

vcu example

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

MYS-ZU5EV

Linux Development Guide

Revision History

CONTENT................................

1. Overview

1.1. Software resources

1.2. Document resources

2. Development environment

2.1. Development host environment

2.2. Introduction to software development tools

2.3. Install Petalinux tool

2.4. Install MYIR's custom

3. Use Petalinux to build images

3.1. Introduction

3.2. Get the source code

3.2.1. Get the source compression package from the CD

3.2.2. Get the source code via github

3.3. Quickly compile images

3.4. Build SDK

4. How to burn the system image

4.1. Make an SD card launcher

4.2. Make an SD card burner

5. How to modify the BSP

5.1. Petalinux bsp introduction

5.2. Board-level support package introduction

L5.4.0_V1.11

 - 3 -

CONTENT

..

Linux Development Guide ..

..

...

..

1.1. Software resources ..

1.2. Document resources ..

2. Development environment ..

elopment host environment ..

2.2. Introduction to software development tools

2.3. Install Petalinux tool ..

2.4. Install MYIR's custom SDK ..

3. Use Petalinux to build images ..

..

3.2. Get the source code ..

3.2.1. Get the source compression package from the CD

3.2.2. Get the source code via github ..

3.3. Quickly compile images ...

..

4. How to burn the system image ..

4.1. Make an SD card launcher ..

4.2. Make an SD card burner ...

5. How to modify the BSP ..

5.1. Petalinux bsp introduction ..

level support package introduction ...

... - 1 -

.. - 1 -

... - 2 -

............................. - 3 -

... - 6 -

..................................... - 6 -

.................................. - 7 -

.. - 8 -

... - 8 -

.. - 9 -

................................... - 9 -

... - 10 -

..................................... - 12 -

... - 12 -

................................. - 12 -

............................. - 12 -

................................. - 12 -

........................... - 13 -

.. - 13 -

................................... - 15 -

... - 15 -

......................... - 18 -

... - 21 -

... - 21 -

........................... - 26 -

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

5.3. On-board u-boot compilation and update

5.3.1. Compile u-boot under the petalinux project

5.3.2. How to update the Boot.bin separately

5.4. On-board Kernel compilation and update

5.4.1. Compile Kernel under the Petalinux project

5.4.2. How to update Kernel separately

5.5. Under the petalinux project to build the BSP software of the new FPGA project

31 -

6. How to fit your hardware platform

6.1. How to create your device tree

6.1.1. Onboard device tree

6.1.2. The addition of the device tree

6.2. How to configure CPU fu

6.2.1. The method of the GPIO pin configuration

6.2.2. GPIO is defined in the device tree

6.3. How to use your own configured pins

6.3.1. User space uses GPIO pins

7. Linux application example of FPGA PL function

7.1. Implementation process of petalinux software in Axi uartlite

8. How to add your app

8.1. Makefile based applications

8.2. Qt-based apps

8.3. The application starts from boot

8.4. Application examples

8.4.1. CAN application example

8.4.2. I2C application example

8.4.3. Network application example

8.4.4. Uart application example

8.4.5. Framebuffer application example

8.4.6. HDMIin application example

8.4.7. MIPI camera application example

L5.4.0_V1.11

 - 4 -

boot compilation and update ..

boot under the petalinux project

5.3.2. How to update the Boot.bin separately

board Kernel compilation and update ...

5.4.1. Compile Kernel under the Petalinux project

5.4.2. How to update Kernel separately ...

5.5. Under the petalinux project to build the BSP software of the new FPGA project

6. How to fit your hardware platform ..

How to create your device tree ..

6.1.1. Onboard device tree ..

6.1.2. The addition of the device tree ..

6.2. How to configure CPU function pins based on your hardware

6.2.1. The method of the GPIO pin configuration

6.2.2. GPIO is defined in the device tree ...

6.3. How to use your own configured pins ..

6.3.1. User space uses GPIO pins ..

7. Linux application example of FPGA PL function

7.1. Implementation process of petalinux software in Axi uartlite

...

ile based applications ..

..

8.3. The application starts from boot ..

8.4. Application examples ...

8.4.1. CAN application example..

8.4.2. I2C application example ..

8.4.3. Network application example ..

8.4.4. Uart application example ..

8.4.5. Framebuffer application example ...

8.4.6. HDMIin application example ..

8.4.7. MIPI camera application example ..

............................ - 27 -

... - 27 -

... - 28 -

........................... - 29 -

.. - 29 -

............................. - 29 -

5.5. Under the petalinux project to build the BSP software of the new FPGA project -

.............................. - 39 -

.. - 39 -

.. - 39 -

................................. - 40 -

nction pins based on your hardware - 43 -

.. - 43 -

........................... - 43 -

.................................. - 45 -

...................................... - 45 -

..................................... - 58 -

.......................... - 58 -

..................... - 71 -

... - 71 -

... - 75 -

.. - 76 -

............................... - 89 -

... - 89 -

... - 89 -

.................................... - 90 -

... - 91 -

............................. - 91 -

..................................... - 92 -

............................ - 92 -

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

8.4.8. VCU application example

9. Reference................................

Appendix A

Warranty & Technical Support Services

L5.4.0_V1.11

 - 5 -

8.4.8. VCU application example..

..

..

upport Services ..

... - 93 -

... - 98 -

... - 99 -

...................................... - 99 -

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

1. Overview
We have many open source system building frameworks on Linux system

platform that facilitate the construction and custom

systems by developers, and on Xilinix's zynqMP platform, there are now more

common buildroot, Petalinux and so on. The Petalinux project uses a more

powerful and customized approach to build Linux systems for embedded

products. It's not just a tool for making file systems, it also provides a complete

Linux-based development and maintenance workflow that enables underlying

embedded and upper-level application developers to develop within a unified

framework.

This article focuses on the complete process of customizing a complete

embedded Linux system based on petalinux projects and M

including the preparation of the development environment, the acquisition of

code, and how to perform Bootloader, Kernel porting, custom ro

application needs, and more. We first looked at how to build a system image for

MYS-ZU5EV board based on the source code we provided, and how to burn the

built image to the board. For those users who develop projects based on

ZU5EV core boards, we highlight the methods and key points of porting this

system to the user's hardware platform, and through some actual BSP migration

cases and Rootfs custom cases, users can quickly customize the system image

that is appropriate for their hardware

This document does not cover petalinux projects and the basics of Linux systems,

and is intended for embedded Linux system developers with some development

experience.

1.1. Software resources

MYS-ZU5EV features a Linux 5.4.0

other software resources. The development board comes with the cross

compilation tool chain, U-boot source code, source code of linux kernel and each

drive module, application development samples, etc. needed for embedded Linux

system development. For specific software information, please refer to the

instructions in Chapter 2 of the

L5.4.0_V1.11

 - 6 -

We have many open source system building frameworks on Linux system

platform that facilitate the construction and custom development of embedded

systems by developers, and on Xilinix's zynqMP platform, there are now more

common buildroot, Petalinux and so on. The Petalinux project uses a more

powerful and customized approach to build Linux systems for embedded

not just a tool for making file systems, it also provides a complete

based development and maintenance workflow that enables underlying

level application developers to develop within a unified

e complete process of customizing a complete

embedded Linux system based on petalinux projects and MYIR Core Boards,

including the preparation of the development environment, the acquisition of

code, and how to perform Bootloader, Kernel porting, custom ro

application needs, and more. We first looked at how to build a system image for

ZU5EV board based on the source code we provided, and how to burn the

built image to the board. For those users who develop projects based on

boards, we highlight the methods and key points of porting this

system to the user's hardware platform, and through some actual BSP migration

cases and Rootfs custom cases, users can quickly customize the system image

that is appropriate for their hardware.

This document does not cover petalinux projects and the basics of Linux systems,

and is intended for embedded Linux system developers with some development

Software resources

ZU5EV features a Linux 5.4.0-based operating system with rich s

other software resources. The development board comes with the cross

boot source code, source code of linux kernel and each

drive module, application development samples, etc. needed for embedded Linux

. For specific software information, please refer to the

instructions in Chapter 2 of the “MYS-ZU5EV_SDK Release Notes

We have many open source system building frameworks on Linux system

development of embedded

systems by developers, and on Xilinix's zynqMP platform, there are now more

common buildroot, Petalinux and so on. The Petalinux project uses a more

powerful and customized approach to build Linux systems for embedded

not just a tool for making file systems, it also provides a complete

based development and maintenance workflow that enables underlying

level application developers to develop within a unified

e complete process of customizing a complete

Core Boards,

including the preparation of the development environment, the acquisition of

code, and how to perform Bootloader, Kernel porting, custom rootfs for their

application needs, and more. We first looked at how to build a system image for

ZU5EV board based on the source code we provided, and how to burn the

built image to the board. For those users who develop projects based on MYS-

boards, we highlight the methods and key points of porting this

system to the user's hardware platform, and through some actual BSP migration

cases and Rootfs custom cases, users can quickly customize the system image

This document does not cover petalinux projects and the basics of Linux systems,

and is intended for embedded Linux system developers with some development

based operating system with rich system and

other software resources. The development board comes with the cross-

boot source code, source code of linux kernel and each

drive module, application development samples, etc. needed for embedded Linux

. For specific software information, please refer to the

SDK Release Notes”.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

1.2. Document resources

Depending on the stages of the user's use of the board, the SDK includes

different categories of documentation and m

getting started guides, evaluation guides, development guides, application notes,

FPGA development manuals, etc. The specific documentation list refers to the

instructions in Table 2-4 of the

L5.4.0_V1.11

 - 7 -

Document resources

Depending on the stages of the user's use of the board, the SDK includes

different categories of documentation and manuals, such as release instructions,

getting started guides, evaluation guides, development guides, application notes,

FPGA development manuals, etc. The specific documentation list refers to the

4 of the “MYS-ZU5EV_SDK Release Notes

Depending on the stages of the user's use of the board, the SDK includes

anuals, such as release instructions,

getting started guides, evaluation guides, development guides, application notes,

FPGA development manuals, etc. The specific documentation list refers to the

es”.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

2. Development environment
This chapter mainly introduces some hardware and software environments

required by MYS-ZU5EV development board in the development process,

including the necessary development host environment, necessary software tools,

code and data acquisition, etc

2.1. Development host environment

This section describes how to build a development environment for the zynqMP

family of processor platforms. By reading this section, you will learn about the

installation and use of relevant hardware

debugging tools. And can quickly build the relevant development environment,

for the later development and commissioning preparation. The zynqMP family of

processors consists of 4 ARM Cortex A53 cores and 2 ARM Cortex R5 cor

 Host hardware

Petalinux construction of the project requires a higher requirement for the

development host, requiring the processor to have a 2GHz CPU above Pentium4,

more than 8GB of memory, 100GB hard drive or higher configuration. You can be

the host of a Linux system or a virtual machine running a Linux system

 Host operating system

Build the host operating system for the Petalinux project, here is recommended

for the Ubuntu 16.04 64bit desktop version of the system, the subsequent

development is also used as an example of this system

 Install necessary software package

sudo apt-get install tofrodos iproute2 gawk

sudo apt-get install gcc git make

sudo apt-get install xvfb

sudo apt-get install net-tools libncurses5

sudo apt-get install zlib1g

sudo apt-get flex bison libselinux1

sudo apt-get install gnupgwgetdiffstatchrpathsocatxterm

#sudo apt-get install autoconflibtool tar unzip texinfo

L5.4.0_V1.11

 - 8 -

elopment environment
This chapter mainly introduces some hardware and software environments

ZU5EV development board in the development process,

including the necessary development host environment, necessary software tools,

and data acquisition, etc.

Development host environment

This section describes how to build a development environment for the zynqMP

family of processor platforms. By reading this section, you will learn about the

installation and use of relevant hardware tools, software development and

debugging tools. And can quickly build the relevant development environment,

for the later development and commissioning preparation. The zynqMP family of

processors consists of 4 ARM Cortex A53 cores and 2 ARM Cortex R5 cor

construction of the project requires a higher requirement for the

development host, requiring the processor to have a 2GHz CPU above Pentium4,

more than 8GB of memory, 100GB hard drive or higher configuration. You can be

t of a Linux system or a virtual machine running a Linux system

Build the host operating system for the Petalinux project, here is recommended

for the Ubuntu 16.04 64bit desktop version of the system, the subsequent

so used as an example of this system.

Install necessary software package

install tofrodos iproute2 gawk

install gcc git make

tools libncurses5-dev tftpd

install zlib1g-dev zlib1g-dev:i386 libssl-dev

flex bison libselinux1

install gnupgwgetdiffstatchrpathsocatxterm

install autoconflibtool tar unzip texinfo

This chapter mainly introduces some hardware and software environments

ZU5EV development board in the development process,

including the necessary development host environment, necessary software tools,

This section describes how to build a development environment for the zynqMP

family of processor platforms. By reading this section, you will learn about the

tools, software development and

debugging tools. And can quickly build the relevant development environment,

for the later development and commissioning preparation. The zynqMP family of

processors consists of 4 ARM Cortex A53 cores and 2 ARM Cortex R5 cores.

construction of the project requires a higher requirement for the

development host, requiring the processor to have a 2GHz CPU above Pentium4,

more than 8GB of memory, 100GB hard drive or higher configuration. You can be

t of a Linux system or a virtual machine running a Linux system.

Build the host operating system for the Petalinux project, here is recommended

for the Ubuntu 16.04 64bit desktop version of the system, the subsequent

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

sudo apt–get zlib1g-dev gcc

sudo apt-get libsdl1.2-dev libglib2.0

sudo apt-get install screen pax gzip tar

 Confirm sh as bash

Make sure that the default sh is bash, and if you don't point to bash, some of the

actions in the following sections will be affected

Follow the command below to view the sh

ls -al /bin/sh

/bin/sh -> dash

If sh points to dash, you need to change it to bash

sudo dpkg-reconfigure dash

ls -al /bin/sh

/bin/sh ->bash

Confirmation is a point to bash before you can proceed to the contents of

subsequent chapters.

2.2. Introduction to software development tools

Many debugging, burning tools are used in customizing linux systems for the core

of ARM Cortex A53, some of which are available under the

provided by MYIR, in addition to the

below：

petalinux-v2020.1-final-installer.ru

This is the installation tool of petalinux, installed petalinux tool, you can build

petalinux software system.

Download Link：https://www.xilinx.com/support/download.html

2.3. Install Petalinux

Be sure to install the petalinux tool with non

command below to install petalinux2020.1. During installation, there will be

prompts such as PetaLinux User License Agreement (EULA) that you need to press

the keyboard "q" and then press "y" for agreement license confirmation. The use

in this article <WORKDIR>to represent a working directory on the host, such as

L5.4.0_V1.11

 - 9 -

dev gcc-multilibbuild-essential

dev libglib2.0-dev

install screen pax gzip tar

Make sure that the default sh is bash, and if you don't point to bash, some of the

actions in the following sections will be affected.

mand below to view the sh

If sh points to dash, you need to change it to bash

reconfigure dash

Confirmation is a point to bash before you can proceed to the contents of

Introduction to software development tools

Many debugging, burning tools are used in customizing linux systems for the core

of ARM Cortex A53, some of which are available under the CD directory 03

, in addition to the following tools, which are briefly described

installer.run

This is the installation tool of petalinux, installed petalinux tool, you can build

https://www.xilinx.com/support/download.html

 tool

Be sure to install the petalinux tool with non-root permissions. Follow the

command below to install petalinux2020.1. During installation, there will be

etaLinux User License Agreement (EULA) that you need to press

the keyboard "q" and then press "y" for agreement license confirmation. The use

in this article <WORKDIR>to represent a working directory on the host, such as

Make sure that the default sh is bash, and if you don't point to bash, some of the

Confirmation is a point to bash before you can proceed to the contents of

Many debugging, burning tools are used in customizing linux systems for the core

directory 03-Tools

following tools, which are briefly described

This is the installation tool of petalinux, installed petalinux tool, you can build

Follow the

command below to install petalinux2020.1. During installation, there will be

etaLinux User License Agreement (EULA) that you need to press

the keyboard "q" and then press "y" for agreement license confirmation. The use

in this article <WORKDIR>to represent a working directory on the host, such as

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

"/home/work/", is to guarantee dire

installer.run" into the working directory

mkdir –p petalinux

#./petalinux-v2020.1-final-installer.run

2.4. Install MYIR's custom SDK

After we've built the system image with Petalinux, we can also use Petalinux to

build a scalable SDK. The CD

located at: 03-Tools/sdk-qt .tar.xz, which includes a separate cross

tool chain that also provides qmake, sysroot of the target platform, libraries and

header files on which Qt application development depends, etc. Users can use this

SDK directly to create a stand

Bootloader, Kernel, or compile their o

will be detailed in a later section. Here's how to install the SDK, as follows

 Copy the SDK to the Linux directory and unzip it

Copy the SDK compression package to the user working directory under Ubuntu,

such as /home/work, unzip the file, and get the installation script file, as follows

cd /home/work

tar –jxvf sdk-qt.tar.xz

sdk.sh

 Install SDK

./sdk.sh

PetaLinux SDK installer version 2020.1

======================================

You are about to install the SDK to "

Extracting SD

K..

...

..done

Setting it up...done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to source the

environment setup script e.g.

L5.4.0_V1.11

 - 10 -

"/home/work/", is to guarantee directory access. Copy "petalinux

installer.run" into the working directory.

installer.run /home/work/petalinux

's custom SDK

After we've built the system image with Petalinux, we can also use Petalinux to

CD provided by MYIR contains a compiled SDK package

qt .tar.xz, which includes a separate cross

lso provides qmake, sysroot of the target platform, libraries and

header files on which Qt application development depends, etc. Users can use this

SDK directly to create a stand-alone development environment, compile

Bootloader, Kernel, or compile their own applications separately, a process that

will be detailed in a later section. Here's how to install the SDK, as follows

Copy the SDK to the Linux directory and unzip it

Copy the SDK compression package to the user working directory under Ubuntu,

/home/work, unzip the file, and get the installation script file, as follows

PetaLinux SDK installer version 2020.1

======================================

e SDK to "/opt/petalinux/2020.1". Proceed [Y/n]? Y

K...

...

..done

DK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to source the

environment setup script e.g.

ctory access. Copy "petalinux-v2020.1-final-

After we've built the system image with Petalinux, we can also use Petalinux to

contains a compiled SDK package

qt .tar.xz, which includes a separate cross-development

lso provides qmake, sysroot of the target platform, libraries and

header files on which Qt application development depends, etc. Users can use this

alone development environment, compile

wn applications separately, a process that

will be detailed in a later section. Here's how to install the SDK, as follows：

Copy the SDK compression package to the user working directory under Ubuntu,

/home/work, unzip the file, and get the installation script file, as follows：

". Proceed [Y/n]? Y

.....................................

...

Each time you wish to use the SDK in a new shell session, you need to source the

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 Select the installation directory

SDK is installed by default in the /opt/petalinux/2020

also customize the installation path, such as installing to/home/work/sdk

directory：

./sdk.sh -d /home/work/sdk

 Test SDK

Once the installation is complete, use the following command to set the

environment variables to test

source /opt/petalinux/2020.1

$CC --version

aarch64-xilinx-linux-gcc (GCC) 9.2.0

Copyright (C) 2019 Free Software Foundation, Inc.

This is free software; see the source

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPO

SE.

In addition to the cross-toolchain, M

Qt applications such as Qt libraries, qmake

subsequent application development and debugging using QT Creator

L5.4.0_V1.11

 - 11 -

Select the installation directory

SDK is installed by default in the /opt/petalinux/2020.1/directory, and users can

also customize the installation path, such as installing to/home/work/sdk

/sdk -y

Once the installation is complete, use the following command to set the

environment variables to test whether the SDK was installed successfully

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

gcc (GCC) 9.2.0

Copyright (C) 2019 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPO

toolchain, MYIR's SDK includes resources for developing

ons such as Qt libraries, qmake, and so on, which are the basis for

subsequent application development and debugging using QT Creator

.1/directory, and users can

also customize the installation path, such as installing to/home/work/sdk

Once the installation is complete, use the following command to set the

whether the SDK was installed successfully：

xilinx-linux

for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPO

's SDK includes resources for developing

are the basis for

subsequent application development and debugging using QT Creator.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

3. Use Petalinux to build images
3.1. Introduction

Petalinux is Xilinx's embedded Linux development kit, which includes source code

such as Linux Kernel, u-boot, device

configured, and compiled for use by MYS

Petalinux, please refer to

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1144

-petalinux-tools-reference-

In the optical image provided by

the MYC-ZU5EV board is available in the catalog to help

system image that can run on the MYS

of building image to describe the specific development process, for the

subsequent customization of their own system

3.2. Get the source code

Get the compression package directly from the M

ask the user to build on it.

3.2.1. Get the source compression package from the

The compressed source package is located at M

Sources/Petalinux/mys_zu5ev2020_4G

to a user-specified directory, such as the /home/work/

will serve as the top-level directory for subsequent builds

#cd home/work/petalinux

3.2.2. Get the source code via

The Petalinux BSP, Kernel, and u

development board are currently github and will remain up to date, and the code

warehouse address is available in the

can use git commands and s

mkdir /home/work/github

cd /home/work/github

L5.4.0_V1.11

 - 12 -

Use Petalinux to build images

Petalinux is Xilinx's embedded Linux development kit, which includes source code

boot, device-tree, rootfs, and can be easily generated,

configured, and compiled for use by MYS-ZU5EV boards. For the basics of

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1144

-guide.pdf.

In the optical image provided by MYIR CD 04_sources a Petalinux BSP package for

ZU5EV board is available in the catalog to help developers build a Linux

system image that can run on the MYS-ZU5EV board. The following is an example

to describe the specific development process, for the

subsequent customization of their own system image to lay the foundation

source code

Get the compression package directly from the MYIR CD 04-sources catalog and

Get the source compression package from the

The compressed source package is located at MYIR Development Pack Profile 04

inux/mys_zu5ev2020_4G_core.bsp. Copy the compression package

specified directory, such as the /home/work/petalinux directory, which

level directory for subsequent builds：

Get the source code via github

BSP, Kernel, and u-boot source codes of the MYS-ZU5EV

development board are currently github and will remain up to date, and the code

warehouse address is available in the “MYS-ZU5EV_SDK Release Notes

can use git commands and synchronize code on github. Here's how

mkdir /home/work/github

Use Petalinux to build images

Petalinux is Xilinx's embedded Linux development kit, which includes source code

rootfs, and can be easily generated,

ZU5EV boards. For the basics of

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1144

alinux BSP package for

developers build a Linux

ZU5EV board. The following is an example

to describe the specific development process, for the

to lay the foundation.

sources catalog and

Get the source compression package from the CD

Development Pack Profile 04-

.bsp. Copy the compression package

etalinux directory, which

ZU5EV

development board are currently github and will remain up to date, and the code

ZU5EV_SDK Release Notes”. Users

ynchronize code on github. Here's how：

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

git clone https://github.com/MYiR

git clone https://github.com/MYiR

3.3. Quickly compile images

You need to set the appropriate environment variables before you can build your

system using the Petalinux project

#source /home/work/petalinux/settings.sh

 Building image

We chose the petalinux bsp package mys_zu5ev2020_4G

core as an example.

petalinux-create -t project

cd mys_zu5ev

petalinux-build

 Generate image

petalinux-package --boot

/linux/u-boot.elf --pmufw --

Once the system is built, system

images/linux directory, and the following is a list of file information generated

after the build：

FILE NAME

BOOT.bin

image.ub

rootfs.tar.gz

3.4. Build SDK

MYIR already offers a more complete SDK installation package that users can use

directly. But when users need to introduce new libraries into the SDK, they need

to re-build new SDK tools using Petalinux

L5.4.0_V1.11

 - 13 -

https://github.com/MYiR-Dev/myir-zynqMP-uboot.git

https://github.com/MYiR-Dev/myir-zynqMP-kernel.git

Quickly compile images

appropriate environment variables before you can build your

system using the Petalinux project.

petalinux/settings.sh

bsp package mys_zu5ev2020_4G_core.bsp

t project -s mys_zu5ev2020_4G_core.bsp

boot --fsbl images/linux/zynqmp_fsbl.elf --

--atf --fpga images/linux/system.bit --

Once the system is built, system image in various formats are generated in the

mages/linux directory, and the following is a list of file information generated

Table 3-1. Images file description

 DESCRIPTION

Contains fsbl, pmufw, bl31, uboot, devicetree,

fpgabit burning file

Kernel and device tree burn packages generate

files

Rootfs system

already offers a more complete SDK installation package that users can use

directly. But when users need to introduce new libraries into the SDK, they need

build new SDK tools using Petalinux.

uboot.git

kernel.git

appropriate environment variables before you can build your

.bsp for mys-zu5ev-

--u-boot=images

--force

in various formats are generated in the

mages/linux directory, and the following is a list of file information generated

DESCRIPTION

fsbl, pmufw, bl31, uboot, devicetree,

Kernel and device tree burn packages generate

already offers a more complete SDK installation package that users can use

directly. But when users need to introduce new libraries into the SDK, they need

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

This section simply provides build instructions for the

using the following build command to generate the SDK package

#petalinux-build --sdk

Building an SDK takes a long time, waiting for the build to complete and

generating the SDK installation package as

2.4.

L5.4.0_V1.11

 - 14 -

This section simply provides build instructions for the SDK provided by M

using the following build command to generate the SDK package

Building an SDK takes a long time, waiting for the build to complete and

generating the SDK installation package as "/images/linux/sdk .sh", see sec

SDK provided by MYIR,

using the following build command to generate the SDK package：

Building an SDK takes a long time, waiting for the build to complete and

/linux/sdk .sh", see section

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

4. How to burn the system image
MYIR designed the MYS-ZU5EV series core board has two start

different update system tools and methods are required

 Making SD card launchers: suitable for research and development

commissioning, quick start and other scenarios

 Making SD card burners: suitable for mass production of burn eMMC

4.1. Make an SD card launcher

The following steps are made under Windows

1) Preparation

 SD card (not less than 4GB)

 MYS-ZU5EV development board

 Making images tools Win32DiskImager

Image Name

mys-zu5ev-core mys-zu5ev-

mys-zu5ev-full mys-zu5ev-

mys-zu5ev-mipi mys-zu5ev-

2) Make an SD card launcher

In the case of mys-zu5ev-core systems, other

 Unzip the resources below

mys-zu5ev-core.img.gz

 Write the image file to Micro SD Card

Place the Micro SD Card in the card reader reader, then plug it into the computer,

install win32DiskImager by

on win32DiskImager.exe read out the USB stick partition, and click the

to load the mirror file.

L5.4.0_V1.11

 - 15 -

How to burn the system image
ZU5EV series core board has two start-up methods, so

different update system tools and methods are required.

Making SD card launchers: suitable for research and development

start and other scenarios.

Making SD card burners: suitable for mass production of burn eMMC

Make an SD card launcher

The following steps are made under Windows.

SD card (not less than 4GB)

evelopment board

Win32DiskImager-0.9.5-install.exe （path

Table 4-1. Image package list

Package Name

-core.img.gz

-full.img.gz

-mipi.img.gz

Make an SD card launcher

core systems, other images burning methods are similar

Unzip the resources below

file to Micro SD Card

Place the Micro SD Card in the card reader reader, then plug it into the computer,

by Win32DiskImager-0.9.5-install.exe, then

on win32DiskImager.exe read out the USB stick partition, and click the

How to burn the system image
up methods, so

Making SD card launchers: suitable for research and development

Making SD card burners: suitable for mass production of burn eMMC.

path：\03-Tools\）

burning methods are similar.

Place the Micro SD Card in the card reader reader, then plug it into the computer,

, then double-click

on win32DiskImager.exe read out the USB stick partition, and click the folder icon

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Select the system package and click

Once the image is loaded, click the "Write" button, a warning pops up, and click

"Yes" to wait for the write to complete.

L5.4.0_V1.11

 - 16 -

Figure 4-1. Tool configuration

Select the system package and click Open.

Figure 4-2. Tool configuration

Once the image is loaded, click the "Write" button, a warning pops up, and click

"Yes" to wait for the write to complete.

Figure 4-3. Tool configuration

Once the image is loaded, click the "Write" button, a warning pops up, and click

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Wait for the write to complete, about a few minutes,

write speed of the SD.

 Check that the burn was successful

When the write is complete, you can use this SD card to start, the SD card into the

board SD card slot, and then the board's startup mode s

2 dial to ON, 3 dial to OFF, 4 dial to ON, set up as TF card start mode. Then power

up and you can start the system with the SD card.

 The debugging system generated by burning petalinux starts from QSPI flash

（1）Using the tf startup card made in the previous step, copy the BOT.bin,

image.ub, rootfs.tar.gz file generated by petalinux to the first partition of the tf

card (boot partition).

（2）The board's start-up mode switch SW1 1 dial to OFF, 2 dial

OFF, 4 dial to ON, and sets up into TF card start mode

（3）Insert a TF card that has been stored in a burned

port rate of 115200, the development board power

（4）The board will boot into the rootfs file system, into the Linux command line,

and the input commands will begin to update

#update /mnt/sd-mmcblk1p1

The script will burn BOOT.bin, image.ub to QSPI

（5）After burning, the board's start

OFF, 3 dial to ON, 4 dial to

can enter the burned rootfs file system.

L5.4.0_V1.11

 - 17 -

Wait for the write to complete, about a few minutes, depending on the read and

Figure 4-4. Tool configuration

was successful

When the write is complete, you can use this SD card to start, the SD card into the

board SD card slot, and then the board's startup mode switch SW1 1 dial to OFF,

2 dial to ON, 3 dial to OFF, 4 dial to ON, set up as TF card start mode. Then power

up and you can start the system with the SD card.

The debugging system generated by burning petalinux starts from QSPI flash

p card made in the previous step, copy the BOT.bin,

tar.gz file generated by petalinux to the first partition of the tf

up mode switch SW1 1 dial to OFF, 2 dial

, and sets up into TF card start mode；

Insert a TF card that has been stored in a burned-out file, connecting serial

port rate of 115200, the development board power；

The board will boot into the rootfs file system, into the Linux command line,

he input commands will begin to update：

mmcblk1p1

The script will burn BOOT.bin, image.ub to QSPI-Flash, rootfs.tar.gz to eMMC.

After burning, the board's start-up mode switch SW1 1 dial to ON, 2 dial to

to ON, set to Qspi flash boot mode, power up again, you

can enter the burned rootfs file system.

depending on the read and

When the write is complete, you can use this SD card to start, the SD card into the

witch SW1 1 dial to OFF,

2 dial to ON, 3 dial to OFF, 4 dial to ON, set up as TF card start mode. Then power

The debugging system generated by burning petalinux starts from QSPI flash

p card made in the previous step, copy the BOT.bin,

tar.gz file generated by petalinux to the first partition of the tf

 to ON, 3 dial to

out file, connecting serial

The board will boot into the rootfs file system, into the Linux command line,

Flash, rootfs.tar.gz to eMMC.

up mode switch SW1 1 dial to ON, 2 dial to

set to Qspi flash boot mode, power up again, you

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

4.2. Make an SD card burner

To meet the needs of production burn, M

mass production. The system in the SD card will need to be burned and written

into the on-board Flash. Follow these steps to complete the production process.

 Make update package

To make an installation package using the ubun

need to be pre-installed：

sudo apt-get install kpartxfdisk mount dosfstools e2fsprogs pv

Copy 03-Tools/SDCardUpdate

system from CD and unzip it.

tar -xvf SDCardUpdater-my

ls

 BOOT.BIN、image.ub、rootfs

to be burned

 CreateSDUpdateImage-myir

 rootfs_update.tar.gz：The root file system that contains the auto

Burning packages can be done automatically with direct commands.

sudo ./CreateSDUpdateImage

Screenshots of the production process are below.

L5.4.0_V1.11

 - 18 -

Make an SD card burner

To meet the needs of production burn, MYIR developed a burning method for

mass production. The system in the SD card will need to be burned and written

board Flash. Follow these steps to complete the production process.

To make an installation package using the ubuntu system, the following resources

get install kpartxfdisk mount dosfstools e2fsprogs pv

SDCardUpdate-mys-zu5ev.tar.xz resource pack to the ubuntu

system from CD and unzip it.

mys-zu5ev.tar.xz

Figure 4-5. Include files

rootfs.tar.gz：A startup file generated by Petalinux that needs

myir：make script

The root file system that contains the auto-burner.

g packages can be done automatically with direct commands.

sudo ./CreateSDUpdateImage-myir

Screenshots of the production process are below.

developed a burning method for

mass production. The system in the SD card will need to be burned and written

board Flash. Follow these steps to complete the production process.

tu system, the following resources

.tar.xz resource pack to the ubuntu

A startup file generated by Petalinux that needs

burner.

g packages can be done automatically with direct commands.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

After production is complete, a compression package myir

zu5ev.img .gz is generated in the same directory, which is a mirror package for SD

card burning.

 Make an SD burn card

Copy myir-image-burn-mys

out.

Use Win32DiskImager.exe burn myir

card. The method is the same as the "Write

in the "4.1 Making SD Card Launcher" section.

 SD burn card burning system

The made SD burn card is inserted into the SD ca

board, and then the board's start

3 dial to OFF, 4 dial to ON, set to TF card start mode, start the system. Plug in the

power, automatically start the writing system in the SD Card,

debug serial port to view the update status, or view the led light next to the reset

button, the burning process will flash slowly, after the burning led light will flash

quickly.

When the burn is complete, the board's starting mode switch

dial to OFF, 3 dial to ON, 4 dial

L5.4.0_V1.11

 - 19 -

Figure 4-5.Make Image

After production is complete, a compression package myir-image

generated in the same directory, which is a mirror package for SD

mys-zu5ev.img .gz under the windows system and unzip it

.exe burn myir-image-burn-mys-zu5ev.img package to tf

card. The method is the same as the "Write image file to Micro SD Card" method

in the "4.1 Making SD Card Launcher" section.

urn card burning system

The made SD burn card is inserted into the SD card slot of the development

board, and then the board's start-up mode switch SW1 1 dial to OFF, 2 dia

ON, set to TF card start mode, start the system. Plug in the

power, automatically start the writing system in the SD Card, you can use the

debug serial port to view the update status, or view the led light next to the reset

button, the burning process will flash slowly, after the burning led light will flash

When the burn is complete, the board's starting mode switch SW1 1 dial to ON, 2

dial to OFF, 3 dial to ON, 4 dial to ON, set to Qspi flash start-up mode, power up

image-burn-mys-

generated in the same directory, which is a mirror package for SD

zu5ev.img .gz under the windows system and unzip it

zu5ev.img package to tf

file to Micro SD Card" method

rd slot of the development

up mode switch SW1 1 dial to OFF, 2 dial to ON,

ON, set to TF card start mode, start the system. Plug in the

you can use the

debug serial port to view the update status, or view the led light next to the reset

button, the burning process will flash slowly, after the burning led light will flash

SW1 1 dial to ON, 2

up mode, power up

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

again, you can start the board from qspiflash mode, into the burned rootfs file

system.

L5.4.0_V1.11

 - 20 -

again, you can start the board from qspiflash mode, into the burned rootfs file again, you can start the board from qspiflash mode, into the burned rootfs file

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

5. How to modify the
The previous sections have described mo

a system image running on the MYS

and burning the image to the board. Because many of the pins of the MYS

core board have multiple functional configurations, there a

differences in the actual project. In addition to hardware differences, there are

some differences in software systems, may need to compare complete graphics

systems, QT libraries, etc. , focusing on background management applications,

may need more complete network applications. This requires system developers

to do some tailoring and porting based on the code we provide. This chapter

describes the process of developing and customizing your own system from a

system developer's perspective, l

hardware later.

5.1. Petalinux bsp introduction

Petalinux bsp contains a variety of metadata and recipes for BSPs, middleware, or

applications. Based on this "layer model", users can adapt hardware based on

MYS-ZU5EV core board design and customize their applications to build their

own system images, which are included in petalinux

mys_zu5ev$ tree -L 3

├── build

│ ├── bitbake-cookerdaemon.log

│ ├── bootgen.bif

│ ├── build.log

│ ├── build.log.old

│ ├── cache

│ │ ├── bb_codeparser.dat

│ │ ├── bb_persist_data.sqlite3

│ │ ├── bb_unihashes.dat

│ │ └── local_file_checksum_cache.dat

│ ├── conf

│ │ ├── bblayers.conf

L5.4.0_V1.11

 - 21 -

How to modify the BSP
The previous sections have described more fully the complete process of building

a system image running on the MYS-ZU5EV board based on the Petalinux project

and burning the image to the board. Because many of the pins of the MYS

core board have multiple functional configurations, there are always some

differences in the actual project. In addition to hardware differences, there are

some differences in software systems, may need to compare complete graphics

systems, QT libraries, etc. , focusing on background management applications,

eed more complete network applications. This requires system developers

to do some tailoring and porting based on the code we provide. This chapter

describes the process of developing and customizing your own system from a

system developer's perspective, laying the groundwork for adapting your own

introduction

bsp contains a variety of metadata and recipes for BSPs, middleware, or

applications. Based on this "layer model", users can adapt hardware based on

ore board design and customize their applications to build their

own system images, which are included in petalinux bsp as follows

cookerdaemon.log

bb_codeparser.dat

bb_persist_data.sqlite3

bb_unihashes.dat

local_file_checksum_cache.dat

re fully the complete process of building

ZU5EV board based on the Petalinux project

and burning the image to the board. Because many of the pins of the MYS-ZU5EV

re always some

differences in the actual project. In addition to hardware differences, there are

some differences in software systems, may need to compare complete graphics

systems, QT libraries, etc. , focusing on background management applications,

eed more complete network applications. This requires system developers

to do some tailoring and porting based on the code we provide. This chapter

describes the process of developing and customizing your own system from a

aying the groundwork for adapting your own

bsp contains a variety of metadata and recipes for BSPs, middleware, or

applications. Based on this "layer model", users can adapt hardware based on

ore board design and customize their applications to build their

bsp as follows：

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

│ │ ├── devtool.conf

│ │ ├── local.conf

│ │ ├── locked-sigs.inc

│ │ ├── plnxtool.conf

│ │ ├── sanity_info

│ │ ├── sdk-conf-manifest

│ │ ├── site.conf

│ │ ├── templateconf.cfg

│ │ └── unlocked-sigs.inc

│ ├── config.log

│ ├── downloads

│ ├── misc

│ │ ├── config

│ │ └── rootfs_config

│ ├── sstate-cache

│ └── tmp

│ ├── abi_version

│ ├── buildstats

│ ├── cache

│ ├── deploy

│ ├── hosttools

│ ├── log

│ ├── pkgdata

│ ├── saved_tmpdir

│ ├── sstate-control

│ ├── stamps

│ ├── sysroots

│ ├── sysroots-components

│ ├── sysroots-uninative

│ ├── work

│ └── work-shared

├── components

│ ├── plnx_workspace

L5.4.0_V1.11

 - 22 -

manifest

templateconf.cfg

sigs.inc

components

uninative

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

│ │ └── device-tree

│ └── yocto

│ ├── cache

│ ├── conf

│ ├── downloads

│ ├── environment-setup

│ ├── layers

│ ├── site-config-aarch64

│ ├── sysroots

│ ├── version-aarch64

│ └── workspace

├── config.project

├── images

│ └── linux

│ ├── bl31.bin

│ ├── bl31.elf

│ ├── BOOT.BIN

│ ├── boot.scr

│ ├── Image

│ ├── image.ub

│ ├── pmufw.elf

│ ├── pxelinux.cfg

│ ├── rootfs.cpio

│ ├── rootfs.cpio.gz

│ ├── rootfs.cpio.gz.u-

│ ├── rootfs.jffs2

│ ├── rootfs.manifest

│ ├── rootfs.tar.gz

│ ├── system.bit

│ ├── system.dtb

│ ├── u-boot.bin

│ ├── u-boot.elf

│ ├── vmlinux

L5.4.0_V1.11

 - 23 -

setup-aarch64-xilinx-linux

aarch64-xilinx-linux

aarch64-xilinx-linux

-boot

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

│ ├── zynqmp_fsbl.elf

│ ├── zynqmp-qemu-arm.dtb

│ ├── zynqmp-qemu-multiarch

│ └── zynqmp-qemu-multiarch

└── project-spec

 ├── attributes

 ├── configs

 │ ├── busybox

 │ ├── config

 │ ├── init-ifupdown

 │ ├── rootfs_config

 │ └── rootfs_config.old

 ├── hw-description

 │ ├── design_1_wrapper.bit

 │ ├── metadata

 │ ├── psu_init.c

 │ ├── psu_init_gpl.c

 │ ├── psu_init_gpl.h

 │ ├── psu_init.h

 │ ├── psu_init.html

 │ ├── psu_init.tcl

 │ └── system.xsa

 └── meta-user

 ├── conf

 ├── COPYING.MIT

 ├── README

 ├── recipes-apps

 ├── recipes-bsp

 └── recipes-kernel

L5.4.0_V1.11

 - 24 -

arm.dtb

multiarch-arm.dtb

multiarch-pmu.dtb

rootfs_config.old

design_1_wrapper.bit

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Table

Source code and data

conf

recipes-app

recipes-bsp

recipes-kernel

When performing system porting, the

responsible for hardware initialization and system booting, the recipes

section of the Linux system and the drive implementation, and the recipes

section of the application customization.

L5.4.0_V1.11

 - 25 -

Table 5-1. meta-user layer content description

Decription

Includes board software configuration resource information

The included application

Includes configuration resources such as uboot and devicetree

Resource that contains the linux kernel

When performing system porting, the focus is on the recipes-bsp section, which is

responsible for hardware initialization and system booting, the recipes

section of the Linux system and the drive implementation, and the recipes

section of the application customization.

board software configuration resource information

Includes configuration resources such as uboot and devicetree

bsp section, which is

responsible for hardware initialization and system booting, the recipes-kernel

section of the Linux system and the drive implementation, and the recipes-app

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

5.2. Board-level support package introduction

A board-level support package (BSP) is a collection of information that defines

how to support a specific hardware device, device set, or hardware platform. The

BSP includes information about the hardware characteri

configuration information on the device, as well as any other hardware drivers

required.

Usually, depending on the stage of hardware startup, we divide BSP into

Bootloader and Kernel sections, and the hardware BSP code designed with MYS

ZU5EV core board can view the contents of the recipes

recipes in meta-user.

Recipes-bsp contains only u

implemented for core hardware such as DDR, initialization of The Clock, and

kernel booting. Based on MY

the content.

recipes-bsp

├── device-tree

└── u-boot

Recipes-kernel contains the Linux kernel, which is primarily implemented.

recipes-kernel/

└── linux

When designing products using M

not have to be modified without special requirements. You need to pay more

attention to kernel-driven development, as well as application design. Kernel

development and application development will be described in mo

subsequent sections.

L5.4.0_V1.11

 - 26 -

level support package introduction

level support package (BSP) is a collection of information that defines

how to support a specific hardware device, device set, or hardware platform. The

BSP includes information about the hardware characteristics and kernel

configuration information on the device, as well as any other hardware drivers

Usually, depending on the stage of hardware startup, we divide BSP into

Bootloader and Kernel sections, and the hardware BSP code designed with MYS

5EV core board can view the contents of the recipes-bsp and recipes

bsp contains only u-boot and device-tree, which are primarily

implemented for core hardware such as DDR, initialization of The Clock, and

MYS-ZU5EV core board hardware to modify this part of

kernel contains the Linux kernel, which is primarily implemented.

When designing products using MYIR's core board, the bootloader section does

not have to be modified without special requirements. You need to pay more

driven development, as well as application design. Kernel

development and application development will be described in mo

level support package (BSP) is a collection of information that defines

how to support a specific hardware device, device set, or hardware platform. The

stics and kernel

configuration information on the device, as well as any other hardware drivers

Usually, depending on the stage of hardware startup, we divide BSP into

Bootloader and Kernel sections, and the hardware BSP code designed with MYS-

bsp and recipes-kernel

tree, which are primarily

implemented for core hardware such as DDR, initialization of The Clock, and

ZU5EV core board hardware to modify this part of

kernel contains the Linux kernel, which is primarily implemented.

core board, the bootloader section does

not have to be modified without special requirements. You need to pay more

driven development, as well as application design. Kernel

development and application development will be described in more detail in

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

5.3. On-board u-boot compilation and update

This U-boot is a very versatile open source boot program, including kernel boot,

download updates and many other aspects, widely used in the embedded field,

you can view the official website for more information

http://www.denx.de/wiki/U

5.3.1. Compile u-boot under the petalinux project

When the user modifies the U

entire image. The reference example is as follows.

git add .

git commit -m "demo"

git format-patch -1

Once the modification is complete, a 0001

the project-spec/meta-user/recipes

then the newly modified code can be compiled by adding the following to the

project-spec/meta-user/recipes

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI += "file://platform

SRC_URI += "file://0001-add

SRC_URI += "file://0002-modify

SRC_URI += "file://0003-reset

SRC_URI += "file://0001-demo

do_configure_append () {

 if ["${U_BOOT_AUTO_CONFIG}" = "1"]; then

 install ${WORKDIR}/platform

 install ${WORKDIR}/platform

 fi

}

do_configure_append_microblaze () {

L5.4.0_V1.11

 - 27 -

boot compilation and update

boot is a very versatile open source boot program, including kernel boot,

download updates and many other aspects, widely used in the embedded field,

website for more information:

http://www.denx.de/wiki/U-Boot/WebHome

boot under the petalinux project

When the user modifies the U-boot code, they can also use petalinux to build the

age. The reference example is as follows.

Once the modification is complete, a 0001-demo.patch is generated, copied to

user/recipes-bsp/u-boot/files/ directory of petalinux, an

then the newly modified code can be compiled by adding the following to the

user/recipes-bsp/u-boot/u-boot-xlnx_%.bbappend

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI += "file://platform-top.h"

add-config.patch"

modify-config.patch"

reset-ushhub.patch"

demo.patch"

if ["${U_BOOT_AUTO_CONFIG}" = "1"]; then

install ${WORKDIR}/platform-auto.h ${S}/include/configs/

install ${WORKDIR}/platform-top.h ${S}/include/configs/

do_configure_append_microblaze () {

boot is a very versatile open source boot program, including kernel boot,

download updates and many other aspects, widely used in the embedded field,

boot code, they can also use petalinux to build the

demo.patch is generated, copied to

directory of petalinux, and

then the newly modified code can be compiled by adding the following to the

%.bbappend.

auto.h ${S}/include/configs/

top.h ${S}/include/configs/

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 if ["${U_BOOT_AUTO_CONFIG}" = "1"]; then

 install -d ${B}/source/board/xilinx/microblaze

 install ${WORKDIR}/config.mk ${B}/source/board/xilinx/microblaze

eric/

 fi

}

You can build u-boot as follows.

petalinux-build -c u-boot

petalinux-build -c u-boot

5.3.2. How to update the Boot.bin separately

1) Generate boot.bin

Before updating the boot .bin, we need execute the following command to

generate boot.bin：

petalinux-package --boot

/linux/u-boot.elf --pmufw --

2) Update the boot.bin separately

The core board is equipped with a free space of

flash first partition is the boot.bin partition

After copying images/linux/

or SD card, here we copy the boot .bin to the user's home directory and burn the

boot .bin to qspiflash separately by following the following command.

flashcp -v boot.bin /dev/mtd0

L5.4.0_V1.11

 - 28 -

if ["${U_BOOT_AUTO_CONFIG}" = "1"]; then

d ${B}/source/board/xilinx/microblaze-generic/

install ${WORKDIR}/config.mk ${B}/source/board/xilinx/microblaze

boot as follows.

boot -x distclean

boot

How to update the Boot.bin separately

Before updating the boot .bin, we need execute the following command to

boot --fsbl images/linux/zynqmp_fsbl.elf --

--atf --fpga images/linux/system.bit --

Update the boot.bin separately

The core board is equipped with a free space of 32M qspiflash, where the default

ash first partition is the boot.bin partition “/dev/mtd0”.

images/linux/boot.bin to the board over the network or USB stick

or SD card, here we copy the boot .bin to the user's home directory and burn the

boot .bin to qspiflash separately by following the following command.

v boot.bin /dev/mtd0

generic/

install ${WORKDIR}/config.mk ${B}/source/board/xilinx/microblaze-gen

Before updating the boot .bin, we need execute the following command to

--u-boot=images

--force

M qspiflash, where the default

.bin to the board over the network or USB stick

or SD card, here we copy the boot .bin to the user's home directory and burn the

boot .bin to qspiflash separately by following the following command.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

5.4. On-board Kernel compilation and update

This Linux kernel is a very large open source kernel, is used in a variety of

distribution operating systems, Linux kernel with its portability, a variety of

network protocol support, independent module mechanism, MMU and many

other rich features, so that Linux kernel can be widely used in embedded systems.

The linux version used by MYS

5.4.1. Compile Kernel under the Petalinux project

When the user modifies kernel's code, they can also use petalinux to

entire image. The reference example is as follows.

git add .

git commit -m "demo"

git format-patch -1

Once the modification is complete, a 0001

copied to the petalinux project

directory, and then the newly modified code can be compiled by adding the

following to the file of the project

xlnx_%.bbappend.

SRC_URI += "file://bsp.cfg"

SRC_URI += "file://0001-add

SRC_URI += "file://0002-adv7619

SRC_URI += "file://0003-mplane.patch"

SRC_URI += "file://0001-demo

KERNEL_FEATURES_append = " bsp.cfg"

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

Once the modification is complete, kernel can be built as follows.

petalinux-build -c kernel

petalinux-build -c kernel

5.4.2. How to update Kernel separately

L5.4.0_V1.11

 - 29 -

nel compilation and update

This Linux kernel is a very large open source kernel, is used in a variety of

distribution operating systems, Linux kernel with its portability, a variety of

network protocol support, independent module mechanism, MMU and many

her rich features, so that Linux kernel can be widely used in embedded systems.

The linux version used by MYS-ZU5EV is Linux kernel 5.4.0.

Compile Kernel under the Petalinux project

When the user modifies kernel's code, they can also use petalinux to

entire image. The reference example is as follows.

Once the modification is complete, a 0001-demo.patch is generated, which is

copied to the petalinux project-spec/meta-user/recipes-kernel/linux/linux

directory, and then the newly modified code can be compiled by adding the

project-spec/meta-user/recipes-kernel/linux/linux

SRC_URI += "file://bsp.cfg"

add-watchdog.patch"

adv7619-driver.patch"

mplane.patch"

demo.patch"

KERNEL_FEATURES_append = " bsp.cfg"

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

Once the modification is complete, kernel can be built as follows.

 distclean

How to update Kernel separately

This Linux kernel is a very large open source kernel, is used in a variety of

distribution operating systems, Linux kernel with its portability, a variety of

network protocol support, independent module mechanism, MMU and many

her rich features, so that Linux kernel can be widely used in embedded systems.

When the user modifies kernel's code, they can also use petalinux to build the

demo.patch is generated, which is

kernel/linux/linux-xlnx

directory, and then the newly modified code can be compiled by adding the

kernel/linux/linux-

Once the modification is complete, kernel can be built as follows.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Once the user has compiled successfully, the image

updated by transferring the transfer media such as Ethernet, USB drives, etc. to

the board to execute the following commands.

flashcp -v image.ub /dev/mtd

L5.4.0_V1.11

 - 30 -

ce the user has compiled successfully, the images/linux/image.ub file can be

updated by transferring the transfer media such as Ethernet, USB drives, etc. to

the board to execute the following commands.

ub /dev/mtd1

/linux/image.ub file can be

updated by transferring the transfer media such as Ethernet, USB drives, etc. to

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

5.5. Under the petalinux

the new FPGA project

In the MYS_ZU5EV development board developed a new FPGA function, in order

to make the fpga function to use properly, the corresponding software needs to

be developed. We use petalinux to quickly build projects and build a

corresponding set of software. The steps are as follows:

Figure

Create the

Copy the hardware files generated by

the fpga project to the specified

Petalinux

Configuring BSP with petalinux

Compiling BSP source code

Modifying kernel source code

modify the source code of the device

Recompilation of petalinux

L5.4.0_V1.11

 - 31 -

petalinux project to build the BSP software of

the new FPGA project

In the MYS_ZU5EV development board developed a new FPGA function, in order

to make the fpga function to use properly, the corresponding software needs to

We use petalinux to quickly build projects and build a

corresponding set of software. The steps are as follows:

Figure 5-1 Petalinux build project diagram

Create the base source package for

petalinux

Copy the hardware files generated by

the fpga project to the specified

Petalinux specifies the directory of

hardware files

Configuring BSP with petalinux

Compiling BSP source code of petalinux

Modifying kernel source code of

petalinux

modify the source code of the device

tree of petalinux

Recompilation of petalinux

project to build the BSP software of

In the MYS_ZU5EV development board developed a new FPGA function, in order

to make the fpga function to use properly, the corresponding software needs to

We use petalinux to quickly build projects and build a

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 Create the underlying source package for petalinux

Using bsp on the disc as the base source package, here is an example of

Source/Petalinux/mys_zu5ev2020_4G

petalinux-create -t project

cd mys_zu5ev

 Copy the hardware files generated by the fpga project to the specified directory

Once you've created a source package for mys_zu5ev2020_4G

done on that basis. Copy the hardware profile generated by the fpga project

design_1_wrapper.xsa to the specified directory, here in the case of the

/home/work/zu5ev directory.

ls /home/work/zu5ev/design_1_wrapper.xsa

/home/ work/zu5ev /design_1_wrapper.xsa

 Petalinux specifies the directory of hardware files

This Petalinux specifies the directory of the hardware profile, and petalinux

compiles the petalinux project by building the petalinux project with the hardware

profile design_1_wrapper.xsa in the directory of the hardware

to do：

petalinux-config --get-hw

 Configuring BSP with petalinux

Once the directory of the hardware profile is specified, the petalinux

directory above automatically enters the petalinux configurati

interface, you can configure it as needed.

L5.4.0_V1.11

 - 32 -

Create the underlying source package for petalinux

Using bsp on the disc as the base source package, here is an example of

etalinux/mys_zu5ev2020_4G_core.bsp.

t project -s mys_zu5ev2020_4G_core.bsp

Copy the hardware files generated by the fpga project to the specified directory

Once you've created a source package for mys_zu5ev2020_4G_core

y the hardware profile generated by the fpga project

design_1_wrapper.xsa to the specified directory, here in the case of the

/home/work/zu5ev directory.

/design_1_wrapper.xsa

/design_1_wrapper.xsa

the directory of hardware files

This Petalinux specifies the directory of the hardware profile, and petalinux

compiles the petalinux project by building the petalinux project with the hardware

profile design_1_wrapper.xsa in the directory of the hardware profile. Here's what

hw-description=/home/work/zu5ev

Configuring BSP with petalinux

Once the directory of the hardware profile is specified, the petalinux

directory above automatically enters the petalinux configuration interface. In this

interface, you can configure it as needed.

Using bsp on the disc as the base source package, here is an example of 04-

Copy the hardware files generated by the fpga project to the specified directory

_core.bsp, the rest is

y the hardware profile generated by the fpga project

design_1_wrapper.xsa to the specified directory, here in the case of the

This Petalinux specifies the directory of the hardware profile, and petalinux

compiles the petalinux project by building the petalinux project with the hardware

profile. Here's what

Once the directory of the hardware profile is specified, the petalinux-config

on interface. In this

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Figure

Here are a few important configurations for reference.

（1）The device tree is configured as petalinux automatically, kernel and uboot

are configured as non-automatic, which we can configure manually. Here are the

options:

[*] Device tree autoconfig

[] kernel autoconfig

[] u-boot autoconfig

L5.4.0_V1.11

 - 33 -

Figure 5-2 Configuration interface

Here are a few important configurations for reference.

The device tree is configured as petalinux automatically, kernel and uboot

automatic, which we can configure manually. Here are the

The device tree is configured as petalinux automatically, kernel and uboot

automatic, which we can configure manually. Here are the

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Figure

(2)qspi flash configuration

If you need a profile system, you can enter the following command

configuration：

#petalinux-config –c rootfs

L5.4.0_V1.11

 - 34 -

Figure 5-3 Automatic configuration selection

Figure 5-4 qspi configuration

need a profile system, you can enter the following command

rootfs

need a profile system, you can enter the following command

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

For example, if you need to configure the qt function, you should choose the

following configuration：

Once configured, you can build the petalinux project, which is where petalinux

automatically downloads and compiles the petalinux source code.

L5.4.0_V1.11

 - 35 -

Figure 5-5 Configure rootfs

For example, if you need to configure the qt function, you should choose the

Figure 5-6 Configure qt

Once configured, you can build the petalinux project, which is where petalinux

automatically downloads and compiles the petalinux source code.

For example, if you need to configure the qt function, you should choose the

Once configured, you can build the petalinux project, which is where petalinux

automatically downloads and compiles the petalinux source code.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 Compiling BSP source code

#petalinux-build

Once compiled, the kernel source code and th

modified as needed, and after adding or modifying the code, the petalinux source

code can be recompiled to produce the corresponding petalinux

 Modifying kernel source code

Modify the kernel source code

directory build/tmp/work/zynqmp_generic

xlnx/5.4+gitAUTOINC+22b71b4162

modify the linux source code. Then follow the steps below to produce a patch fi

0001-demo.patch。

git add .

git commit -m "demo"

git format-patch -1

Add the patch file to the project

directory. Then you need to add the following to the

user/recipes-kernel/linux/linux

to compile the newly modified code.

SRC_URI += "file://bsp.cfg"

SRC_URI += "file://0001-add

SRC_URI += "file://0002-adv7619

SRC_URI += "file://0003-mplane.patch"

SRC_URI += "file://0001-demo

KERNEL_FEATURES_append = " bsp.cfg"

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

 Modifying kernel source code

Add the required device tree source code in a way similar to

/include/ "system-conf.dtsi"

#include <dt-bindings/media/xilinx

/ {

L5.4.0_V1.11

 - 36 -

Compiling BSP source code of petalinux

Once compiled, the kernel source code and the device tree source code are

modified as needed, and after adding or modifying the code, the petalinux source

code can be recompiled to produce the corresponding petalinux

Modifying kernel source code of petalinux

Modify the kernel source code in petalinux and first enter the linux source

build/tmp/work/zynqmp_generic-xilinx-linux/linux-

xlnx/5.4+gitAUTOINC+22b71b4162-r0/linux-zynqmp_generic-standard

odify the linux source code. Then follow the steps below to produce a patch fi

project-spec/meta-user/recipes-kernel/linux/linux

directory. Then you need to add the following to the project-spec/meta

kernel/linux/linux-xlnx_%.bbappend file, and then recompile kernel

to compile the newly modified code.

SRC_URI += "file://bsp.cfg"

add-watchdog.patch"

adv7619-driver.patch"

mplane.patch"

demo.patch"

KERNEL_FEATURES_append = " bsp.cfg"

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

Modifying kernel source code of petalinux

Add the required device tree source code in a way similar to the following.

conf.dtsi"

bindings/media/xilinx-vip.h>

e device tree source code are

modified as needed, and after adding or modifying the code, the petalinux source

code can be recompiled to produce the corresponding petalinux image file.

in petalinux and first enter the linux source

standard-build/，

odify the linux source code. Then follow the steps below to produce a patch file

kernel/linux/linux-xlnx

spec/meta-

file, and then recompile kernel

the following.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 chosen {

bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 rwrootwai

tclk_ignore_unused";

stdout-path = "serial0:115200n8";

 };

leds {

 compatible = "gpio

 led1 {

 label = "rs485_de";

gpios = <&gpio 12 0>;

linux,default-trigger = "gpio";

 };

 led2 {

 label = "wdt_en";

gpios = <&gpio 33 0>;

linux,default-trigger = "gpio";

 };

 led3 {

 label = "led_sys";

gpios = <&gpio 43 0>;

linux,default-trigger = "gpio";

 };

 };

 ……

};

&gem3 {

phy-handle = <&phy0>;

phy-mode = "rgmii-id";

 phy0: phy@21 {

 reg = <4>;

 };

L5.4.0_V1.11

 - 37 -

bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 rwrootwai

path = "serial0:115200n8";

compatible = "gpio-leds";

label = "rs485_de";

trigger = "gpio";

label = "wdt_en";

trigger = "gpio";

label = "led_sys";

trigger = "gpio";

bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 rwrootwai

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

};

……

At this point, the entire petalinux build is complete, and the recompiled can

generate a mirror file for the petalinux project.

L5.4.0_V1.11

 - 38 -

At this point, the entire petalinux build is complete, and the recompiled can

generate a mirror file for the petalinux project.

At this point, the entire petalinux build is complete, and the recompiled can

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

6. How to fit your hardware platform
To adapt to the user's new hardware platform, you first need to understand what

resources are available from

“MYS-ZU5EV_SDK Release Notes

manual, as well as MYS-ZU5EV core board product manual, pin definition has a

more detailed understanding, in order to facilitate the actual function of these

pins for proper configuration and use.

6.1. How to create your device tree

6.1.1. Onboard device

Users can create their own device tree in BSP source, and only need to make

appropriate adjustments to the Linux kernel device tree based on actual hardware

resources. The list of device trees in the BSP sections of MYS

for user development reference, as shown in the table below

Table

PATH

components/plnx_workspace/d

evice-tree/device-tree/

L5.4.0_V1.11

 - 39 -

How to fit your hardware platform
To adapt to the user's new hardware platform, you first need to understand what

resources are available from MYIR's MYS-ZU5EV board, and you can view the

SDK Release Notes”. In addition, the user also needs

ZU5EV core board product manual, pin definition has a

more detailed understanding, in order to facilitate the actual function of these

pins for proper configuration and use.

How to create your device tree

 tree

Users can create their own device tree in BSP source, and only need to make

appropriate adjustments to the Linux kernel device tree based on actual hardware

resources. The list of device trees in the BSP sections of MYS-ZU5EV is listed here

velopment reference, as shown in the table below：

Table 6-1 Description of the device tree file

DEVICE TREE DESCRIPTION

zynqmp.dtsi

The basic configuration of the

zynqmp family of devices is

automatically generated by

petalinux and should not be

modified manually.

pcw.dtsi

The underlying configuration that

contains the PS side is

automatically generated by

petalinux and should not be

modified manually.

system-conf.dtsi

peripheral

automatically generated by

petalinux, do not manually

modify.

system-top.dts Top-level configuration,

automatically generated by

How to fit your hardware platform
To adapt to the user's new hardware platform, you first need to understand what

ZU5EV board, and you can view the

. In addition, the user also needs to CPU chip

ZU5EV core board product manual, pin definition has a

more detailed understanding, in order to facilitate the actual function of these

Users can create their own device tree in BSP source, and only need to make

appropriate adjustments to the Linux kernel device tree based on actual hardware

ZU5EV is listed here

DESCRIPTION

The basic configuration of the

zynqmp family of devices is

automatically generated by

petalinux and should not be

modified manually.

The underlying configuration that

contains the PS side is

automatically generated by

petalinux and should not be

modified manually.

peripheral configuration,

automatically generated by

petalinux, do not manually

modify.

level configuration,

automatically generated by

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

project-spec/meta-

user/recipes-bsp/device-

tree/files

6.1.2. The addition of the device tree

This Linux kernel device tree is a data structure that describes device information

in a unique syntax format. Passed to kernel by BootLoader, kernel parses and

forms a dev structure associated with the driver for use by the driver code.

If users want to add a new device tree to their hardware, they just need to

project-spec/meta-user/recipes

file and then includes it in the system

a new device tree and add a

 Modify device tree

touch user-define.dtsi

Then included in the system

/include/ "system-conf.dtsi"

/include/ "user-define.dtsi"

/ {

leds {

 compatible = "gpio

 led1 {

L5.4.0_V1.11

 - 40 -

petalinux, do not modify it

manually.

pl.dtsi

Includes PL-

automatically generated by

petalinux, do not manually

modify.

system-user.dtsi

The configuration of the

peripheral resources of the

development board can be

modified according to the actual

hardware situation.

pl-custom.dtsi
Can be changed according to the

actual PL side design.

The addition of the device tree

This Linux kernel device tree is a data structure that describes device information

in a unique syntax format. Passed to kernel by BootLoader, kernel parses and

forms a dev structure associated with the driver for use by the driver code.

add a new device tree to their hardware, they just need to

user/recipes-bsp/device-tree/files directory creates a new dtsi

file and then includes it in the system-user.dtsi. The following example is to create

a new device tree and add a node that controls the led through mio.

hen included in the system-user.dtsi：

conf.dtsi"

.dtsi"

compatible = "gpio-leds";

petalinux, do not modify it

manually.

-side configuration,

automatically generated by

alinux, do not manually

modify.

The configuration of the

peripheral resources of the

development board can be

modified according to the actual

hardware situation.

Can be changed according to the

actual PL side design.

This Linux kernel device tree is a data structure that describes device information

in a unique syntax format. Passed to kernel by BootLoader, kernel parses and

forms a dev structure associated with the driver for use by the driver code.

add a new device tree to their hardware, they just need to

tree/files directory creates a new dtsi

user.dtsi. The following example is to create

node that controls the led through mio.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 label = "rs485_de";

 gpios = <&gpio 12 0>;

 linux,default

 };

 led2 {

 label = "wdt_en";

 gpios = <&gpio 33 0>;

 linux,default

 };

};

……..

};

 New led nodes

Edit the device tree user-define.dtsi to add led nodes, as shown below

/ {

 gpio-leds {

 compatible = “gpio

 led3 {

 label = "led_sys";

 gpios = <&gpio 43 0>;

 linux,default

 };

 };

};

 Add a new device tree to the recipe

Edit“project-spec/meta-user/recipes

look like this:

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

SRC_URI += "file://system-

SRC_URI += "file://user-define

python () {

L5.4.0_V1.11

 - 41 -

label = "rs485_de";

gpios = <&gpio 12 0>;

linux,default-trigger = "gpio";

label = "wdt_en";

gpios = <&gpio 33 0>;

linux,default-trigger = "gpio";

define.dtsi to add led nodes, as shown below

“gpio-leds”;

label = "led_sys";

gpios = <&gpio 43 0>;

linux,default-trigger = "gpio";

Add a new device tree to the recipe

user/recipes-bsp/device-tree/device-tree.bbappend

FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

-user.dtsi"

define.dtsi"

define.dtsi to add led nodes, as shown below：

tree.bbappend”to

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 if d.getVar("CONFIG_DISABLE"):

 d.setVarFlag("do_configure", "noexec", "1")

}

export PETALINUX

do_configure_append () {

 script="${PETALINUX}/etc/hsm/scripts/petalinux_hsm_bridge.tcl"

 data=${PETALINUX}/etc/hsm/data/

 eval xsct -sdx -nodisp ${script}

 -hdf ${DT_FILES_PATH}/hardware_description.${HDF_EXT}

 -data ${data} -sw ${DT_FILES_PATH}

}

L5.4.0_V1.11

 - 42 -

if d.getVar("CONFIG_DISABLE"):

d.setVarFlag("do_configure", "noexec", "1")

script="${PETALINUX}/etc/hsm/scripts/petalinux_hsm_bridge.tcl"

data=${PETALINUX}/etc/hsm/data/

nodisp ${script} -c ${WORKDIR}/config \

hdf ${DT_FILES_PATH}/hardware_description.${HDF_EXT} -repo ${S}

sw ${DT_FILES_PATH} -o ${DT_FILES_PATH} -a "soc_mapping"

script="${PETALINUX}/etc/hsm/scripts/petalinux_hsm_bridge.tcl"

repo ${S} \

a "soc_mapping"

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

6.2. How to configure CPU function

hardware

Implementing the control of a function pin is one of the more complex system

development processes, which contains the driving development, application

implementation and so on, this section does not analyze the development

process of each part specifically, but uses examples to explain the control

implementation of the functional pin.

6.2.1. The method of the

GPIO: General-purpose input/output

resource through which high

state through them - high or low.

GPIO configuration method

The configuration of this GPIO can be found in the description file (

Document\Datasheet\CPU\

of the MYS_ZU5EV board (01

32E4D-EDGE_V11.pdf), as follows:

GPIO is divided into 78 MIOs and 96 EMIO, specifically refer to the "General

PurposeI/O" section of the

ultrascale-trm.pdf document with detailed instructions.

 General calculation method

MIO GPIO number=MIO port number

number = EMIO port number

6.2.2. GPIO is defined

1) Configure the function pin as an instance of the GPIO function

This instance uses PS_MIO43 as a test GPIO. Describes how to configure GPIO in

the device tree and provides kernel

Simply add nodes in device tree project

tree/file/system-user.dtsi.

……

 leds {

L5.4.0_V1.11

 - 43 -

How to configure CPU function pins based on your

Implementing the control of a function pin is one of the more complex system

development processes, which contains the driving development, application

implementation and so on, this section does not analyze the development

ess of each part specifically, but uses examples to explain the control

implementation of the functional pin.

The method of the GPIO pin configuration

purpose input/output，in embedded devices, is a very important

resource through which high and low levels can be output or read into the pin

high or low.

onfiguration method

The configuration of this GPIO can be found in the description file (

\ug1085-zynq-ultrascale-trm.pdf) and the schematics

01-Document\HardwareFiles\Schematic

), as follows:

GPIO is divided into 78 MIOs and 96 EMIO, specifically refer to the "General

PurposeI/O" section of the CD-ROM 01-Document\Datasheet\CPU

document with detailed instructions.

General calculation method

port number，MIO0 GPIO number is GPIO0

port number + 78，EMIO0 GPIO number is GPIO

 in the device tree

the function pin as an instance of the GPIO function

This instance uses PS_MIO43 as a test GPIO. Describes how to configure GPIO in

the device tree and provides kernel-driven use for later chapters.

Simply add nodes in device tree project-spec/meta-user/recipes-

pins based on your

Implementing the control of a function pin is one of the more complex system

development processes, which contains the driving development, application

implementation and so on, this section does not analyze the development

ess of each part specifically, but uses examples to explain the control

in embedded devices, is a very important

and low levels can be output or read into the pin

The configuration of this GPIO can be found in the description file (01-

) and the schematics

Schematic\MYS-ZU5EV-

GPIO is divided into 78 MIOs and 96 EMIO, specifically refer to the "General

CPU\ug1085-zynq-

GPIO0. EMIO GPIO

GPIO78.

the function pin as an instance of the GPIO function

This instance uses PS_MIO43 as a test GPIO. Describes how to configure GPIO in

driven use for later chapters.

-bsp/device-

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 compatible = "gpio

 led1 {

 label = "rs485_de";

 gpios = <&gpio 12 0>;

 linux,default

 };

 led2 {

 label = "wdt_en";

 gpios = <&gpio 33 0>;

 linux,default

 };

 led3 {

 label = "led_sys";

 gpios = <&gpio 43 0>;

 linux,default

 };

 };

……

L5.4.0_V1.11

 - 44 -

compatible = "gpio-leds";

label = "rs485_de";

gpios = <&gpio 12 0>;

linux,default-trigger = "gpio";

label = "wdt_en";

gpios = <&gpio 33 0>;

linux,default-trigger = "gpio";

label = "led_sys";

gpios = <&gpio 43 0>;

linux,default-trigger = "gpio";

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

6.3. How to use your own configured pins

The pins we have configured in Kernel's

control of the pins.

6.3.1. User space uses GPIO pins

The architecture of Linux operating system is divided into user and kernel states

(or user space and kernel). User state is the active space of the upper

application, and the execution of the application must rely on the resources

provided by the kernel, including CPU resources, storage resources, I/O resources,

and so on. In order for an upper

kernel must provide an interface for the upper

This shell is a special application, commonly known as the command line,

essentially a command interpreter, which is called down the system, up and down

a variety of applications. With Shell scri

be implemented with a few lines of Shell scripts, because these Shell statements

are usually encapsulated in a layer of system calls. For user and system interaction.

This section describes three basic ways to c

user state.

 Shell command

 System call

 Library function

1) Pin control with shell

Pin control with shell is essentially implemented by calling the file operation

interface provided by Linux, and this section does not provide

instructions to view the description in Section 3.1 of the

Evaluation Guide”.

2) Library functions implement pin control

Starting with Linux 4.8, Linux introduced a new gpio operating method, GPIO

character device. Based on the "file descriptor" character device, each GPIO group

has a corresponding gpiochip file under "/dev", such as "/dev/gpiochip0 for

GPIOA, /dev/gpiochip1 for GPIOB" and so on.

L5.4.0_V1.11

 - 45 -

How to use your own configured pins

The pins we have configured in Kernel's equipment tree can be used in Kernel for

User space uses GPIO pins

The architecture of Linux operating system is divided into user and kernel states

(or user space and kernel). User state is the active space of the upper

ion, and the execution of the application must rely on the resources

provided by the kernel, including CPU resources, storage resources, I/O resources,

and so on. In order for an upper-level app to have access to these resources, the

interface for the upper-level app to access: a system call.

This shell is a special application, commonly known as the command line,

essentially a command interpreter, which is called down the system, up and down

a variety of applications. With Shell scripts, a very large functionality can usually

be implemented with a few lines of Shell scripts, because these Shell statements

are usually encapsulated in a layer of system calls. For user and system interaction.

This section describes three basic ways to control how to use GPIO pins in the

is essentially implemented by calling the file operation

interface provided by Linux, and this section does not provide detailed

instructions to view the description in Section 3.1 of the “MYS-ZU5EV_Linux

Library functions implement pin control

Starting with Linux 4.8, Linux introduced a new gpio operating method, GPIO

character device. Based on the "file descriptor" character device, each GPIO group

has a corresponding gpiochip file under "/dev", such as "/dev/gpiochip0 for

for GPIOB" and so on.

equipment tree can be used in Kernel for

The architecture of Linux operating system is divided into user and kernel states

(or user space and kernel). User state is the active space of the upper-level

ion, and the execution of the application must rely on the resources

provided by the kernel, including CPU resources, storage resources, I/O resources,

level app to have access to these resources, the

level app to access: a system call.

This shell is a special application, commonly known as the command line,

essentially a command interpreter, which is called down the system, up and down

pts, a very large functionality can usually

be implemented with a few lines of Shell scripts, because these Shell statements

are usually encapsulated in a layer of system calls. For user and system interaction.

ontrol how to use GPIO pins in the

is essentially implemented by calling the file operation

detailed

ZU5EV_Linux

Starting with Linux 4.8, Linux introduced a new gpio operating method, GPIO

character device. Based on the "file descriptor" character device, each GPIO group

has a corresponding gpiochip file under "/dev", such as "/dev/gpiochip0 for

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

The Libgpiod library function is implemented because of the gpiochip approach,

based on the C language, so the developer implemented Li

some tools and a simpler C API interface. Libgpiod provides a complete API for

developers, as well as some apps in user space to operate GPIO.

Libgpiod basic interface descriptions

 gpiodetect - List all gpiochip that appear in the system, their names, labels, and

the number of GPIO rows.

 gpioinfo - Lists all the rows of the specifi

directions, activity status, and additional flags.

 gpioget - Read the specified GPIO row value.

 gpioset - Set the specified GPIO row values, potentially keeping them exported

and waiting for timeouts, user input, or

 gpiofind - Look for the gpiochip name and row offset for a given row name.

 gpiomon - Wait for the events on the GPIO line, specify which events to

observe, how many events to handle before exiting, or whether the events should

be reported to the console.

For more descriptions, check out the libgpiod source code

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/

The following will be MIO43 as the operation of GPIO pins

language code control examples (alternately high and low).

//example-gpio.c

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/ioctl.h>

#include <unistd.h>

#include <linux/gpio.h>

int main(int argc, char **argv)

{

L5.4.0_V1.11

 - 46 -

The Libgpiod library function is implemented because of the gpiochip approach,

based on the C language, so the developer implemented Libgpiod, providing

some tools and a simpler C API interface. Libgpiod provides a complete API for

developers, as well as some apps in user space to operate GPIO.

basic interface descriptions：

List all gpiochip that appear in the system, their names, labels, and

Lists all the rows of the specified gpiochips, their names, consumers,

directions, activity status, and additional flags.

Read the specified GPIO row value.

Set the specified GPIO row values, potentially keeping them exported

and waiting for timeouts, user input, or signals.

Look for the gpiochip name and row offset for a given row name.

Wait for the events on the GPIO line, specify which events to

observe, how many events to handle before exiting, or whether the events should

onsole.

For more descriptions, check out the libgpiod source code

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/.

The following will be MIO43 as the operation of GPIO pins to achieve the C

language code control examples (alternately high and low).

int main(int argc, char **argv)

The Libgpiod library function is implemented because of the gpiochip approach,

gpiod, providing

some tools and a simpler C API interface. Libgpiod provides a complete API for

List all gpiochip that appear in the system, their names, labels, and

ed gpiochips, their names, consumers,

Set the specified GPIO row values, potentially keeping them exported

Look for the gpiochip name and row offset for a given row name.

Wait for the events on the GPIO line, specify which events to

observe, how many events to handle before exiting, or whether the events should

to achieve the C

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 struct gpiohandle_request req;

 struct gpiohandle_data data;

 char chrdev_name[20];

 int fd, ret;

 strcpy(chrdev_name, "/dev/gpiochip0");

 /* Open device: gpiochip

 fd = open(chrdev_name, 0);

 if (fd == -1) {

 ret = -errno;

 fprintf(stderr, "Failed to open %s

 return ret;

 }

 /* request GPIO line:

 req.lineoffsets[0] = 43;

 req.flags = GPIOHANDLE_REQUEST_OUTPUT;

 memcpy(req.default_values, &data,

 strcpy(req.consumer_label, "gpio_43");

 req.lines = 1;

 ret = ioctl(fd, GPIO_GET_LINEHANDLE_IOCTL, &req);

 if (ret == -1) {

 ret = -errno;

 fprintf(stderr,"Failed to issue GET LINEHANDLE IOCTL (%d)

 }

 if (close(fd) == -1)

 perror("Failed to close GPIO character device file");

 /* Start GPIO ctr*/

 while(1) {

L5.4.0_V1.11

 - 47 -

struct gpiohandle_request req;

struct gpiohandle_data data;

char chrdev_name[20];

strcpy(chrdev_name, "/dev/gpiochip0");

/* Open device: gpiochip0 for mio43*/

fd = open(chrdev_name, 0);

fprintf(stderr, "Failed to open %s\n", chrdev_name);

/* request GPIO line: mio43 */

req.lineoffsets[0] = 43;

req.flags = GPIOHANDLE_REQUEST_OUTPUT;

memcpy(req.default_values, &data, sizeof(req.default_values));

strcpy(req.consumer_label, "gpio_43");

ret = ioctl(fd, GPIO_GET_LINEHANDLE_IOCTL, &req);

fprintf(stderr,"Failed to issue GET LINEHANDLE IOCTL (%d)

perror("Failed to close GPIO character device file");

sizeof(req.default_values));

fprintf(stderr,"Failed to issue GET LINEHANDLE IOCTL (%d)\n",ret);

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 data.values[0] = !data.values[0];

 ret = ioctl(req.fd, GPIOHANDLE_SET_LINE_VALUES_IOCTL, &data);

 if (ret == -1) {

 ret = -errno;

 fprintf(stderr,"Fa

 }

 sleep(1);

 }

 /* release line */

 ret = close(req.fd);

 if (ret == -1) {

 perror("Failed to close GPIO LINEHANDLE device file");

 ret = -errno;

 }

 return ret;

}

Copy the above code under a gpioex

to the current shell:

source /opt/petalinux/2020.1

Use the compilation command $CC to generate an executable gpioex.

#$CC -o gpioex gpioex.c

Mask block led3 in device tree project

tree/file/system-user.dtsi.

……

 leds {

 compatible = "gpio

 led1 {

 label = "rs485_de";

 gpios = <&gpio 12 0>;

 linux,default

 };

L5.4.0_V1.11

 - 48 -

data.values[0] = !data.values[0];

ret = ioctl(req.fd, GPIOHANDLE_SET_LINE_VALUES_IOCTL, &data);

errno;

fprintf(stderr,"Failed to issue %s (%d)\n", ret);

perror("Failed to close GPIO LINEHANDLE device file");

y the above code under a gpioex.c file and load the SDK environment variable

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

Use the compilation command $CC to generate an executable gpioex.

block led3 in device tree project-spec/meta-user/recipes-bsp/device

compatible = "gpio-leds";

label = "rs485_de";

gpios = <&gpio 12 0>;

ux,default-trigger = "gpio";

ret = ioctl(req.fd, GPIOHANDLE_SET_LINE_VALUES_IOCTL, &data);

perror("Failed to close GPIO LINEHANDLE device file");

the SDK environment variable

xilinx-linux

Use the compilation command $CC to generate an executable gpioex.

bsp/device-

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 led2 {

 label = "wdt_en";

 gpios = <&gpio 33 0>;

 linux,default

 };

 /*

 led3 {

 label = "led_sys";

 gpios = <&gpio 43 0>;

 linux,default

 };

 */

 };

……

Compile to generate image.ub, replac

mode to start the system.

Copy executables via the network

can enter commands under the terminal to run directly, and you can see the led

light flashing next to the reset button.

./gpioex

3) The system calls for pin control

A set of "special" interfaces that the operating system provides to user programs

to call. User programs can obtain services from the operating system kernel

through this set of "special" int

reading and writing files through file system

system calls to obtain system time or set timers.

When MIO43 functions as a gpio

pins controlled by the driver.

/***

 * Copyright (c) 2014-2017 MYIR Tech Ltd.

 * File: led-test.c

 * Date: 2014/11/3

 * Author: Kevin Su

L5.4.0_V1.11

 - 49 -

label = "wdt_en";

gpios = <&gpio 33 0>;

linux,default-trigger = "gpio";

label = "led_sys";

gpios = <&gpio 43 0>;

linux,default-trigger = "gpio";

Compile to generate image.ub, replace the image.ub in the tf card, tf card start

Copy executables via the network, u disk or tf card to the board's directory, you

can enter commands under the terminal to run directly, and you can see the led

to the reset button.

The system calls for pin control

A set of "special" interfaces that the operating system provides to user programs

to call. User programs can obtain services from the operating system kernel

through this set of "special" interfaces, such as users opening files, closing files, or

reading and writing files through file system-related calls, and clock

system calls to obtain system time or set timers.

When MIO43 functions as a gpio-leds, it can be controlled by system ca

pins controlled by the driver.

/***

2017 MYIR Tech Ltd.

e the image.ub in the tf card, tf card start-up

to the board's directory, you

can enter commands under the terminal to run directly, and you can see the led

A set of "special" interfaces that the operating system provides to user programs

to call. User programs can obtain services from the operating system kernel

erfaces, such as users opening files, closing files, or

related calls, and clock-related

leds, it can be controlled by system calls via the

/***

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 * Description: A demo program to show how to control leds from user

 */

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <string.h>

#include <signal.h>

#include <linux/input.h>

#define DEBUG 1

#define ERR_MSG(fmt, args...)

#ifdef DEBUG

 #define DBG_MSG(fmt, args...)

#else

 #define DBG_MSG(fmt, args...)

#endif

#define LED_DIR "/sys/class/leds/led_sys/"

#define NAME_MAX_LENGTH

#define LED_DELAY_US

#define ARRAY_SIZE(x)

#define BITS_MASK(num)

typedef struct led_ctrl_s {

 char name[NAME_MAX_LENGTH];

 char brightness[NAME_MAX_LENGTH];

 char trigger[NAME_MAX_LENGTH];

 char trigger_backup[NAME_MAX_LENGTH];

L5.4.0_V1.11

 - 50 -

: A demo program to show how to control leds from user

args...) fprintf(stderr, fmt, ##args)

#define DBG_MSG(fmt, args...) fprintf(stdout, fmt, ##args)

#define DBG_MSG(fmt, args...)

"/sys/class/leds/led_sys/"

#define NAME_MAX_LENGTH 64

 (100*1000)

 (sizeof(x)/sizeof(x[0]))

 ((1<<num) - 1)

char name[NAME_MAX_LENGTH];

char brightness[NAME_MAX_LENGTH];

char trigger[NAME_MAX_LENGTH];

char trigger_backup[NAME_MAX_LENGTH];

: A demo program to show how to control leds from user-space.

fprintf(stdout, fmt, ##args)

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 int state;

 int initialized;

} led_ctrl_t;

static led_ctrl_tleds[] = {

 /* name, brightness, trigger, trigger_str, state, initialized */

 {"led_sys", LED_DIR "brightness", LED_DIR "trigger", "", 0, 0},

};

static int led_set_trigger(led_ctrl_t *led, cons

{

 int ret;

 int fd = open(led->trigger, O_WRONLY);

 if (fd< 0) {

 ERR_MSG("Open %s failed!

 return -1;

 }

 ret = write(fd, trigger, strlen(trigger));

 if (ret != strlen(trigger)) {

 ERR_MSG("Write %s failed!

 close(fd);

 return -1;

 }

 close(fd);

 DBG_MSG("[%8s] Set trigger to '%s'

 led->name,

 trigger);

 return 0;

}

L5.4.0_V1.11

 - 51 -

/* name, brightness, trigger, trigger_str, state, initialized */

{"led_sys", LED_DIR "brightness", LED_DIR "trigger", "", 0, 0},

static int led_set_trigger(led_ctrl_t *led, const char *trigger)

>trigger, O_WRONLY);

ERR_MSG("Open %s failed!\n", led->trigger);

ret = write(fd, trigger, strlen(trigger));

if (ret != strlen(trigger)) {

ERR_MSG("Write %s failed!\n", led->trigger);

DBG_MSG("[%8s] Set trigger to '%s'\n",

/* name, brightness, trigger, trigger_str, state, initialized */

{"led_sys", LED_DIR "brightness", LED_DIR "trigger", "", 0, 0},

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

static int led_get_trigger(led_ctrl_t *led, char *trigger)

{

 int ret;

 char tmp[1000] = {0};

 char *ptr[2] = {NULL};

 int fd = open(led->trigger, O_RDONLY);

 if (fd< 0) {

 ERR_MSG("Open %s failed!

 return -1;

 }

 /* read back string with format like: "none cpu1 cpu2 [heartbeat] nand" */

 ret = read(fd, tmp, sizeof(tmp));

 if (ret <= 0) {

 ERR_MSG("Read %s failed!

 close(fd);

 return -1;

 }

 close(fd);

 /* find trigger from read back string, which is inside "[]" */

 ptr[0] = strchr(tmp, '[');

 if (ptr[0]) {

 ptr[0] += 1;

 ptr[1] = strchr(ptr[0], ']');

 if (ptr[1]) {

 *ptr[1] = '\

 } else {

 ERR_MSG("[%s] Can not find trigger in %s!

 return -1;

 }

 strcpy(trigger, ptr[0]);

L5.4.0_V1.11

 - 52 -

static int led_get_trigger(led_ctrl_t *led, char *trigger)

char tmp[1000] = {0};

char *ptr[2] = {NULL};

>trigger, O_RDONLY);

ERR_MSG("Open %s failed!\n", led->trigger);

/* read back string with format like: "none cpu1 cpu2 [heartbeat] nand" */

ret = read(fd, tmp, sizeof(tmp));

G("Read %s failed!\n", led->trigger);

/* find trigger from read back string, which is inside "[]" */

ptr[0] = strchr(tmp, '[');

ptr[1] = strchr(ptr[0], ']');

\0';

ERR_MSG("[%s] Can not find trigger in %s!\n", led

strcpy(trigger, ptr[0]);

/* read back string with format like: "none cpu1 cpu2 [heartbeat] nand" */

/* find trigger from read back string, which is inside "[]" */

n", led->name, tmp);

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 } else {

 ERR_MSG("[%s] Can not find trigger in %s!

 return -1;

 }

 DBG_MSG("[%8s] Get trigg

 led->name,

 trigger);

 return 0;

}

static int led_set_brightness(led_ctrl_t * led, int brightness)

{

 int ret;

 int fd = open(led->brightness, O_WRONLY);

 char br_str[2] = {0};

 br_str[0] = '0' + brightness;

 if (fd< 0) {

 ERR_MSG("Open %s failed!

 return -1;

 }

 ret = write(fd, br_str, sizeof(br_str));

 if (ret != sizeof(br_str)) {

 ERR_MSG("Write %s failed!

 close(fd);

 return -1;

 }

 close(fd);

 // DBG_MSG("[%s] Set bright

L5.4.0_V1.11

 - 53 -

ERR_MSG("[%s] Can not find trigger in %s!\n", led->name, tmp);

DBG_MSG("[%8s] Get trigger: '%s'\n",

static int led_set_brightness(led_ctrl_t * led, int brightness)

>brightness, O_WRONLY);

br_str[0] = '0' + brightness;

ERR_MSG("Open %s failed!\n", led->brightness);

ret = write(fd, br_str, sizeof(br_str));

if (ret != sizeof(br_str)) {

ERR_MSG("Write %s failed!\n", led->brightness);

// DBG_MSG("[%s] Set brightness to %s successfully!\n",

>name, tmp);

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 // led->name,

 // br_str);

 return 0;

}

static int led_init(void)

{

 int i;

 char tmp[NAME_MAX_LENGTH];

 for (i=0; i<ARRAY_SIZE(leds); i++) {

 memset(tmp, 0, sizeof(tmp));

 /* Backup all led triggers */

 if (led_get_trigger(&leds[i], tmp)) {

 return -1;

 }

 strcpy(leds[i].trigger_backup, tmp);

 /* Set all led triggers to 'none' */

 if (led_set_trigger(&leds[i], "none")) {

 return -1;

 }

 /* Set all brightness to 0 */

 if (led_set_brightness(&

 return -1;

 }

 leds[i].state = 0;

 leds[i].initialized = 1;

 }

L5.4.0_V1.11

 - 54 -

char tmp[NAME_MAX_LENGTH];

for (i=0; i<ARRAY_SIZE(leds); i++) {

memset(tmp, 0, sizeof(tmp));

/* Backup all led triggers */

(led_get_trigger(&leds[i], tmp)) {

strcpy(leds[i].trigger_backup, tmp);

/* Set all led triggers to 'none' */

if (led_set_trigger(&leds[i], "none")) {

/* Set all brightness to 0 */

if (led_set_brightness(&leds[i], 0)) {

leds[i].state = 0;

leds[i].initialized = 1;

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 return 0;

}

static void led_restore(void)

{

 int i;

 /* set all brightness to '0', and restore triggers */

 for (i=0; i<ARRAY_SIZE(leds); i++) {

 if (leds[i].initializ

 led_set_brightness(&leds[i], 0);

 led_set_trigger(&leds[i], leds[i].trigger_backup);

 }

 }

}

/* Will be called if SIGINT(Ctrl+C) and SIGTERM(simple kill) signal is received */

static void signal_callback(int num)

{

 led_restore();

 exit(num);

}

int main(int argc, const char *argv[])

{

 /* Open button device */

 if(led_init()) {

 led_restore();

 return -1;

 }

 /* Register SIGINT(Ctrl+C) and SIGTERM(simple kill) signal and signal handl

er */

L5.4.0_V1.11

 - 55 -

static void led_restore(void)

/* set all brightness to '0', and restore triggers */

for (i=0; i<ARRAY_SIZE(leds); i++) {

if (leds[i].initialized) {

led_set_brightness(&leds[i], 0);

led_set_trigger(&leds[i], leds[i].trigger_backup);

/* Will be called if SIGINT(Ctrl+C) and SIGTERM(simple kill) signal is received */

static void signal_callback(int num)

int main(int argc, const char *argv[])

/* Open button device */

/* Register SIGINT(Ctrl+C) and SIGTERM(simple kill) signal and signal handl

/* Will be called if SIGINT(Ctrl+C) and SIGTERM(simple kill) signal is received */

/* Register SIGINT(Ctrl+C) and SIGTERM(simple kill) signal and signal handl

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 signal(SIGINT, signal_callback);

 signal(SIGTERM, signal_callback);

 for (;;) {

 if (leds[0].state == 0) { /* if already ON, do nothing */

 leds[0].state = 1;

 led_set_brightness(&leds[0], leds[0].state);

 } else { /* this led should be turn OFF */

 leds[0].state = 0;

 led_set_brightness(&

 }

 usleep(LED_DELAY_US);

 }

 led_restore();

 return 0;

}

Copy the above code under a gpiotest
to the current shell:

source /opt/petalinux/2020.1

Use the compilation command $CC to generate an executable led

$CC -o led-test led-test.c

Configure led3 in device tree project
tem-user.dtsi.

……

 leds {

 compatible = "gpi

 led1 {

 label = "rs485_de";

 gpios = <&gpio 12 0>;

 linux,default

L5.4.0_V1.11

 - 56 -

signal(SIGINT, signal_callback);

ignal_callback);

if (leds[0].state == 0) { /* if already ON, do nothing */

leds[0].state = 1;

led_set_brightness(&leds[0], leds[0].state);

} else { /* this led should be turn OFF */

leds[0].state = 0;

led_set_brightness(&leds[0], leds[0].state);

usleep(LED_DELAY_US);

the above code under a gpiotest.c file and load the SDK environment variable

/opt/petalinux/2020.1/environment-setup-aarch64-xilin

Use the compilation command $CC to generate an executable led

test.c

onfigure led3 in device tree project-spec/meta-user/recipes-bsp/device

compatible = "gpio-leds";

label = "rs485_de";

gpios = <&gpio 12 0>;

linux,default-trigger = "gpio";

.c file and load the SDK environment variable

xilinx-linux

Use the compilation command $CC to generate an executable led-test.

bsp/device-tree/file/sys

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 };

 led2 {

 label = "wdt_en";

 gpios = <&gpio 33 0>;

 linux,default

 };

 led3 {

 label = "led_sys";

 gpios = <&gpio 43 0>;

 linux,default

 };

 };

……

Compile to generate image.ub, replace the image.ub in the tf card, tf card start

mode to start the system.

Copy executables via network

enter commands under the terminal to run directly.

./led-test

You can see the led light flashing next to the reset button.

L5.4.0_V1.11

 - 57 -

label = "wdt_en";

gpios = <&gpio 33 0>;

linux,default-trigger = "gpio";

label = "led_sys";

os = <&gpio 43 0>;

linux,default-trigger = "gpio";

Compile to generate image.ub, replace the image.ub in the tf card, tf card start

Copy executables via network, u disks or tf card to the board's directory, and

enter commands under the terminal to run directly.

You can see the led light flashing next to the reset button.

Compile to generate image.ub, replace the image.ub in the tf card, tf card start-up

to the board's directory, and

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

7. Linux application example of FPGA

PL function
Usually the PL function we

the PL function properly. This chapter takes the axi

and describes the linux application process for FPGA PL features.

7.1. Implementation process of petalinux software in Axi

uartlite
 The steps for implementing the functionality are as follows:

（1）Establish the basic bsp package

（2）Configure the kernel device tree

（3）Configure the kernel driver

（4）Petalinux compile

（5）Test the module functionality of the PL

 Establish the basic bsp package

Copy the design_1_wrapper.xsa generated by

05-ProgrammableLogic_Source

directory /home/work/vivadoxsa/

petalinux-create -t project

petalinux-config --get-hw

 Configure the kernel device tree

Configure the petalinux project

tree/files/system-user.dtsi device tree file as follows:

/include/ "system-conf.dtsi"

#include <dt-bindings/media/xilinx

/ {

L5.4.0_V1.11

 - 58 -

Linux application example of FPGA

Usually the PL function we implement in fpga requires software support to use

the PL function properly. This chapter takes the axi-uartlite ip core as an example

and describes the linux application process for FPGA PL features.

Implementation process of petalinux software in Axi

The steps for implementing the functionality are as follows:

bsp package

Configure the kernel device tree

Configure the kernel driver

Test the module functionality of the PL

p package

Copy the design_1_wrapper.xsa generated by

ProgrammableLogic_Source/axi_uartlite.rar sample project on the

/home/work/vivadoxsa/

t project -s mys_zu5ev2020_4G_ core.bsp

hw-description=/home/work/vivadoxsa/

Configure the kernel device tree

Configure the petalinux project-spec/meta-user/recipes-bsp/device

user.dtsi device tree file as follows:

conf.dtsi"

bindings/media/xilinx-vip.h>

Linux application example of FPGA

implement in fpga requires software support to use

uartlite ip core as an example

and describes the linux application process for FPGA PL features.

Implementation process of petalinux software in Axi

sample project on the CD to the

/vivadoxsa/

bsp/device-

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 chosen {

 bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 r

w rootwait clk_ignore_unused";

 stdout-path = "serial0:115200n8";

 };

};

&sdhci0 {

 no-1-8-v;

};

&sdhci1 {

 disable-wp;

 no-1-8-v;

};

&qspi {

 flash@0 {

 compatible = "m25p80";

 #address-cells = <1>;

 #size-cells = <1>;

 reg = <0x0>;

 spi-tx-bus-width = <1>;

 spi-rx-bus-width = <4>;

 spi-max-frequency = <54000000>;

 };

};

Petalinux automatically generates axi uartlite's device tree profile

components/plnx_workspace/device

/*

 * CAUTION: This file is automatically generated by Xilinx.

 * Version:

 * Today is: Fri Jun 11 08:34:40 2021

L5.4.0_V1.11

 - 59 -

bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 r

w rootwait clk_ignore_unused";

path = "serial0:115200n8";

compatible = "m25p80";

cells = <1>;

cells = <1>;

width = <1>;

width = <4>;

frequency = <54000000>;

Petalinux automatically generates axi uartlite's device tree profile

components/plnx_workspace/device-tree/device-tree/pl.dtsi as follows:

* CAUTION: This file is automatically generated by Xilinx.

* Today is: Fri Jun 11 08:34:40 2021

bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 r

Petalinux automatically generates axi uartlite's device tree profile

tree/pl.dtsi as follows:

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 */

/ {

 amba_pl: amba_pl@0 {

 #address-cells = <2>;

 #size-cells = <2>;

 compatible = "simpl

 ranges ;

 axi_uartlite_0: serial@80000000 {

 clock-names = "s_axi_aclk";

 clocks = <&zynqmp_clk 71>;

 compatible = "xlnx,axi

 current-speed = <115200>;

 device_type = "serial";

 interrupt-names = "interrupt";

 interrupt-parent = <&gic>;

 interrupts = <0 89 1>;

 port-number = <1>;

 reg = <0x0 0x80000000 0x0 0x10000>;

 xlnx,baudrate = <0x1c200>;

 xlnx,data-bits = <0x8>;

 xlnx,odd-parity

 xlnx,s-axi-aclk

 xlnx,use-parity = <0x0>;

 };

 };

};

The kernel device tree is configured.

 Configure the kernel driver

Look at the kernel device tree,

petalinux-config -c kernel

L5.4.0_V1.11

 - 60 -

amba_pl: amba_pl@0 {

cells = <2>;

cells = <2>;

compatible = "simple-bus";

axi_uartlite_0: serial@80000000 {

names = "s_axi_aclk";

clocks = <&zynqmp_clk 71>;

compatible = "xlnx,axi-uartlite-2.0", "xlnx,xps-uartlite

speed = <115200>;

device_type = "serial";

names = "interrupt";

parent = <&gic>;

ts = <0 89 1>;

number = <1>;

reg = <0x0 0x80000000 0x0 0x10000>;

xlnx,baudrate = <0x1c200>;

bits = <0x8>;

parity = <0x0>;

aclk-freq-hz-d = "99.999001";

parity = <0x0>;

The kernel device tree is configured.

Configure the kernel driver

Look at the kernel device tree, which is already equipped with an axi uartlite drive

c kernel

uartlite-1.00.a";

which is already equipped with an axi uartlite driver.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 Petalinux compile

petalinux-build

 Test the module functionality of the PL

Test PL module function, in hardware, is RS232, that is, the J

MYS_ZU5EV development board, testing can be directly J12 interface 1 foot and 3

feet short, you can be on a board RS232 test.

The tester code for Rs232 is as follows:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <termios.h>

#include <errno.h>

#include <getopt.h>

#include <string.h>

#define FALSE 1

L5.4.0_V1.11

 - 61 -

Figure 8-1 kernel configuration

Test the module functionality of the PL

Test PL module function, in hardware, is RS232, that is, the J12 interface of the

MYS_ZU5EV development board, testing can be directly J12 interface 1 foot and 3

feet short, you can be on a board RS232 test.

The tester code for Rs232 is as follows:

12 interface of the

MYS_ZU5EV development board, testing can be directly J12 interface 1 foot and 3

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

#define TRUE 0

char *recchr="We received:

void print_usage();

int speed_arr[] = {

 B921600, B460800, B230400, B115200, B57600, B38400, B19200,

 B9600, B4800, B2400, B1200, B300,

};

int name_arr[] = {

 921600, 460800, 230400, 115200, 57600, 38400, 19200,

 9600, 4800, 2400, 1200, 300,

};

void set_speed(int fd, int speed)

{

 int i;

 int status;

 struct termiosOpt;

 tcgetattr(fd, &Opt);

 for (i= 0; i<sizeof(speed_arr) / sizeof(int); i++) {

 if (speed == name_arr[i])

 tcflush(fd, TCIOFLUSH);

 cfsetispeed(&Opt, speed_arr[i]);

 cfsetospeed(&Opt, speed_arr[i]);

 status = tcset

 if (status != 0)

 perror("tcsetattr fd1");

 return;

 }

L5.4.0_V1.11

 - 62 -

char *recchr="We received:\"";

800, B230400, B115200, B57600, B38400, B19200,

B9600, B4800, B2400, B1200, B300,

921600, 460800, 230400, 115200, 57600, 38400, 19200,

9600, 4800, 2400, 1200, 300,

void set_speed(int fd, int speed)

for (i= 0; i<sizeof(speed_arr) / sizeof(int); i++) {

if (speed == name_arr[i]) {

tcflush(fd, TCIOFLUSH);

cfsetispeed(&Opt, speed_arr[i]);

cfsetospeed(&Opt, speed_arr[i]);

status = tcsetattr(fd, TCSANOW, &Opt);

if (status != 0)

perror("tcsetattr fd1");

return;

800, B230400, B115200, B57600, B38400, B19200,

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 tcflush(fd,TCIOFLUSH);

 }

 if (i == 12){

 printf("\tSorry, please set the correct baud rate!

 print_usage(stderr, 1);

 }

}

/*

 *@brief set serial data

*/

int set_Parity(int fd,intdatabits,intstopbits,int parity)

{

 struct termios options;

 if (tcgetattr(fd,&options) != 0) {

 perror("SetupSerial 1");

 return(FALSE);

 }

 options.c_cflag&= ~CSIZE ;

 switch (databits) {

 case 7:

 options.c_cflag |= CS7;

 break;

 case 8:

 options.c_cflag |= CS8;

 break;

 default:

 fprintf(stderr,"Unsupported data size

 return (FALSE);

 }

 switch (parity) {

L5.4.0_V1.11

 - 63 -

tcflush(fd,TCIOFLUSH);

tSorry, please set the correct baud rate!\n\n");

print_usage(stderr, 1);

erial data bit, stop bit and check bit

int set_Parity(int fd,intdatabits,intstopbits,int parity)

struct termios options;

if (tcgetattr(fd,&options) != 0) {

perror("SetupSerial 1");

options.c_cflag&= ~CSIZE ;

options.c_cflag |= CS7;

options.c_cflag |= CS8;

fprintf(stderr,"Unsupported data size\n");

n");

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 case 'n':

 case 'N':

 options.c_cflag&= ~PARENB; /* Clear parity enabl

 options.c_iflag&= ~INPCK; /* Enable parity checking */

 break;

 case 'o':

 case 'O':

 options.c_cflag |= (PARODD | PARENB);

 options.c_iflag |= INPCK; /* Disnable parity checking */

 break;

 case 'e':

 case 'E':

 options.c_cflag |= PARENB; /* Enable parity */

 options.c_cflag&= ~PARODD;

 options.c_iflag |= INPCK; /* Disnable parity checking */

 break;

 case 'S':

 case 's': /*as no parity*/

 options.c_cflag&= ~PARENB;

 options.c_cflag&= ~CSTOPB;

 break;

 default:

 fprintf(stderr,"Unsupported parity

 return (FALSE);

 }

 switch (stopbits) {

 case 1:

 options.c_cflag&= ~CSTOPB;

 break;

 case 2:

 options.c_cflag |= CSTOPB;

 break;

L5.4.0_V1.11

 - 64 -

options.c_cflag&= ~PARENB; /* Clear parity enable */

options.c_iflag&= ~INPCK; /* Enable parity checking */

options.c_cflag |= (PARODD | PARENB);

options.c_iflag |= INPCK; /* Disnable parity checking */

|= PARENB; /* Enable parity */

options.c_cflag&= ~PARODD;

options.c_iflag |= INPCK; /* Disnable parity checking */

case 's': /*as no parity*/

options.c_cflag&= ~PARENB;

options.c_cflag&= ~CSTOPB;

fprintf(stderr,"Unsupported parity\n");

options.c_cflag&= ~CSTOPB;

options.c_cflag |= CSTOPB;

e */

options.c_iflag&= ~INPCK; /* Enable parity checking */

options.c_iflag |= INPCK; /* Disnable parity checking */

options.c_iflag |= INPCK; /* Disnable parity checking */

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 default:

 fprintf(stderr,"Unsupported stop bits

 return (FALSE);

 }

 /* Set input parity option */

 if (parity != 'n')

 options.c_iflag |= INPCK;

 options.c_cc[VTIME] = 150; // 15 seconds

 options.c_cc[VMIN] = 0;

 options.c_lflag&= ~(ECHO | ICANON);

 tcflush(fd,TCIFLUSH); /* Update the options and do it NOW */

 if (tcsetattr(fd,TCSANOW,&options) != 0) {

 perror("SetupSerial 3");

 return (FALSE);

 }

 return (TRUE);

}

/**

 *@breif open serial port

*/

int OpenDev(char *Dev)

{

 int fd = open(Dev, O_RDWR); //| O_NOCTTY | O_NDELAY

 if (-1 == fd) {

 perror("Can't Open Serial Port");

 return -1;

 } else

 return fd;

}

L5.4.0_V1.11

 - 65 -

fprintf(stderr,"Unsupported stop bits\n");

/* Set input parity option */

options.c_iflag |= INPCK;

options.c_cc[VTIME] = 150; // 15 seconds

options.c_cc[VMIN] = 0;

options.c_lflag&= ~(ECHO | ICANON);

tcflush(fd,TCIFLUSH); /* Update the options and do it NOW */

attr(fd,TCSANOW,&options) != 0) {

perror("SetupSerial 3");

open serial port

int fd = open(Dev, O_RDWR); //| O_NOCTTY | O_NDELAY

Open Serial Port");

tcflush(fd,TCIFLUSH); /* Update the options and do it NOW */

int fd = open(Dev, O_RDWR); //| O_NOCTTY | O_NDELAY

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

/* The name of this program */

const char * program_name;

/* Prints usage information for this program to STREAM (typically

 * stdout or stderr), and exit the program with EXIT_CODE. Does not

 * return.

 */

void print_usage (FILE *stream, int exit_code)

{

fprintf(stream, "Usage: %s option [dev...]

fprintf(stream,

 "\t-h --help Display this usage information.

 "\t-d --device The device ttyS

 "\t-b --baudrate Set the baud rate you can select

 "\t [230400, 115200, 57600, 38400, 19200, 9600, 4800, 2400, 120

0, 300]\n"

 "\t-s --string Write the device data

 exit(exit_code);

}

/*

 *@breif main()

 */

int main(int argc, char *argv[])

{

 int fd, next_option, havearg = 0;

 char *device;

 int i=0,j=0;

 int nread;

L5.4.0_V1.11

 - 66 -

/* The name of this program */

const char * program_name;

/* Prints usage information for this program to STREAM (typically

* stdout or stderr), and exit the program with EXIT_CODE. Does not

void print_usage (FILE *stream, int exit_code)

fprintf(stream, "Usage: %s option [dev...] \n", program_name);

help Display this usage information.\n"

device The device ttyS[0-3] or ttySCMA[0-1]\n"

baudrate Set the baud rate you can select\n"

t [230400, 115200, 57600, 38400, 19200, 9600, 4800, 2400, 120

string Write the device data\n");

int main(int argc, char *argv[])

int fd, next_option, havearg = 0;

 /* Read the counts of data */

/* Prints usage information for this program to STREAM (typically

* stdout or stderr), and exit the program with EXIT_CODE. Does not

n", program_name);

n"

t [230400, 115200, 57600, 38400, 19200, 9600, 4800, 2400, 120

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 char buff[512];

 pid_tpid;

 char *xmit = "1234567890"; /* Default send data */

 int speed, send_mode = 0;

 const char *const short_options = "hd:s:b:m:";

 const struct option long_options[] = {

 { "help", 0, NULL, 'h'},

 { "device", 1, NULL, 'd'},

 { "string", 1, NULL, 's'},

 { "baudrate", 1, NULL, 'b'},

 { "send/recv mode", 0, NULL, 'm'},

 { NULL, 0, NULL, 0 }

 };

 program_name = argv[0];

 do {

 next_option = getopt_long (argc, argv, short_options, long_options, NU

LL);

 switch (next_option) {

 case 'h':

 print_usage (stdout, 0);

 case 'd':

 device = optarg;

 havearg = 1;

 break;

 case 'b':

 speed = atoi(optarg);

 break;

 case 's':

 xmit = optarg;

 havearg = 1;

L5.4.0_V1.11

 - 67 -

 /* Recvice data buffer */

char *xmit = "1234567890"; /* Default send data */

int speed, send_mode = 0;

const char *const short_options = "hd:s:b:m:";

const struct option long_options[] = {

{ "help", 0, NULL, 'h'},

{ "device", 1, NULL, 'd'},

{ "string", 1, NULL, 's'},

{ "baudrate", 1, NULL, 'b'},

{ "send/recv mode", 0, NULL, 'm'},

{ NULL, 0, NULL, 0 }

program_name = argv[0];

next_option = getopt_long (argc, argv, short_options, long_options, NU

switch (next_option) {

t_usage (stdout, 0);

device = optarg;

havearg = 1;

break;

speed = atoi(optarg);

break;

xmit = optarg;

havearg = 1;

next_option = getopt_long (argc, argv, short_options, long_options, NU

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 break;

 case 'm':

 send_mode = atoi(optarg);

 break;

 case -1:

 if (havearg) break;

 case '?':

 print_usage (stderr, 1);

 default:

 abort ();

 }

 }while(next_option !=

 sleep(1);

 fd = OpenDev(device);

 if (fd> 0) {

 set_speed(fd, speed);

 } else {

 fprintf(stderr, "Error opening %s: %s

 exit(1);

 }

 if (set_Parity(fd,8,1,'N')== FALSE) {

 fprintf(stderr, "Set Parity Error

 close(fd);

 exit(1);

 }

#if 0

 pid = fork();

 if (pid< 0) {

 fprintf(stderr, "Error in fork!

L5.4.0_V1.11

 - 68 -

break;

send_mode = atoi(optarg);

break;

if (havearg) break;

print_usage (stderr, 1);

abort ();

}while(next_option != -1);

fd = OpenDev(device);

set_speed(fd, speed);

fprintf(stderr, "Error opening %s: %s\n", device, strerror(errno));

if (set_Parity(fd,8,1,'N')== FALSE) {

fprintf(stderr, "Set Parity Error\n");

fprintf(stderr, "Error in fork!\n");

device, strerror(errno));

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 } else if (pid == 0){

#endif

 if (send_mode){

 while(1) {

 printf("%s SEND: %s

 write(fd, xmit, strlen(xmit));

 sleep(1);

 i++;

 }

}else {

 while(1) {

 nread = read(fd, buff, sizeof(buff));

 if (nread> 0) {

 buff[nread] = '

 printf("%s

 }

 }

 }

 close(fd);

 exit(0);

}

Set up the cross-compilation tool

source /opt/petalinux/2020.1

Compile the test program for RS232

$CC -o uart_test uart_test.c

Use the compiled executable uart_test to test the functionality of axiuartlite.

./uart_test -d /dev/ttyUL1

./uart_test -d /dev/ttyUL1

/dev/ttyUL2 SEND: 1234567890

/dev/ttyUL2 RECV[1]: 1

/dev/ttyUL2 RECV[1]: 2

L5.4.0_V1.11

 - 69 -

printf("%s SEND: %s\n",device, xmit);

write(fd, xmit, strlen(xmit));

nread = read(fd, buff, sizeof(buff));

if (nread> 0) {

buff[nread] = '\0';

printf("%s RECV[%d]: %s\n", device, nread, buff);

compilation tool

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

Compile the test program for RS232

uart_test.c

mpiled executable uart_test to test the functionality of axiuartlite.

1 -b 115200 -m 0 &

1 -b 115200 -m 1

/dev/ttyUL2 SEND: 1234567890

n", device, nread, buff);

xilinx-linux

mpiled executable uart_test to test the functionality of axiuartlite.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

/dev/ttyUL2 RECV[1]: 3

/dev/ttyUL2 RECV[1]: 4

/dev/ttyUL2 RECV[1]: 5

/dev/ttyUL2 RECV[1]: 6

/dev/ttyUL2 RECV[1]: 7

/dev/ttyUL2 RECV[1]: 8

/dev/ttyUL2 RECV[1]: 9

/dev/ttyUL2 RECV[1]: 0

/dev/ttyUL2 SEND: 1234567890

/dev/ttyUL2 RECV[1]: 1

/dev/ttyUL2 RECV[1]: 2

/dev/ttyUL2 RECV[1]: 3

/dev/ttyUL2 RECV[1]: 4

/dev/ttyUL2 RECV[1]: 5

/dev/ttyUL2 RECV[1]: 6

/dev/ttyUL2 RECV[1]: 7

/dev/ttyUL2 RECV[1]: 8

/dev/ttyUL2 RECV[1]: 9

/dev/ttyUL2 RECV[1]: 0

The information tested can be seen that the axi

normal and the data sent is received normally.

L5.4.0_V1.11

 - 70 -

/dev/ttyUL2 SEND: 1234567890

The information tested can be seen that the axi uartlite serial communication is

mal and the data sent is received normally.

uartlite serial communication is

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

8. How to add your app
The porting of Linux application is typically divided into two phases, the

development debugging phase and the production deployment phase. During

the development debugging phase, we can cro

application using the MYIR

for testing. The production deployment phase requires writing recipe files for your

app and building production images using BitBake.

8.1. Makefile based applications

This Makefile is actually a document that defines a series of compilation rules that

record the details of how the original code is compiled! Once Ma

it only requires a make command, and the entire project is fully automat

compiled, greatly improving the efficiency of software development. When

developing Linux programs, Makefile was widely used in both kernels, drivers, and

applications.

Make is a command tool, a command tool that interprets instructions in makefile

It simplifies the instructions issued in the compilation process, and when mak is

executed, make searches the text file make

directory to perform the corresponding operations. make automatically

determines whether the ori

the changed source code.

The following is an actual example of Mak

(implementing the control of

has its own set of rules.

target ... : prerequisites ...

 command

 target can be an object file, an execution file, or a label.

 prerequisites is to generate the file or target that target needs.

 command is the command that make needs to be executed.

TARGET = $(notdir $(CURDIR))

objs := $(patsubst %c, %o, $(shell ls *.c))

$(TARGET)_test:$(objs)

L5.4.0_V1.11

 - 71 -

How to add your app
The porting of Linux application is typically divided into two phases, the

development debugging phase and the production deployment phase. During

the development debugging phase, we can cross-compile our well

YIR-built SDK and then remotely copy it to the target host

for testing. The production deployment phase requires writing recipe files for your

app and building production images using BitBake.

ed applications

This Makefile is actually a document that defines a series of compilation rules that

record the details of how the original code is compiled! Once Ma

it only requires a make command, and the entire project is fully automat

compiled, greatly improving the efficiency of software development. When

developing Linux programs, Makefile was widely used in both kernels, drivers, and

ake is a command tool, a command tool that interprets instructions in makefile

It simplifies the instructions issued in the compilation process, and when mak is

ake searches the text file makefile (or makefile) in the current

directory to perform the corresponding operations. make automatically

determines whether the original file has been changed, automatically recompiling

The following is an actual example of Makefile writing and making execution

the control of LED light switch on the MYS-ZU5EV board). Makefile

can be an object file, an execution file, or a label.

s to generate the file or target that target needs.

s the command that make needs to be executed.

$(CURDIR))

objs := $(patsubst %c, %o, $(shell ls *.c))

The porting of Linux application is typically divided into two phases, the

development debugging phase and the production deployment phase. During

compile our well-written

built SDK and then remotely copy it to the target host

for testing. The production deployment phase requires writing recipe files for your

This Makefile is actually a document that defines a series of compilation rules that

record the details of how the original code is compiled! Once Makefile is written,

it only requires a make command, and the entire project is fully automatically

compiled, greatly improving the efficiency of software development. When

developing Linux programs, Makefile was widely used in both kernels, drivers, and

ake is a command tool, a command tool that interprets instructions in makefile.

It simplifies the instructions issued in the compilation process, and when mak is

file (or makefile) in the current

directory to perform the corresponding operations. make automatically

ginal file has been changed, automatically recompiling

file writing and making execution

ZU5EV board). Makefile

s to generate the file or target that target needs.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 $(CC) -o $@ $^

%.o:%.c

 $(CC) -c -o $@ $<

clean:

 rm -f $(TARGET)_test *.all *.o

 ${CC} -I . -c gpioctrl.c

 $(notdir $(path))

the path name, leaving only the current directory name, such as the

current Makefile directory as /home/examples/gpioapp, and executing

as TARGET=gpioapp

 $(patsubst pattern,

"pattern" characters in the text with reset, such as $(patsubst

$(shell ls *.c), which means that files with the current directory suffix

of .c are listed first, and then replaced with a suffix of .o

 CC：C The name of the compiler

 CXX: C++ The name of the compiler

 clean: a agreed goal

gpioctrl.c is as follows：

//gpioctrl.c

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <string.h>

/*

* ./gpioctrl /sys/class/leds/led_sys on

* ./gpioctrl /sys/class/leds/led_sys off

 */

int main(int argc, char **argv)

{

L5.4.0_V1.11

 - 72 -

o $@ $<

f $(TARGET)_test *.all *.o

$(notdir $(path))： Indicates that the path directory is removed from

the path name, leaving only the current directory name, such as the

current Makefile directory as /home/examples/gpioapp, and executing

gpioapp

pattern, replacement,text) ：Replace the formatted

"pattern" characters in the text with reset, such as $(patsubst

.c), which means that files with the current directory suffix

of .c are listed first, and then replaced with a suffix of .o

The name of the compiler

The name of the compiler

a agreed goal

* ./gpioctrl /sys/class/leds/led_sys on

* ./gpioctrl /sys/class/leds/led_sys off

int main(int argc, char **argv)

Indicates that the path directory is removed from

the path name, leaving only the current directory name, such as the

current Makefile directory as /home/examples/gpioapp, and executing

formatted

"pattern" characters in the text with reset, such as $(patsubst %c, %o,

.c), which means that files with the current directory suffix

of .c are listed first, and then replaced with a suffix of .o

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 int fd;

 char status;

 /* 1. Check argc */

 if (argc != 3)

 {

 printf("Usage: %s <dev><on | off>

 return -1;

 }

 /* 2. Open file */

 fd = open(argv[1], O_R

 if (fd == -1)

 {

 printf("can not open file %s

 return -1;

 }

 /* 3. Write file */

 if (0 == strcmp(argv[2], "on"))

 {

 status = '0';

 write(fd, &status, 1);

 }

 else

 {

 status = '1';

 write(fd, &status, 1);

 }

 close(fd);

 return 0;

L5.4.0_V1.11

 - 73 -

printf("Usage: %s <dev><on | off>\n", argv[0]);

fd = open(argv[1], O_RDWR);

printf("can not open file %s\n", argv[1]);

if (0 == strcmp(argv[2], "on"))

write(fd, &status, 1);

write(fd, &status, 1);

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

}

Use the make command to compile and generate executable files on the target

machine gpioapp_test.

Load SDK environment variables to the current shell:

source /opt/petalinux/2020.1

Execute make:

make CC=aarch64-xilinx-

As you can see from the results of the previous command, the compiler used is

the compiler established by setting up the CC variables defined in the script.

Copy gpioapp_test executables to the board's catalog via transport media such as

networks, u disks or tf card

./gpioapp_test /sys/class/

./gpioapp_test /sys/class/

The MYS-ZU5EV board controls the LED light switch

L5.4.0_V1.11

 - 74 -

Use the make command to compile and generate executable files on the target

Load SDK environment variables to the current shell:

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

-linux-gcc

As you can see from the results of the previous command, the compiler used is

the compiler established by setting up the CC variables defined in the script.

executables to the board's catalog via transport media such as

or tf card:

/leds/led_sys/brightness on

/leds/led_sys/brightness off

ZU5EV board controls the LED light switch next to the reset button.

Use the make command to compile and generate executable files on the target

xilinx-linux

As you can see from the results of the previous command, the compiler used is

the compiler established by setting up the CC variables defined in the script.

executables to the board's catalog via transport media such as

next to the reset button.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

8.2. Qt-based apps

Qt is a cross-platform graphics application development framework that is used

on devices and platforms of different sizes, while providing different copyright

versions for users to choose from. MYS

development. In Qt application development, it is recommended to use QtCreator

integrated development environment, Qt application can be developed under

Linux PC, automated cross-

1) QtCreator install and configure

Get the qtcreator installation package QT website for download from the QT

official website or MYIR official package

http://download.qt.io/development_releases/qtcreator/4.1/4.1.0

QtCreator installation package is a binary program that can be executed

directly ./qt-creator-opensource

documentation "MYS-ZU5EV_QT Application Development Notes" on CD for

installation and configuration details

L5.4.0_V1.11

 - 75 -

platform graphics application development framework that is used

on devices and platforms of different sizes, while providing different copyright

versions for users to choose from. MYS-ZU5EV uses Qt 5.13.2 for application

ication development, it is recommended to use QtCreator

integrated development environment, Qt application can be developed under

-compiled as a board arm architecture program.

install and configure

tallation package QT website for download from the QT

IR official package：

http://download.qt.io/development_releases/qtcreator/4.1/4.1.0-

installation package is a binary program that can be executed

opensource-linux-x86_64-4.1.0-rc1.run, please refer to the

ZU5EV_QT Application Development Notes" on CD for

installation and configuration details.

platform graphics application development framework that is used

on devices and platforms of different sizes, while providing different copyright

ZU5EV uses Qt 5.13.2 for application

ication development, it is recommended to use QtCreator

integrated development environment, Qt application can be developed under

compiled as a board arm architecture program.

tallation package QT website for download from the QT

-rc1/.

installation package is a binary program that can be executed

rc1.run, please refer to the

ZU5EV_QT Application Development Notes" on CD for

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

8.3. The application starts from boot

1) The configuration of the application in Petalinux

Often our applications also need to be boot

be done in recipes. Here's an example of how to use Petalinux to build a

production image that contains a specific application, where the FTP service

program uses open source Proftpd, where each version of the source code is

located ftp://ftp.proftpd.org/distrib/source/

Before we write a recipe from scratch, we can find out if there are ready

similar recipes in Petalinux's existing layers of components/yocto/layers, as

follows:

find components/yocto/layers

We can also index it at openEmbedded's official website

（http://layers.openembedded.org/layerindex/branch/master/layers/

there are recipes for the same or similar app.

This section focuses on how to port FTP services to the

of the Petalinux layer revealed that a recipe for proftpd already existed, but it was

not added to the system image. The specific migration process is described in

detail below.

 Find Petalinux's proftpd recipe

find components/yocto/layers

components/yocto/layers/meta

ons/proftpd

Note: You can see that the propftpd recipe already exists in the Petalinux project.

 Package proftpd to the file system

Add a line to <plnx-proj-root>

CONFIG_proftpd

Then enable proftpd in the configuration of rootfs:

petalinux-config -c rootfs

Select user packages ->proftpd.

 Rebuild the image

petalinux-build

L5.4.0_V1.11

 - 76 -

The application starts from boot

The configuration of the application in Petalinux

Often our applications also need to be boot-on and self-started, which can also

be done in recipes. Here's an example of how to use Petalinux to build a

image that contains a specific application, where the FTP service

program uses open source Proftpd, where each version of the source code is

ftp://ftp.proftpd.org/distrib/source/.

a recipe from scratch, we can find out if there are ready

similar recipes in Petalinux's existing layers of components/yocto/layers, as

components/yocto/layers –name proftpd

We can also index it at openEmbedded's official website

http://layers.openembedded.org/layerindex/branch/master/layers/

there are recipes for the same or similar app.

This section focuses on how to port FTP services to the target machine. A search

of the Petalinux layer revealed that a recipe for proftpd already existed, but it was

not added to the system image. The specific migration process is described in

Find Petalinux's proftpd recipe

cto/layers-name proftpd

components/yocto/layers/meta-openembedded/meta-networking/recipes

Note: You can see that the propftpd recipe already exists in the Petalinux project.

Package proftpd to the file system

root>/project-spec/meta-user/conf/user

Then enable proftpd in the configuration of rootfs:

c rootfs

>proftpd.

started, which can also

be done in recipes. Here's an example of how to use Petalinux to build a

image that contains a specific application, where the FTP service

program uses open source Proftpd, where each version of the source code is

a recipe from scratch, we can find out if there are ready-made or

similar recipes in Petalinux's existing layers of components/yocto/layers, as

http://layers.openembedded.org/layerindex/branch/master/layers/）,find out if

target machine. A search

of the Petalinux layer revealed that a recipe for proftpd already existed, but it was

not added to the system image. The specific migration process is described in

networking/recipes-daem

Note: You can see that the propftpd recipe already exists in the Petalinux project.

user/conf/user-rootfsconfig:

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 Burn the new image

Once the system is built, re

running:

ps -axu | grep proftpd

nobody 673 0.0 0.1 3256 1336 ? Ss 07:49 0:00 proftpd: (accepting con

nections)

root 741 0.0 0.0 2020 424 ttyPS0 S+ 07:50 0:00 grep p

Here's a look at FTP account settings. FTP clients have three types of login

accounts: anonymous, regular and root.

 An anonymous account

The user name is ftp, no password needs to be set, the user can view the contents

of the system/var/lib/ftp directory after logging in, by default there is no write

permission. Because the system does not have a /var/lib/ftp directory by default,

the user is required to create a directory/var/lib/ftp on the target machine. In

order to minimize the modification o

adding the append file "proftpd_

directory creation.

do_install_append() {

 install -m 755 -d ${D}/var/lib/${FTPUSER}

 chownftp:ftp ${D}/var/lib/${FTPUSER}

}

The edited proftpd_%.bbappend" needs to b

daemons\proftpd directory below meta

 General account

After using the useradd and passswd commands on the target machine to create

a regular user and set the user password, the client can also log on

HOME directory using that regular account. Petalinux creates a normal account

with a username and password for petalinux by default.

 Root account

If you need an open root account to log on to the FTP server, you need to modify

the /etc/proftpd.conf file and add a line of configuration "RootLogin on" to the

file. At the same time, you also need to set a password for the root account, after

L5.4.0_V1.11

 - 77 -

re-burn the image and see if the proftpd service is

nobody 673 0.0 0.1 3256 1336 ? Ss 07:49 0:00 proftpd: (accepting con

root 741 0.0 0.0 2020 424 ttyPS0 S+ 07:50 0:00 grep p

Here's a look at FTP account settings. FTP clients have three types of login

accounts: anonymous, regular and root.

The user name is ftp, no password needs to be set, the user can view the contents

directory after logging in, by default there is no write

permission. Because the system does not have a /var/lib/ftp directory by default,

the user is required to create a directory/var/lib/ftp on the target machine. In

order to minimize the modification of meta-openembbed, we can do this by

adding the append file "proftpd_%.bbappend" to the proftpd recipe/var/lib/ftp

d ${D}/var/lib/${FTPUSER}

chownftp:ftp ${D}/var/lib/${FTPUSER}

.bbappend" needs to be placed in the recipes

proftpd directory below meta-user.

After using the useradd and passswd commands on the target machine to create

a regular user and set the user password, the client can also log on

HOME directory using that regular account. Petalinux creates a normal account

with a username and password for petalinux by default.

If you need an open root account to log on to the FTP server, you need to modify

pd.conf file and add a line of configuration "RootLogin on" to the

file. At the same time, you also need to set a password for the root account, after

burn the image and see if the proftpd service is

nobody 673 0.0 0.1 3256 1336 ? Ss 07:49 0:00 proftpd: (accepting con

root 741 0.0 0.0 2020 424 ttyPS0 S+ 07:50 0:00 grep proftpd

Here's a look at FTP account settings. FTP clients have three types of login

The user name is ftp, no password needs to be set, the user can view the contents

directory after logging in, by default there is no write

permission. Because the system does not have a /var/lib/ftp directory by default,

the user is required to create a directory/var/lib/ftp on the target machine. In

openembbed, we can do this by

.bbappend" to the proftpd recipe/var/lib/ftp

e placed in the recipes-

After using the useradd and passswd commands on the target machine to create

a regular user and set the user password, the client can also log on to that user's

HOME directory using that regular account. Petalinux creates a normal account

If you need an open root account to log on to the FTP server, you need to modify

pd.conf file and add a line of configuration "RootLogin on" to the

file. At the same time, you also need to set a password for the root account, after

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

restarting the proftpd service, the client can also use the root account to log

the target machine.

/etc/init.d/proftpd restart

Note: Modify /etc/proftpd.conf enable root account login for testing purposes only, for
more configurations of /etc/proftpd.conf,

http://www.proftpd.org/docs/example

2) Implement self-starting of the application

This section will take the proftpd recipe as an example to show you how to add an

application recipe and implement a boot

recipe source level. The proftpd formula is located in the petalinux project

components/yocto/layers/meta

daemons/proftpd, as follows.

├── files

│ ├── basic.conf.patch

│ ├── build_fixup.patch

│ ├── close-RequireValidShell

│ ├── contrib.patch

│ ├── default

│ ├── proftpd-basic.init

│ └── proftpd.service

└── proftpd_1.3.6.bb

1 directory, 8 files

 proftpd_1.3.6.bb Recipes to build proftpd services

 proftpd.service Start the service for boot

 proftpd-basic.init The

The proftpd_1.3.6.bb recipe specifies the source code path to get the proftpd

service program and some patch files for that version of the source code

SRC_URI = "ftp://ftp.proftpd.org/distrib/source/${BPN}

 file://basic.conf.patch

 file://proftpd-basic.init

 file://default \

L5.4.0_V1.11

 - 78 -

restarting the proftpd service, the client can also use the root account to log

etc/init.d/proftpd restart

/etc/proftpd.conf enable root account login for testing purposes only, for
/etc/proftpd.conf, please refer to

rg/docs/example-conf.html。

starting of the application

This section will take the proftpd recipe as an example to show you how to add an

application recipe and implement a boot-up self-start of the program from the

roftpd formula is located in the petalinux project

components/yocto/layers/meta-openembedded/meta-networking/recipes

daemons/proftpd, as follows.

RequireValidShell-check.patch

ecipes to build proftpd services

Start the service for boot-on

The startup script for proftpd

recipe specifies the source code path to get the proftpd

service program and some patch files for that version of the source code

SRC_URI = "ftp://ftp.proftpd.org/distrib/source/${BPN}-${PV}.tar.gz

file://basic.conf.patch \

basic.init \

restarting the proftpd service, the client can also use the root account to login to

/etc/proftpd.conf enable root account login for testing purposes only, for

This section will take the proftpd recipe as an example to show you how to add an

start of the program from the

roftpd formula is located in the petalinux project

networking/recipes-

recipe specifies the source code path to get the proftpd

service program and some patch files for that version of the source code：

${PV}.tar.gz \

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 file://close-RequireValidShell

file://contrib.patch \

 file://build_fixup.patch

 file://proftpd.service

”

The recipe also specifies the configuration (do_configure) of the proftpd and the

installation process (do_install):

proftpd uses libltdl which currently makes configuring using

autotools.bbclass a pain...

do_configure () {

 install -m 0755 ${STAGING_DATADIR_NATIVE}/gnu

 install -m 0755 ${STAGING_DATADIR_NATIVE}/gnu

 oe_runconf

 cp ${STAGING_BINDIR_CROSS}/${HOST_SYS}

}

FTPUSER = "ftp"

FTPGROUP = "ftp"

do_install () {

oe_runmake DESTDIR=${D} install

rmdir ${D}${libdir}/proftpd ${D}${datadir}/locale

 [-d ${D}${libexecdir}]&&rmdir ${D}${libexecdir}

 sed -i '/ *User[\t]*/s/ftp/${FTPUSER}/' ${D}${sysconfdir}/proftpd.conf

 sed -i '/ *Group[\t]*/s/ftp/${FTPGROUP}

 install -d ${D}${sysconfdir}/init.d

 install -m 0755 ${WORKDIR}/proftpd

 sed -i 's!/usr/sbin/!${sbindir}/!g' ${D}${sysconfdir}/init.d/proftpd

 sed -i 's!/etc/!${sysconfdir}/!g' ${D}${sysconfdir}/init.d/proftpd

 sed -i 's!/var/!${localstatedir}/!g' ${D}${sysconfdir}/init.d/proftpd

 sed -i 's!^PATH=.*!PATH=${base_sbindir}:${base_bindir}:${sbindir}:${bindir}!'

${D}${sysconfdir}/init.d/proftpd

L5.4.0_V1.11

 - 79 -

RequireValidShell-check.patch \

file://build_fixup.patch \

file://proftpd.service \

The recipe also specifies the configuration (do_configure) of the proftpd and the

installation process (do_install):

proftpd uses libltdl which currently makes configuring using

autotools.bbclass a pain...

AGING_DATADIR_NATIVE}/gnu-config/config.guess ${S}

m 0755 ${STAGING_DATADIR_NATIVE}/gnu-config/config.sub ${S}

cp ${STAGING_BINDIR_CROSS}/${HOST_SYS}-libtool ${S}/libtool

oe_runmake DESTDIR=${D} install

rmdir ${D}${libdir}/proftpd ${D}${datadir}/locale

d ${D}${libexecdir}]&&rmdir ${D}${libexecdir}

t]*/s/ftp/${FTPUSER}/' ${D}${sysconfdir}/proftpd.conf

t]*/s/ftp/${FTPGROUP}/' ${D}${sysconfdir}/proftpd.conf

d ${D}${sysconfdir}/init.d

m 0755 ${WORKDIR}/proftpd-basic.init ${D}${sysconfdir}/init.d/proftpd

i 's!/usr/sbin/!${sbindir}/!g' ${D}${sysconfdir}/init.d/proftpd

onfdir}/!g' ${D}${sysconfdir}/init.d/proftpd

i 's!/var/!${localstatedir}/!g' ${D}${sysconfdir}/init.d/proftpd

i 's!^PATH=.*!PATH=${base_sbindir}:${base_bindir}:${sbindir}:${bindir}!'

${D}${sysconfdir}/init.d/proftpd

The recipe also specifies the configuration (do_configure) of the proftpd and the

config/config.guess ${S}

config/config.sub ${S}

libtool ${S}/libtool

t]*/s/ftp/${FTPUSER}/' ${D}${sysconfdir}/proftpd.conf

/' ${D}${sysconfdir}/proftpd.conf

basic.init ${D}${sysconfdir}/init.d/proftpd

i 's!/usr/sbin/!${sbindir}/!g' ${D}${sysconfdir}/init.d/proftpd

onfdir}/!g' ${D}${sysconfdir}/init.d/proftpd

i 's!/var/!${localstatedir}/!g' ${D}${sysconfdir}/init.d/proftpd

i 's!^PATH=.*!PATH=${base_sbindir}:${base_bindir}:${sbindir}:${bindir}!'

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 install -d ${D}${sysconfdir}/default

 install -m 0755 ${WORKDIR}/default ${D}${sysconfdir}/default/proftpd

 # create the pub directory

mkdir -p ${D}/home/${FTPUSER}/pub/

chown -R ${FTPUSER}:${FTPGROUP} ${D}/home/${FTPUSER}/pub

 if ${@bb.utils.contains('DISTRO_FEA

 # installproftpd pam configuration

 install -d ${D}${sysconfdir}/pam.d

 install -m 644 ${S}/contrib/dist/rpm/ftp.pamd ${D}${sysconfdir}/pam.d/proft

pd

 sed -i '/ftpusers/d' ${D}${sysconf

 # specify the user Authentication config

 sed -i '/^MaxInstances/a

pd' \

 ${D}${sysconfdir}/proftpd.conf

 fi

 install -d ${D}/${systemd_unitdir}/system

 install -m 644 ${WORKDIR}/proftpd.service ${D}/${systemd_unitdir}/system

 sed -e 's,@BASE_SBINDIR@,${base_sbindir},g'

 -e 's,@SYSCONFDIR@,${sysconfdir},g'

 -e 's,@SBINDIR@,${sbindir},g'

 -i ${D}${systemd_unitdir}/system/*.service

 sed -e 's|--sysroot=${STAGING_DIR_HOST}||g'

 -e 's|${STAGING_DIR_NATIVE}||g'

 -e 's|-fdebug-prefix-map=[^]*||g'

 -e 's|-fmacro-prefix-map=[^]*||g'

 -i ${D}/${bindir}/prxs

 # ftpmailperl script, which reads the proftpd log file and sends

 # automatic email notifications once an upload finishs,

L5.4.0_V1.11

 - 80 -

sysconfdir}/default

m 0755 ${WORKDIR}/default ${D}${sysconfdir}/default/proftpd

create the pub directory

p ${D}/home/${FTPUSER}/pub/

R ${FTPUSER}:${FTPGROUP} ${D}/home/${FTPUSER}/pub

if ${@bb.utils.contains('DISTRO_FEATURES', 'pam', 'true', 'false', d)}; then

installproftpd pam configuration

d ${D}${sysconfdir}/pam.d

m 644 ${S}/contrib/dist/rpm/ftp.pamd ${D}${sysconfdir}/pam.d/proft

i '/ftpusers/d' ${D}${sysconfdir}/pam.d/proftpd

specify the user Authentication config

i '/^MaxInstances/a\AuthPAM on\nAuthPAMConfigproft

${D}${sysconfdir}/proftpd.conf

d ${D}/${systemd_unitdir}/system

m 644 ${WORKDIR}/proftpd.service ${D}/${systemd_unitdir}/system

e 's,@BASE_SBINDIR@,${base_sbindir},g' \

e 's,@SYSCONFDIR@,${sysconfdir},g' \

e 's,@SBINDIR@,${sbindir},g' \

i ${D}${systemd_unitdir}/system/*.service

sysroot=${STAGING_DIR_HOST}||g' \

e 's|${STAGING_DIR_NATIVE}||g' \

map=[^]*||g' \

map=[^]*||g' \

ftpmailperl script, which reads the proftpd log file and sends

automatic email notifications once an upload finishs,

m 0755 ${WORKDIR}/default ${D}${sysconfdir}/default/proftpd

R ${FTPUSER}:${FTPGROUP} ${D}/home/${FTPUSER}/pub

TURES', 'pam', 'true', 'false', d)}; then

m 644 ${S}/contrib/dist/rpm/ftp.pamd ${D}${sysconfdir}/pam.d/proft

nAuthPAMConfigproft

m 644 ${WORKDIR}/proftpd.service ${D}/${systemd_unitdir}/system

ftpmailperl script, which reads the proftpd log file and sends

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 # depends on an old perlMail::Sendmail

 # The Mail::Sendmail has not b

 # Other distribution not ship with ftpmail, so do the same to

 # avoid confusion about having it fails to run

 rm -rf ${D}${bindir}/ftpmail

 rm -rf ${D}${mandir}/man1/ftpmail.1

}

These two functions correspon

process (for more information about the task,

https://docs.yoctoproject.org/ref

The current target machine uses init as an initial management subsystem, a

collection of linux system infrastructure components that provide a system and

service manager that runs as PID 1 and is responsible for starting other programs.

Proftpd service boot-start service file proftpd

#!/bin/sh

BEGIN INIT INFO

Provides: proftpd

Required-Start: $remote_fs

Required-Stop: $remote_fs

Should-Start: $named

Should-Stop: $named

Default-Start: 2 3 4 5

Default-Stop: 0 1 6

Short-Description: Starts

Description: This script

by the ProFTPD

END INIT INFO

Start the proftpd FTP daemon.

PATH=/bin:/usr/bin:/sbin:/usr/sbin

DAEMON=/usr/sbin/proftpd

L5.4.0_V1.11

 - 81 -

depends on an old perlMail::Sendmail

The Mail::Sendmail has not been maintained for almost 10 years

Other distribution not ship with ftpmail, so do the same to

avoid confusion about having it fails to run

rf ${D}${bindir}/ftpmail

rf ${D}${mandir}/man1/ftpmail.1

These two functions correspond to the config and install tasks of the BitBake build

process (for more information about the task, please refer to

https://docs.yoctoproject.org/ref-manual/tasks.html)。

The current target machine uses init as an initial management subsystem, a

collection of linux system infrastructure components that provide a system and

service manager that runs as PID 1 and is responsible for starting other programs.

start service file proftpd-basic.init reads as follows:

$remote_fs $syslog $local_fs $network

$remote_fs $syslog $local_fs $network

$named

$named

 ProFTPD daemon

script runs the FTP service offered

ProFTPD daemon

daemon.

PATH=/bin:/usr/bin:/sbin:/usr/sbin

DAEMON=/usr/sbin/proftpd

een maintained for almost 10 years

d to the config and install tasks of the BitBake build

The current target machine uses init as an initial management subsystem, a

collection of linux system infrastructure components that provide a system and

service manager that runs as PID 1 and is responsible for starting other programs.

basic.init reads as follows:

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

NAME=proftpd

Defaults

RUN="no"

OPTIONS=""

CONFIG_FILE=/etc/proftpd.conf

PIDFILE=`grep -i '^pidfile' $CONFIG_FILE|awk

if ["x$PIDFILE" = "x"];

then

 PIDFILE=/var/run/proftpd.pid

fi

Read config (will override

[-r /etc/default/proftpd] &&

trap "" 1

trap "" 15

test -f $DAEMON || exit 0

. /etc/init.d/functions

Servertype could be inetd|standalone|none.

In all cases check against

if ! egrep -qi "^[[:space:]]*ServerType.*standalone"

then

 if egrep -qi "server[[:space:]]*=[[:space:]]*/usr/sbin/proftpd"

/dev/null || \

 egrep -qi "server[[:space:]]*=[[:space:]]*/usr/sbin/proftpd"

dev/null || \

L5.4.0_V1.11

 - 82 -

CONFIG_FILE=/etc/proftpd.conf

$CONFIG_FILE|awk '{ print $2 }'`

PIDFILE=/var/run/proftpd.pid

override defaults)

&& . /etc/default/proftpd

inetd|standalone|none.

against inetd and xinetd support.

"^[[:space:]]*ServerType.*standalone" $CONFIG_FILE

"server[[:space:]]*=[[:space:]]*/usr/sbin/proftpd" /etc/xinetd.conf

"server[[:space:]]*=[[:space:]]*/usr/sbin/proftpd" /etc/xinetd.d/*

$CONFIG_FILE

/etc/xinetd.conf 2>

/etc/xinetd.d/* 2>/

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 egrep -qi "^ftp.*/usr/sbin/proftpd"

 then

 RUN="no"

 INETD="yes"

 else

 if ! egrep -qi "^[[:space:]]*ServerType.*inetd"

 then

 RUN="yes"

 INETD="no"

 else

 RUN="no"

 INETD="no"

 fi

 fi

fi

/var/run could be on a tmpfs

[! -d /var/run/proftpd] &&

inetd_check()

{

 if [! -x /usr/sbin/inetd -a

 echo "Neither inetd nor

 fi

}

start()

{

 set -e

 echo -n "Starting ftp server

 start-stop-daemon --start

ON -- -c $CONFIG_FILE $OPTIONS

L5.4.0_V1.11

 - 83 -

"^ftp.*/usr/sbin/proftpd" /etc/inetd.conf 2>/dev/null

"^[[:space:]]*ServerType.*inetd" $CONFIG_FILE

tmpfs

&& mkdir /var/run/proftpd

a ! -x /usr/sbin/xinetd]; then

nor xinetd appears installed: check your

server $NAME... "

start --quiet --pidfile "$PIDFILE" --oknodo

$OPTIONS

2>/dev/null

your configuration."

oknodo --exec $DAEM

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 echo "done."

}

signal()

{

 if ["$1" = "stop"]; then

 SIGNAL="TERM"

 echo -n "Stopping ftp

 else

 if ["$1" = "reload"]; then

 SIGNAL="HUP"

 echo -n "Reloading

 else

 echo "ERR: wrong parameter

 exit 1

 fi

 fi

 if [-f "$PIDFILE"]; then

 start-stop-daemon --stop

 if [$? = 0]; then

 echo "done."

 return

 else

 SIGNAL="KILL"

 start-stop-daemon

 if [$? != 0]; then

 echo

 [$2 != 0] || exit 0

 else

 echo "done."

 return

 fi

L5.4.0_V1.11

 - 84 -

 server $NAME... "

then

 ftp server $NAME... "

parameter given to signal()"

stop --signal $SIGNAL --quiet --pidfile

 --stop --signal $SIGNAL --quiet --pidfile

0

pidfile "$PIDFILE"

pidfile "$PIDFILE"

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 fi

 if ["$SIGNAL" = "KILL"

 rm -f "$PIDFILE"

 fi

 else

 echo "done."

 return

 fi

}

case "$1" in

 start)

 if ["x$RUN" = "xyes"]

 start

 else

 if ["x$INETD" = "xyes"

 echo "ProFTPD is

 inetd_check

 else

 echo "ProFTPD warning:

xinetd mode. Check your configurat

 fi

 fi

 ;;

 force-start)

 if ["x$INETD" = "xyes"

 echo "Warning: ProFTPD

y)."

 inetd_check

 fi

 start

 ;;

L5.4.0_V1.11

 - 85 -

"KILL"]; then

] ; then

"xyes"] ; then

is started from inetd/xinetd."

warning: cannot start neither in standalone

configuration."

"xyes"] ; then

ProFTPD is started from inetd/xinetd (trying

standalone nor in inetd/

(trying to start anywa

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 stop)

 if ["x$RUN" = "xyes"]

 signal stop 0

 else

 if ["x$INETD" = "xyes"

 echo "ProFTPD is

 inetd_check

 else

 echo "ProFTPD warning:

xinetd mode. Check your configuration."

 fi

 fi

 ;;

 force-stop)

 if ["x$INETD" = "xyes"

 echo "Warning: ProFTPD

y)."

 inetd_check

 fi

 signal stop 0

 ;;

 reload)

 signal reload 0

 ;;

 force-reload|restart)

 if ["x$RUN" = "xyes"]

 signal stop 1

 sleep 2

 start

L5.4.0_V1.11

 - 86 -

] ; then

"xyes"] ; then

is started from inetd/xinetd."

warning: cannot start neither in standalone

configuration."

"xyes"] ; then

ProFTPD is started from inetd/xinetd (trying

] ; then

standalone nor in inetd/

(trying to kill anywa

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 else

 if ["x$INETD" = "xyes"

 echo "ProFTPD is

 inetd_check

 else

 echo "ProFTPD warning:

xinetd mode. Check your configuration."

 fi

 fi

 ;;

 status)

 if ["x$INETD" = "xyes"

 echo "ProFTPD is started

 inetd_check

 exit 0

 else

 if [-f "$PIDFILE"]; then

 pid=$(cat $PIDFILE)

 else

 pid="x"

 fi

 if [`pidof proftpd|grep

 echo "ProFTPD is

 exit 0

 else

 echo "ProFTPD is

 exit 3

 fi

 fi

 ;;

 check-config)

L5.4.0_V1.11

 - 87 -

"xyes"] ; then

is started from inetd/xinetd."

warning: cannot start neither in standalone

configuration."

"xyes"] ; then

started from inetd/xinetd."

then

$PIDFILE)

proftpd|grep "$pid"|wc -l` -ne 0] ; then

is started in standalone mode, currently

is started in standalone mode, currently

standalone nor in inetd/

currently running."

currently not running."

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 $DAEMON -t >/dev/null

 exit 1

 ;;

 *)

 echo "Usage: /etc/init.d/$NAME

d|restart|force-reload|check

 exit 1

 ;;

esac

exit 0

 start() is the function that is executed when the service is started.

 stop() is a function executed at the end of the service.

 restart() is a function executed when the service is restarted.

 status() is a function that is executed when the

queried.

When adding an app that they have written, they can refer to the "Application

Auto Run at Startup" section of Chapter 8 of the UG1144 manual.

L5.4.0_V1.11

 - 88 -

>/dev/null && echo "ProFTPD configuration OK"

/etc/init.d/$NAME {start|status|force-start|stop|force

reload|check-config}"

is the function that is executed when the service is started.

is a function executed at the end of the service.

is a function executed when the service is restarted.

is a function that is executed when the state of the process is

When adding an app that they have written, they can refer to the "Application

Auto Run at Startup" section of Chapter 8 of the UG1144 manual.

OK" && exit 0

start|stop|force-stop|reloa

is the function that is executed when the service is started.

is a function executed when the service is restarted.

state of the process is

When adding an app that they have written, they can refer to the "Application

Auto Run at Startup" section of Chapter 8 of the UG1144 manual.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

8.4. Application examples

Common demo programs, as well as source code, are available on the

04_Sources\Example directory

8.4.1. CAN application example

CAN test requires two MYS_ZU5EV boards to be tested

Go to the 04_Sources\Example

produce executables.

source /opt/petalinux/2020.1

make

The compiled executable files are can_receive, can_send copied into two tf cards,

two tf cards are inserted into two boards, and the two boards are powe

test the can communication function

One of the boards operates

ip link set can0 up type can bitrate 500000

./can_receive

The other board operates as the send

ip link set can0 up type can bitrate 500000

./can_send -d can0 -i 123 33 44 55

8.4.2. I2C application example

I2C test is tested as follows

Go to the 04_Sources\Example

produce an executable file.

source /opt/petalinux/2020.1

make

Copy the compiled executable i2c_flash into the tf card and start the board test

./i2c_flash /dev/i2c-1

L5.4.0_V1.11

 - 89 -

Application examples

Common demo programs, as well as source code, are available on the

directory.

pplication example

CAN test requires two MYS_ZU5EV boards to be tested.

Example\can directory and compile the code direct

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

The compiled executable files are can_receive, can_send copied into two tf cards,

two tf cards are inserted into two boards, and the two boards are powe

test the can communication function：

operates as the receiving end：

ip link set can0 up type can bitrate 500000

as the sending end：

ip link set can0 up type can bitrate 500000

i 123 33 44 55

pplication example

test is tested as follows.

Example\i2c directory and compile the code directly to

.

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

Copy the compiled executable i2c_flash into the tf card and start the board test

Common demo programs, as well as source code, are available on the CD in the

directory and compile the code directly to

xilinx-linux

The compiled executable files are can_receive, can_send copied into two tf cards,

two tf cards are inserted into two boards, and the two boards are powered on to

directory and compile the code directly to

xilinx-linux

Copy the compiled executable i2c_flash into the tf card and start the board test：

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

8.4.3. Network application example

Network communication can be tested with board and computer

Go to the 04_Sources\Example

produce an executable file.

source /opt/petalinux/2020.1

make

Copy the compiled executable file arm_server into the tf card, and

follows：

./arm_server

Enter into the ubuntu system on the computer side,

192.168.xxx.xxx is the ip address of the board

$./pc_client 192.168.xxx.xxx

L5.4.0_V1.11

 - 90 -

Network application example

Network communication can be tested with board and computer

Example\network directory and compile the code directly to

.

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

Copy the compiled executable file arm_server into the tf card, and

nter into the ubuntu system on the computer side, test operation is as follows

the ip address of the board：

xxx

Network communication can be tested with board and computer.

directory and compile the code directly to

xilinx-linux

Copy the compiled executable file arm_server into the tf card, and operate as

test operation is as follows,

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

8.4.4. Uart application example

The 1st and 3th feet of the board's serial J12 interface can be

testing.

Go to the 04_Sources\Example

produce an executable file.

source /opt/petalinux/2020.1

make

Copy the compiled executable file uart_test into the tf c

follows：

./uart_test -d /dev/ttyUL1

./uart_test -d /dev/ttyUL1

/dev/ttyUL1 SEND: 1234567890

/dev/ttyUL1 RECV[1]: 1

/dev/ttyUL1 RECV[1]: 2

/dev/ttyUL1 RECV[1]: 3

/dev/ttyUL1 RECV[1]: 4

/dev/ttyUL1 RECV[1]: 5

/dev/ttyUL1 RECV[1]: 6

/dev/ttyUL1 RECV[1]: 7

/dev/ttyUL1 RECV[1]: 8

/dev/ttyUL1 RECV[1]: 9

/dev/ttyUL1 RECV[1]: 0

8.4.5. Framebuffer application example

Test the DP display through the fra

Go to the 04_Sources\Example

directly to produce an executable

source /opt/petalinux/2020.1

make

Copy the compiled executable framebu

follows：

./framebuffer_test

L5.4.0_V1.11

 - 91 -

application example

The 1st and 3th feet of the board's serial J12 interface can be connect

Example\uart directory and compile the code directly to

.

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

Copy the compiled executable file uart_test into the tf card, and operate

d /dev/ttyUL1 -b 115200 -m 0 &

d /dev/ttyUL1 -b 115200 -m 1

/dev/ttyUL1 SEND: 1234567890

application example

ay through the framebuffer program.

Example\framebuffer directory and compile the code

directly to produce an executable.

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

Copy the compiled executable framebuffer_test into the tf card, and

connected for

directory and compile the code directly to

xilinx-linux

ard, and operate as

directory and compile the code

xilinx-linux

ffer_test into the tf card, and operate as

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

8.4.6. HDMIin application example

Through the qt-hdmi program, the test hdmi input image is displayed by DP

monitor.

Go to the 04_Sources\Example

produce an executable file.

source /opt/petalinux/2020.1

/opt/petalinux/2020.1/sysroots/x86_64

make

Follow "4.1. Make an SD card launcher

full.img.gz into the tf card, start board

executable qt-hdmi into the tf card, and operate as follows

media-ctl -v --set-format '"a0010000.v_tpg":0 [RBG24 1920x1080 field:none]'

export DISPLAY=:0.0

./qt-hdmi

8.4.7. MIPI camera application example

MIPI camera applications require an IMX334 mipi camera to be tested.

Through the qt-camera program, the test

displayed by DP monitor.

Go to the 04_Sources\Example

to produce an executable file

source /opt/petalinux/2020.1

/opt/petalinux/2020.1/sysroots/x86_64

make

Follow "4.1. Make an SD card launcher" chapter

mipi.img.gz into the tf card, start board

executable qt-camera into the tf card, and operate as follows

export DISPLAY=:0.0

./qt-camera

L5.4.0_V1.11

 - 92 -

application example

hdmi program, the test hdmi input image is displayed by DP

Example\qt-hdmi directory and compile the code directly to

.

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

/opt/petalinux/2020.1/sysroots/x86_64-petalinux-linux/usr/bin/qmake

Follow "4.1. Make an SD card launcher" chapter, burned 02_Images

to the tf card, start board by tf card mode, copy the compiled

hdmi into the tf card, and operate as follows：

format '"a0010000.v_tpg":0 [RBG24 1920x1080 field:none]'

application example

amera applications require an IMX334 mipi camera to be tested.

program, the test IMX334 mipi camera input image is

Example\qt-camera directory and compile the code directly

to produce an executable file.

/opt/petalinux/2020.1/environment-setup-aarch64-xilinx

/opt/petalinux/2020.1/sysroots/x86_64-petalinux-linux/usr/bin/qmake

.1. Make an SD card launcher" chapter, burned 02_Images

to the tf card, start board by tf card mode, copy the compiled

into the tf card, and operate as follows：

hdmi program, the test hdmi input image is displayed by DP

directory and compile the code directly to

xilinx-linux

linux/usr/bin/qmake

Images\mys-zu5ev-

opy the compiled

format '"a0010000.v_tpg":0 [RBG24 1920x1080 field:none]'

amera applications require an IMX334 mipi camera to be tested.

input image is

directory and compile the code directly

xilinx-linux

linux/usr/bin/qmake

Images\mys-zu5ev-

opy the compiled

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

8.4.8. VCU application example

ZU5EV chip's VCU supports multi

including the High Efficiency Video Coding (HEVC) and Advanced Video Coding

(AVC) H.264 standards. The unit includes encoding (compression) and decoding

(unzipping) functions.

To implement the logical function of VCU in FPGAs, refer to the "6.2 VCU" section

of “MYS-ZUEV_FPGA Development Manual

is then implemented through petalinux.

 Implementation process of petalinux software in

（1）Copy the design_1_wrapper.xsa generated by the sample project 05

ProgrammableLogic_Source/project_fz5_vcu_707.rar on

directory/home/work/vivadoxsa/.

petalinux-create -t project

petalinux-config --get-hw

（2）Configure the rootfs system as follows:

petalinux-config –c rootfs

Configure libmali；

L5.4.0_V1.11

 - 93 -

application example

chip's VCU supports multi-standard video encoding and decoding,

including the High Efficiency Video Coding (HEVC) and Advanced Video Coding

(AVC) H.264 standards. The unit includes encoding (compression) and decoding

To implement the logical function of VCU in FPGAs, refer to the "6.2 VCU" section

ZUEV_FPGA Development Manual” on CD-ROM. Software functionality

is then implemented through petalinux.

Implementation process of petalinux software in VCU

Copy the design_1_wrapper.xsa generated by the sample project 05

ProgrammableLogic_Source/project_fz5_vcu_707.rar on CD to the

directory/home/work/vivadoxsa/.

t project -s mys_zu5ev2020_4G_full.bsp

hw-description=/home/work/vivadoxsa/

Configure the rootfs system as follows:

c rootfs

Figure 8-1 Configure libmaili

standard video encoding and decoding,

including the High Efficiency Video Coding (HEVC) and Advanced Video Coding

(AVC) H.264 standards. The unit includes encoding (compression) and decoding

To implement the logical function of VCU in FPGAs, refer to the "6.2 VCU" section

ROM. Software functionality

Copy the design_1_wrapper.xsa generated by the sample project 05-

to the

/vivadoxsa/

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Configure multimedia；

Configure gstreamer-vcu-examples

Add a line to <plnx-proj-root>/project

CONFIG_gstreamer-vcu-examples

Then enable gstreamer-vcu

L5.4.0_V1.11

 - 94 -

Figure 8-2 Configure multimedia

examples；

root>/project-spec/meta-user/conf/user

examples

vcu-examples in the rootfs configuration.

user/conf/user-rootfsconfig:

examples in the rootfs configuration.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Figure

（3）Configure the petalinux project

tree/files/system-user.dtsi device tree file as follows:

/include/ "system-conf.dtsi"

/ {

 chosen {

 bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 r

w rootwait clk_ignore_unused";

 stdout-path = "serial0:115200n8";

 };

 leds {

 compatible = "gpio

 led1 {

 label = "rs485_de";

 gpios = <&gpio 12 0>;

 linux,default

 };

L5.4.0_V1.11

 - 95 -

Figure 8-3 Configure gstreamer-vcu-examples

Configure the petalinux project-spec/meta-user/recipes-bsp/device

user.dtsi device tree file as follows:

conf.dtsi"

bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 r

w rootwait clk_ignore_unused";

path = "serial0:115200n8";

compatible = "gpio-leds";

label = "rs485_de";

gpios = <&gpio 12 0>;

linux,default-trigger = "gpio";

examples

bsp/device-

bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk1p2 r

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 led2 {

 label = "wdt_en";

 gpios = <&gpio 33 0>;

 linux,default

 };

 led3 {

 label = "led_sys";

 gpios = <&gpio 43 0>;

 linux,default

 };

 };

 watchdog {

 compatible = "gpio

 };

};

&gem3 {

 phy-handle = <&phy0>;

 phy-mode = "rgmii-id";

 phy0: phy@21 {

 reg = <4>;

 };

};

&sdhci0 {

 no-1-8-v;

};

&sdhci1 {

 disable-wp;

 no-1-8-v;

};

L5.4.0_V1.11

 - 96 -

label = "wdt_en";

gpios = <&gpio 33 0>;

linux,default-trigger = "gpio";

label = "led_sys";

gpios = <&gpio 43 0>;

linux,default-trigger = "gpio";

compatible = "gpio-watchdog";

handle = <&phy0>;

id";

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

&qspi {

 flash@0 {

 compatible = "m25p80";

 #address-cells = <1>;

 #size-cells = <1>;

 reg = <0x0>;

 spi-tx-bus-width = <1>;

 spi-rx-bus-width = <4>;

 spi-max-frequency =

 };

};

（4）Compiling petalinux bsp can generate vcu petalinux software:

petalinux-build

 VCU test

Follow "4.1. Make an SD card launcher"

04_Sources\Example\vcu\mys

card mode, enter the system operation as follows, you can use the vcu decoding

function to play mp4 video

vcu-demo-decode-display.sh

L5.4.0_V1.11

 - 97 -

compatible = "m25p80";

cells = <1>;

cells = <1>;

width = <1>;

width = <4>;

frequency = <54000000>;

Compiling petalinux bsp can generate vcu petalinux software:

Make an SD card launcher" chapter, burned

mys-zu5ev-vcu.img.gz into the tf card, start board

, enter the system operation as follows, you can use the vcu decoding

function to play mp4 video.

display.sh -i /mnt/sd-mmcblk1p1/test.mp4

Compiling petalinux bsp can generate vcu petalinux software:

to the tf card, start board by tf

, enter the system operation as follows, you can use the vcu decoding

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

9. Reference
https://www.kernel.org/

https://www.xilinx.com/

https://www.yoctoproject.org/

L5.4.0_V1.11

 - 98 -

https://www.yoctoproject.org/

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Appendix A

Warranty & Technical Support Services

MYIR Electronics Limited is a global provider of ARM hardware and soft

solutions for embedded applications. We support our customers in a wide range of services

to accelerate your time to market.

MYIR is an ARM Connected Community Member and work closely with ARM and many

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

prototype, and system integration or creating your own applications. Our products are used

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has a

experienced team and provides custom design services based on ARM processors to help

customers make your idea a reality.

The contents below introduce to customers the warranty and technical support services

provided by MYIR as well as the matters needin

Service Guarantee

MYIR regards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

packaging, shipping and other aspects and strive to provide products with best quality to

customers. We believe that only quality products and excellent services can ensure the long

term cooperation and mutual benefit.

Price

MYIR insists on providing customers with th

excess profits which we think only for short

L5.4.0_V1.11

 - 99 -

Warranty & Technical Support Services

is a global provider of ARM hardware and software tools, design

solutions for embedded applications. We support our customers in a wide range of services

to accelerate your time to market.
MYIR is an ARM Connected Community Member and work closely with ARM and many

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

e, and system integration or creating your own applications. Our products are used

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has a

experienced team and provides custom design services based on ARM processors to help

customers make your idea a reality.
The contents below introduce to customers the warranty and technical support services

provided by MYIR as well as the matters needing attention in using MYIR’

MYIR regards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

pping and other aspects and strive to provide products with best quality to

customers. We believe that only quality products and excellent services can ensure the long

term cooperation and mutual benefit.

MYIR insists on providing customers with the most valuable products. We do not pursue

excess profits which we think only for short-time cooperation. Instead, we hope to establish

ware tools, design

solutions for embedded applications. We support our customers in a wide range of services

MYIR is an ARM Connected Community Member and work closely with ARM and many

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

e, and system integration or creating your own applications. Our products are used

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has an

experienced team and provides custom design services based on ARM processors to help

The contents below introduce to customers the warranty and technical support services

’s products.

MYIR regards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

pping and other aspects and strive to provide products with best quality to

customers. We believe that only quality products and excellent services can ensure the long-

e most valuable products. We do not pursue

time cooperation. Instead, we hope to establish

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

long-term cooperation and win

prices in the hope of making the

Delivery Time

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

quantity is greater than the number of inventory, the delivery time wou

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

in advance.
Technical Support

MYIR has a professional technical support team. Customer can contact us by email

(support@myirtech.com), we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

production.
After-sale Service

MYIR offers one year free technical support and after

purchase date. The service covers:

Technical support service

MYIR offers technical support for the hardware and software materials which have provided

to customers:
 To help customers compile and run the source code we offer;

 To help customers solve problems occurred during operations if users follow the user

manual documents;
 To judge whether the failure exists;

 To provide free software upgrading service.

However, the following situations are not included in the scope of our free tech

service:

L5.4.0_V1.11

 - 100 -

term cooperation and win-win business with customers. So we will offer reasonable

prices in the hope of making the business greater with the customers together hand in hand.

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

quantity is greater than the number of inventory, the delivery time would be always four to six

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

MYIR has a professional technical support team. Customer can contact us by email

we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

MYIR offers one year free technical support and after-sales maintenance service from the

purchase date. The service covers:

MYIR offers technical support for the hardware and software materials which have provided

To help customers compile and run the source code we offer;
tomers solve problems occurred during operations if users follow the user

To judge whether the failure exists;
To provide free software upgrading service.

However, the following situations are not included in the scope of our free tech

win business with customers. So we will offer reasonable

business greater with the customers together hand in hand.

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

ld be always four to six

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

MYIR has a professional technical support team. Customer can contact us by email

we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

service from the

MYIR offers technical support for the hardware and software materials which have provided

tomers solve problems occurred during operations if users follow the user

However, the following situations are not included in the scope of our free technical support

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

 Hardware or software problems occurred during customers

 Problems occurred when customers compile or run the OS which is tailored by themselves;

 Problems occurred during customers

 Problems occurred during the modification of MYIR

After-sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free

maintenance service since the purchase date. But following sit

scope of our free maintenance service:

 The warranty period is expired;

 The customer cannot provide proof

 The customer has not followed the instruction of the manual which h

the product;

 Due to the natural disasters (unexpected matters), or natural attrition of the components, or

unexpected matters leads the defects of appearance/function;

 Due to the power supply, bump, leaking of the roof, pets, moist,

all those reasons which have caused the damage of the products or defects of appearance;

 Due to unauthorized weld or dismantle parts or repair the products which has caused the

damage of the products or defects of appearance;

 Due to unauthorized installation of the software, system or incorrect configuration or

computer virus which has caused the damage of products.

Warm tips

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the

LCD when receiving the goods. In case the LCD cannot run or no display, customer should

contact MYIR within 7 business days from the moment get the goods.

2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.

L5.4.0_V1.11

 - 101 -

Hardware or software problems occurred during customers’ own development;

Problems occurred when customers compile or run the OS which is tailored by themselves;

Problems occurred during customers’ own applications development;

roblems occurred during the modification of MYIR’s software source code.

sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free

maintenance service since the purchase date. But following situations are not included in the

scope of our free maintenance service:
The warranty period is expired;

The customer cannot provide proof-of-purchase or the product has no serial number;

The customer has not followed the instruction of the manual which has caused the damage

Due to the natural disasters (unexpected matters), or natural attrition of the components, or

unexpected matters leads the defects of appearance/function;

Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards,

all those reasons which have caused the damage of the products or defects of appearance;

Due to unauthorized weld or dismantle parts or repair the products which has caused the

damage of the products or defects of appearance;

Due to unauthorized installation of the software, system or incorrect configuration or

computer virus which has caused the damage of products.

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the

eceiving the goods. In case the LCD cannot run or no display, customer should

contact MYIR within 7 business days from the moment get the goods.
2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.

own development;

Problems occurred when customers compile or run the OS which is tailored by themselves;

own applications development;

s software source code.

The products except LCD, which are not used properly, will take the twelve months free

uations are not included in the

purchase or the product has no serial number;

as caused the damage

Due to the natural disasters (unexpected matters), or natural attrition of the components, or

impurities into the boards,

all those reasons which have caused the damage of the products or defects of appearance;

Due to unauthorized weld or dismantle parts or repair the products which has caused the

Due to unauthorized installation of the software, system or incorrect configuration or

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the

eceiving the goods. In case the LCD cannot run or no display, customer should

2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

please avoid clean the surface with fingers or hands to leave fingerprint.

4. Do not clean the surface of the screen with chemicals.

5. Please read through the product user manual before you using MYIR

6. For any maintenance service, customers should communicate with MYIR to confirm the

issue first. MYIR’s support team will judge the failure to see if the goods need to be returned

for repair service, we will issue you RMA number for return maintenance service after

confirmation.
Maintenance period and charges

 MYIR will test the products within three days after receipt of the returned goods and inform

customer the testing result. Then we will arrang

goods to the customer. For any special failure, we will negotiate with customers to confirm

the maintenance period.

 For products within warranty period and caused by quality problem, MYIR offers free

maintenance service; for products within warranty period but out of free maintenance

service scope, MYIR provides maintenance service but shall charge some basic material cost;

for products out of warranty period, MYIR provides maintenance service but shall charge

some basic material cost and handling fee.

Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be responsible

by user; MYIR will pay for the return shipping cost to users when the product is repaired. If

the warranty period is expired, all the shipping cost will be responsible by users.

Products Life Cycle

MYIR will always select mainstream chips for our design, thus to ensure at least ten years

continuous supply; if meeting some main chip stopping production, we wil

in time and assist customers with products updating and upgrading.

L5.4.0_V1.11

 - 102 -

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

please avoid clean the surface with fingers or hands to leave fingerprint.
4. Do not clean the surface of the screen with chemicals.

product user manual before you using MYIR’s products.

6. For any maintenance service, customers should communicate with MYIR to confirm the

s support team will judge the failure to see if the goods need to be returned

, we will issue you RMA number for return maintenance service after

Maintenance period and charges

MYIR will test the products within three days after receipt of the returned goods and inform

customer the testing result. Then we will arrange shipment within one week for the repaired

goods to the customer. For any special failure, we will negotiate with customers to confirm

For products within warranty period and caused by quality problem, MYIR offers free

service; for products within warranty period but out of free maintenance

service scope, MYIR provides maintenance service but shall charge some basic material cost;

for products out of warranty period, MYIR provides maintenance service but shall charge

me basic material cost and handling fee.

During the warranty period, the shipping cost which delivered to MYIR should be responsible

by user; MYIR will pay for the return shipping cost to users when the product is repaired. If

period is expired, all the shipping cost will be responsible by users.

MYIR will always select mainstream chips for our design, thus to ensure at least ten years

continuous supply; if meeting some main chip stopping production, we wil

in time and assist customers with products updating and upgrading.

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

s products.
6. For any maintenance service, customers should communicate with MYIR to confirm the

s support team will judge the failure to see if the goods need to be returned

, we will issue you RMA number for return maintenance service after

MYIR will test the products within three days after receipt of the returned goods and inform

e shipment within one week for the repaired

goods to the customer. For any special failure, we will negotiate with customers to confirm

For products within warranty period and caused by quality problem, MYIR offers free

service; for products within warranty period but out of free maintenance

service scope, MYIR provides maintenance service but shall charge some basic material cost;

for products out of warranty period, MYIR provides maintenance service but shall charge

During the warranty period, the shipping cost which delivered to MYIR should be responsible

by user; MYIR will pay for the return shipping cost to users when the product is repaired. If

period is expired, all the shipping cost will be responsible by users.

MYIR will always select mainstream chips for our design, thus to ensure at least ten years

continuous supply; if meeting some main chip stopping production, we will inform customers

MYIR-MYS-ZU5EV-SW-DG-EN-L5.4.

Value-added Services

1. MYIR provides services of driver development base on MYIR

USB, Ethernet, LCD, etc.
2. MYIR provides the services of OS porting, BSP drivers

development, etc.
3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

4. ODM/OEM services.
MYIR Electronics Limited
Room 04, 6th Floor, Building No.2, Fada Road,

Yunli Inteiligent Park, Bantian, Longgang District.

Support Email: support@myirtech.com

Sales Email: sales@myirtech.com

Phone: +86-755-22984836
Fax: +86-755-25532724
Website: www.myirtech.com

L5.4.0_V1.11

 - 103 -

1. MYIR provides services of driver development base on MYIR’s products, like serial port,

of OS porting, BSP drivers’ development, API software

3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

Room 04, 6th Floor, Building No.2, Fada Road,
Yunli Inteiligent Park, Bantian, Longgang District.
Support Email: support@myirtech.com
Sales Email: sales@myirtech.com

s products, like serial port,

development, API software

3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

