

1.1

1.2

1.3

1.3.1

1.3.2

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

1.6

1.6.1

1.6.2

1.6.3

Table of Contents
Introduction

1. Software Resources

2. Deploy development environment

2.1 Install tools

2.2 Setup GCC Toolchain

3. Bulid System

3.1 Bulid Bootloader

3.2 Build Linux Kernel

3.3 Build Filesystem

3.4 Build QT

4. Linux Applications Development

4.1 LCD

4.2 Touch Panel

4.3 RTC

4.4 RS485

4.5 CAN Bus

4.6 Ethernet

4.7 NAND Flash

4.8 KeyPad

4.9 GPIO-LED

4.10 Audio

4.11 USB Host

4.12 USB Device

5. Qt Applications Development

5.1 Install QtCreator

5.2 Config QtCreator

5.3 Build QT Application

2

1.7

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.8.5

1.9

6. Update System

7. Peripheral Module Use

7.1 4.3-Inch Resistive Touch Screen

7.2 WIFI Module

7.3 USB Camera Module

7.4 GPS Module

7.5 GPRS Module

Appendix Warranty & Technical Support Services

3

MYD-AM335X-Linux-4.1.18
Development Guide

Introduction
This section provides an overview of the areas covered by the documentation,what is
contained, the appropriate readers, the documentation version history, and the
applicable hardware version.

This chapter describes how to run Linux system and embedded Linux applications
and the process of drive development in MYD-AM335X series development board. It
includes building the development environment, compiling the source code,
examples of Linux application and image download.

This document is suitable for embedded Linux development engineers with some
development experience.

Version History

Version
Number Description Time

V1.0 Initial Version 2017.4.1

V1.1
1. Add kernel and u-boot repository configuration for
Buildroot
2. Add MEasy HMI demo to rootfs for development
boards

2018.07.01

V1.2 1. Add support of core board with EMMC 2018.07.26

V1.3
1. Add chapters for MYIR peripheral module usage
2. Limit the speed of ETH1 on MYD-AM335X to
100BASE-T.

2018.08.28

V1.4

1. Add support of new EhterNet PHY chip YT8511 in
kernel.
2. Capacitive and resistive touch screen are
compatible in buildroot.
3. Please fetch sources from 2021.11.18

4

https://github.com/MYiR-Dev/myir-ti-
buildroot/releases/tag/MYD-
AM335X_V20R5_20211118

Hardware Version
MYD-AM335X, MYD-AM335X-Y,MYD-AM335X-J.

Note: This document applies to the above three versions of the hardware,
the user can choose the corresponding operation according to the
corresponding board.In this paper, the MYD-AM335X series is used to
represent the three board.

5

https://github.com/MYiR-Dev/myir-ti-buildroot/releases/tag/MYD-AM335X_V20R5_20211118

1. Software Resources
This section describes the software resources of the MYD-AM335X series
development boards.

Table 1-1 Software Resources.

Category Name Description Source MYD-
AM335X

MYD-
AM335X-

Y

Bootloader U-boot
Responsible for
system
initialization and
boot kernel.

YES √ √

Kernel Linux
4.1.18

Designed for
MYD-AM335X
hardware

YES √ √

Drivers LCD
Controller

LCD driver，for
4.3 inch、7 inch YES √ √

Drivers Touch
Panel

Resistive touch
screen driver YES √ √

Drivers Touch
Panel

Capacitance
touch screen
driver

YES √ √

Drivers RTC RTC clock driver YES √ √

Drivers UART Serial driver YES √ √

Drivers SDIO WiFi WiFi driver YES × √

Drivers RS485 RS485 driver YES √ √

Drivers CAN CAN driver YES √ √

Drivers Ethernet Ethernet driver YES √ √

Drivers MMC/SD MMC/SD driver YES √ √

Drivers NAND
Flash

NAND Flash
driver YES √ √

Drivers Audio Audio driver YES √ √

Drivers GPIO-LED GPIO-LED driver YES √ √

Drivers I2C I2C driver YES √ √

6

Drivers HDMI HDMI driver YES √ ×

Drivers PMU
Power
Management
Unit driver

YES √ √

Drivers USB Host USB Host driver YES √ √

Drivers USB
Device

USB Device
driver（Gadget） YES √ √

Filesystem Rootfs Base on buildroot Bin √ √

Filesystem Rootfs-qt Qt filesystem Bin √ √

Filesystem UBI Provide image
file YES √ √

Filesystem Ramdisk.gz ramdisk
filesystem YES √ √

Demo LCD LCD test
program YES √ √

Demo RTC RTC clock test
program YES √ √

Demo RS485 RS485 test
program YES √ √

Demo CAN CAN test
program YES √ √

Demo Ethernet Ethernet test
program YES √ √

Demo NAND
Flash

NAND Flash test
program YES √ √

Demo GPIO-LED GPIO-LED test
program YES √ √

Demo Audio Audio test
program YES √ √

Demo Qt
QT environment
verification
program

YES √ √

7

2. Deploy development environment
This section describes the tools and environment, tool chain settings, development
environment validation.

PC development environment: Ubuntu12.04/Ubuntu14.04/Ubuntu16.04 64bit
Desktop

Cross compiler: gcc5.3(Linaro GCC 2016.02)

Hardware debugging environment structures

MYD-AM335X Hardware debugging environment structures：

Connect the debug serial port J12 to the PC,set the baudrate of serial port on host
PC to 115,200-8-n-1. Specific as follows:

8

Figure 2-1 MYD-AM335X Hardware Debugging Interface

MYD-AM335X-Y Hardware debugging environment structures：

Connect the debug serial port J10 to the PC,set the baudrate of serial port on host
PC to 115,200-8-n-1. Specific as follows:

Figure 2-2 MYD-AM335X-Y Hardware Debugging Interface

MYD-AM335X-J Hardware debugging environment structures：

9

Connect the debug serial port J3 to the PC,set the baudrate of serial port on host PC
to 115,200-8-n-1. Specific as follows:

Figure 2-3 MYD-AM335X-J Hardware Debugging Interface

Create a working directory:

Create a work directory and copy the resources from 04-Linux_Source of our release
package to the work directory on ubuntu host PC， here is defined by customers
according to their development environment.

$ mkdir -p <WORKDIR>
$ cp /media/cdrom/04-Linux_Source/* <WORKDIR> -rf
$ ls <WORKDIR>
Bootloader/ Examples/ Filesystem/ Kernel/ Patches/ ToolChain/

10

2.1 Install tools
Install other development tools

For the sake of convenience we install all the tools and libraries before as shown
below:

Ubuntu 12.04 64Bit Desktop

sudo apt-get install build-essential git-core libncurses5-dev
$ sudo apt-get install flex bison texinfo zip unzip zlib1g-dev gettext
$ sudo apt-get install gperf libsdl-dev libesd0-dev libwxgtk2.6-dev
$ sudo apt-get install uboot-mkimage
$ sudo apt-get install g++ xz-utils

Ubuntu 14.04 64Bit Desktop

$ sudo apt-get install build-essential git-core libncurses5-dev u-boot-tools
$ sudo apt-get install flex bison texinfo zip unzip zlib1g-dev gettext
$ sudo apt-get insta 64Bit Desktopll gperf libsdl-dev libesd0-dev
$ sudo apt-get install g++ xz-utils
$ sudo apt-get install subversion

Ubuntu 16.04 64Bit Desktop

$ sudo apt-get install build-essential git-core libncurses5-dev u-boot-tools
$ sudo apt-get install flex bison texinfo zip unzip zlib1g-dev gettext
$ sudo apt-get install gperf libsdl-dev libesd0-dev
$ sudo apt-get install g++ xz-utils
$ sudo apt-get install subversion

On 64bit Ubuntu OS, some 32bit runtime libraries should be installed as shown
below:

$sudo apt-get install libc6-i386 lib32stdc++6 lib32z1

11

2.2 Setup GCC Toolchain
Set environment variables:

$ cd <WORKDIR>/Toolchain
$ tar xvf gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf.tar.xz
$ export PATH=$PATH:<WORKDIR>/Toolchain/gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueab
ihf/bin
$ export ARCH=arm
$ export CROSS_COMPILE=arm-linux-gnueabihf-

After executing the "export" command,type "arm" then press TAB to check if it’s
correctly set. This setting is valid only for the this terminal, for a permanent
modification, please modify user profiles.

eg:Set user environment variables
vi ~/.profile

At the end to add:

export ARCH=arm
export CROSS_COMPILE=arm-linux-gnueabihf-
export PATH=$PATH:<WORKDIR>/Toolchain/
gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf/bin

source ~/.profile or Reset Ubuntu

Test：

$echo $ARCH
arm
$echo $CROSS_COMPILE
arm-linux-gnueabihf-

Cross compiler verification：

arm-linux-gnueabihf-gcc -v

12

$ arm-linux-gnueabihf-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gnueabihf-gcc
……
Thread model: posix
gcc version 5.3.1 20160113 (Linaro GCC 5.3-2016.02)

13

3. Bulid System
There are many open source tools for building an embedded Linux system, they are
more convenient for embedded software engineers to build bootloader, kernel,
filesystem all in one step. Currently, OpenWRT, Buildroot , Yocto are more
commonly used.

Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux
systems through cross-compilation,thanks to its kernel-like menuconfig, gconfig and
xconfig configuration interfaces, building a basic system with Buildroot is easy, so it's
very popular among embedded software engineers.

The following sections will explain U-boot, kernel, filesystem respectively, in the part
of filesystem, we build a filesystem with QT5 included, customers can develop QT5
application based on this filesystem easily.

14

https://openwrt.org
http://buildroot.org
https://www.yoctoproject.org

3.1 Bulid Bootloader
Enter the directory of bootloader, uncompress the source code package as shown
below：

$ cd <WORKDIR>/Bootloader
$ tar -jxvf myir-u-boot.tar.bz2
$ cd myir-u-boot

Compile U-Boot：

The configuration of U-boot for MYD-AM335X series is located at myir-u-
boot/configs/, the corresponding configuration file name are shown below:

Table 3-1-1 U-boot Config Files for MYIR Development Boards

Board Configuration File Name

MYD-AM335X(NAND) myd_c335x_defconfig

MYD-AM335X(EMMC) myd_c335x_emmc_defconfig

MYD-AM335X-J(NAND) myd_j335x_defconfig

MYD-AM335X-J(EMMC) myd_j335x_emmc_defconfig

MYD-AM335X-Y(NAND) myd_y335x_defconfig

MYD-AM335X-Y(EMMC) myd_y335x_emmc_defconfig

Compile U-boot for MYD-AM335X development board with NAND：

$ make distclean
$ make myd_c335x_defconfig
$ make

After compiling is completed, MLO and u-boot.img files will be generated in myir-u-
boot directory.

15

3.2 Build Linux Kernel
Enter the work directory and uncompress the Linux Kernel source code package：

$ cd <WORKDIR>/
$ tar -jxvf myir-kernel.tar.bz2
$ cd myir-kernel

Compile Kernel：

The configuration of Kernel for MYD-AM335X series is located at myir-
kernel/arch/arm/configs/,customers can compile Kernel as shown below:

Table 3-2-1 Kernel Config Files for MYIR Development Boards

Board Type Configuration File Name

MYD-AM335X myd_c335x_defconfig

MYD-AM335X-Y myd_y335x_defconfig

MYD-AM335X-J myd_j335x_defconfig

Compile Kernel for MYD-AM335X development board：

If users want to compile and install kernel modules, they should set INSTALL_MOD_PATH ,
it is useful for debug kernel modules with NFS.

$ export INSTALL_MOD_PATH=$HOME/export/rootfsa/
$ make distclean
$ make myd_c335x_defconfig
$ make zImage dtbs
$ make modules
$ make modules_install

The kernel modules have a version magic, it should match the version of zImage. So
if users change the version of kernel, they should recompile the zImage and kernel
modules together. If the version does not match, the kernel will complain as below:

[2750.480576] ti_am335x_adc: disagrees about version of symbol dev_warn
[2750.487670] ti_am335x_adc: Unknown symbol dev_warn (err -22)
[2750.493977] ti_am335x_adc: disagrees about version of symbol dev_err

16

[2750.502474] ti_am335x_adc: Unknown symbol dev_err (err -22)

The configuration for different boards are shown in the table above. After compiling,
the kernel image is generated at arch/arm/boot/zImage , the DTB files are generated at
 arch/arm/boot/dts/myd_c335x.dtb, arch/arm/boot/dts/myd_c335x_emmc.dtb . The dtb file
 arch/arm/boot/dts/myd_c335x.dtb is for core board with NAND, the dtb file
 arch/arm/boot/dts/myd_c335x_emmc.dtb is for core board with EMMC.

Patch files for different hardware features：

The default configuration is 7-inch screen，256N256D，without SGX. Users can
generate a different screen and NAND DDR device tree file from the patch file in
 <WORKDIR>/04-Linux_source/Patches ，and then compile the kernel using the device tree
file.The following is a list of related patches:

Table 3-2-2 Kernel Patches for MYIR Development Boards

Board Type MYD-AM335X MYD-
AM335X-Y

MYD-
AM335X-J

HDMI patches myd_c335x_hdmi_display.diff No
expansion

No
expansion

4.3 inch
screen patch myd-am335x-lcd4.3.diff

myd-
am335x-y-
lcd4.3.diff

myd-
am335x-j-
lcd4.3.diff

SGX patch myd-am335x-sgx.diff
myd-
am335x-y-
sgx.diff

myd-
am335x-j-
sgx.diff

For example: Patch for MYD-AM335X-Y with SGX , 4.3-inch screen:

$ patch -p1 < <WORKDIR>/Patches/myd-am335x-y-lcd4.3.diff

$ patch -p1 < <WORKDIR>/Patches/myd-am335x-y-sgx.diff

Compile device tree：

make dtbs

And use the arch/arm/boot/dts directory of the device tree file to replace the system
image device tree file.

17

3.3 Build Filesystem
This section covers the building of filesystem with Buildroot.

3.3.1 Preparation before Building Buildroot
Note1: After modifying source code of Kernel or U-boot, Buildroot can not
update and build it automatically. Customers should commit it to the master
branch of their local git repo manually.

Note2: If the source code of Kernel is updated, before building Buildroot again,
customers should remove the package "myir-buildroot/dl/linux-master.tar.gz"
and the "myir-buildroot/output/build/linux-master" and
"myirbuildroot\output\build\linux-headers-master" directories manually. The
same to rebuilding of U-boot.

Note3：Before building u-boot and kernel with buildroot, users need to create
their own git repository for u-boot and kernel, then replace the git path in the
configuration files.

Copy the Buildroot source package customized by MYIR Tech from 04-
Linux_Source/Filesystem/myir-buildroot.tar.gz of our release package to work
directory and uncompress it. The content of myir-buildroot.tar.gz is shown below:

$ ls -al <WORKDIR>/Filesystem/myir-buildroot
arch CHANGES configs dl linux output support
board Config.in COPYING docs Makefile package system
boot Config.in.legacy DEVELOPERS fs Makefile.legacy README toolchain

For more details about the file structure of Buildroot , please refer to Buildroot
manual https://buildroot.org/downloads/manual/manual.html.The board support files
for MYD AM335X series development boards are located at <WORKDIR>/Filesystem/myir-
buildroot/board/myir/myd_c335x , <WORKDIR>/Filesystem/myir-
buildroot/board/myir/myd_y335x , <WORKDIR>/Filesystem/myir-buildroot/board/myir/myd_j335x

3.3.2 Buildroot Configuration
18

https://buildroot.org/downloads/manual/manual.html

The configuration files for Buildroot are all located at <WORKDIR>/Filesystem/myir-
buildroot/configs/ .

Table 3-3-1 Buildroot Config Files for MYIR Development Boards

Config File Description

myd_c335x_defconfig Buildroot configuration without QT5 for MYC-
AM335X CPU Module with NAND Flash

myd_c335x_emmc_defconfig Buildroot configuration without QT5 for MYC-
AM335X CPU Module With EMMC

myd_c335x_qt5_defconfig Buildroot configuration with QT5 for MYD-
AM335X development board with NAND

myd_j335x_defconfig Buildroot configuration without QT5 for MYC-
AM335X-J CPU Module with NAND Flash

myd_j335x_emmc_defconfig Buildroot configuration without QT5 for MYC-
AM335X-J CPU Module with EMMC

myd_j335x_qt5_defconfig
Buildroot configuration with QT5 for MYD-
AM335X-J development board with NAND
Flash

myd_y335x_defconfig Buildroot configuration without QT5 for MYC-
AM335X-Y CPU Module with NAND Flash

myd_y335x_defconfig Buildroot configuration without QT5 for MYC-
AM335X-Y CPU Module with EMMC

myd_y335x_qt5_defconfig
Buildroot configuration with QT5 for MYD-
AM335X-Y development board with NAND
Flash

$ cd myir-buildroot
$ make clean
$ make myd_y335x_defconfig

Customers can change the configuration by its kernel-like menuconfig with the
command make menuconfig . The main configuration for MYD-AM335X-Y development
board are listed below.

Configuration for Cross Compiler:

19

Buildroot can use internal cross compile toolchain generated by Buildroot itself, it can
also use external cross compile toolchain. In this document, we choose the internal
cross compile toochain, it will be generated and stored to <WORKDIR>/Filesystem/myir-
buildroot/output/host/usr/bin/ after compiling.

Figure 3-3-1 Configuration for Cross Compiler

Configuration for System:

The configuration for system includes the name of the target system, the welcome
message, the init subsystem(busybox/systemV/systemd) and device manage
system, customers can also set the password for root user by configuration. For
MYD-AM335X-Y development board, the password for root is set to myirtech as
shown below. If customers do not need to set password, they no need to config the
password.

20

Figure 3-3-2 Configuration for System

Configuration for Bootloader:

The configuration for Bootloader includes the URL of the source code of U-boot, the
U-boot configuration file name, the output images of U-boot and so on. They are
shown in Figure 3-3-3 below.

21

Figure 3-3-3 Configuration for Bootloader

We fetch the source code of U-boot with git from local repository. Users need to build
their own git repository, they can also use other protocols or even local directory. For
other protocols, please refer to the Buildroot manual. Create a U-boot git repository
from myir-u-boot.tar.gz :

$ cd ~/
$ tar zxvf myir-u-boot.tar.gz
$ cd myir-u-boot
$ git init
$ git add . -f
$ git commit -m "Initial Version" -a

And then modify and replace the two items of the configuration files located at
 <WORKDIR>/Filesystem/buildroot/configs/myd_y335x_defconfig and
 <WORKDIR>/Filesystem/buildroot/configs/myd_y335x_qt5_defconfig , as shown below:

BR2_TARGET_UBOOT_CUSTOM_REPO_URL="~/myir-u-boot/.git"
BR2_TARGET_UBOOT_CUSTOM_REPO_VERSION="master"

22

Configuration for Kernel:

The configuration of Kernel is similar to that of bootloader.

Figure 3-3-4 Configuration for Kernel

We fetch the source code of Kernel with git from local repository. Users need to build
their own git repository, they can also use other protocols or even local directory. For
other protocols, please refer to the Buildroot manual. Create a kernel git repository
from myir-kernel.tar.gz :

$ cd ~/
$ tar zxvf myir-kernel.tar.gz
$ cd myir-u-boot
$ git init
$ git add . -f
$ git commit -m "Initial Version" -a

23

And then modify and replace the two items of the configuration files located at
 <WORKDIR>/Filesystem/buildroot/configs/myd_y335x_defconfig and
 <WORKDIR>/Filesystem/buildroot/configs/myd_y335x_qt5_defconfig , as shown below:

BR2_TARGET_KERNEL_CUSTOM_REPO_URL="~/myir-kernel/.git"
BR2_TARGET_KERNEL_CUSTOM_REPO_VERSION="master"

Configuration for Filesystem:

The configuration for filesystem determines what filesystem images are generated in
myir-buildroot/output/images/ directory after compiling, If we choose ramdisk in the
configuration, we will get a ramdisk filesystem image. EXT2/4, UBIFS, and rootfs tar
package can also be create if they are choosed in configuration.

By the way, the rootfs.tar.gz can be uncompressed and used as the nfsroot directory,
it can also be made to other formats of filesystem images by host mtd-utils. For
example, we can create UBIFS filesystem image without building Buildroot again
after doing some modification for rootfs.Firstly, we create a file ubinize.cfg as shown
below:

[ubifs]
mode=ubi
vol_id=0
vol_type=dynamic
vol_name=rootfs
vol_alignment=1
vol_flags=autoresize
image=rootfs.ubifs

Then, make a UBIFS image with UBIFS tools by the following processes:

$ export PATH=$PATH:<WORKDIR>/Filesystem/myir-buildroot/output/host/usr/sbin
$ tar zxvf rootfs.tar.gz
$ mkfs.ubifs -d rootfs -e 0x1f000 -c 2048 -m 0x800 -x lzo -F -o rootfs.ubifs
$ ubinize -o rootfs.ubi -m 0x800 -p 0x20000 -s 512 -m 2048 -O 2048 ubinize.cfg

24

Figure 3-3-5 Configuration for Filesystem

Configuration for Target Packages:

The configuration for target packages is easier, but it is changed more frequently.
Customers can choose some hardware tools, such as I2C-tools, spi-tools, can-utils
and so on, build them into the filesystem images for debugging. Some network utils,
such as DHCP, TFTP, SSH and so on, can aslo be choosed and built into the
filesystem images for production. Most commonly used tools are included in the
target packages of Buildroot. Customers can also write new target packages and
integrate them to Buildroot, please refer to
https://buildroot.org/downloads/manual/manual.html#adding-packages for details.

25

https://buildroot.org/downloads/manual/manual.html#adding-packages

Figure 3-3-6 Configuration for Target Packages

3.3.3 Build Buildroot
Customers can build Buildroot just like building kernel as shown below:

$ cd myir-buildroot
$ make

An output directory is generated during compilation，The resulte output image files
are located at the <WORKDIR>/Filesystem/myir-buildroot/output/images directory.

$ls -al output/images
boot.vfat MLO_usbmsc rootfs.cpio rootfs.tar u-boot_emmc.img u-bo
ot_usbmsc.img uEnv.txt
MLO myd_y335x.dtb rootfs.cpio.gz rootfs.tar.gz u-boot.img uEnv
_mmc.txt uEnv_usbmsc_ramdisk.txt
MLO_emmc myd_y335x_emmc.dtb rootfs.cpio.uboot rootfs.ubi u-boot_nand.img uEnv
_ramdisk.txt uEnv_usbmsc.txt

26

MLO_nand ramdisk.gz rootfs.ext2 rootfs.ubifs u-boot_sd.img uEnv
_sd_ramdisk.txt zImage
MLO_sd readme.txt rootfs.ext4 sdcard.img u-boot-spl.bin uEnv
_sd.txt

The bootloader, kernel and all kinds of filesystem images are generated all in one
step, they will be introduced in the subsequent section. A cross compile toolchain is
also generated at <WORKDIR>/Filesystem/myir-buildroot/output/ , users can setup this
toolchain as follows(suppose myir-buildroot is put into $HOME):

export PATH="$HOME/myir-buildroot/output/host/usr/bin:$PATH"
export PATH="$HOME/myir-buildroot/output/host/usr/sbin:$PATH"
export CROSS_COMPILE=arm-myir-linux-gnueabihf-
export TARGET_CC=arm-myir-linux-gnueabihf-gcc
export ARCH=arm

3.3.4 Filesystem Built by Arago

Customers can also run an demo filesystem image created with Arago on a MYD-
AM335X series development board, it was created by TI, please refer to the WIKI
page on TI's website.
http://processors.wiki.ti.com/index.php/Processor_SDK_Building_The_SDK.

27

http://processors.wiki.ti.com/index.php/Processor_SDK_Building_The_SDK

3.4 Build QT
QT5 is included in Buildroot as a target package, we have provided a config file with
QT5 for MYD-AM335X series development board, so it is easy to build filesystem
images with QT5 shown as below.

$ cd <WORKDIR>/Filesystem/myir-buildroot

Build Buildroot:

Before making Buildroot, we should choose a configuration. For details, please refer
to the Table 3-3-1 .

MYD-AM335X with qt5：

$ make myd_c335x_qt5_defconfig
$ make menuconfig (optional)
$ make

After compiling with the config file myd_c335x_qt5_defconfig , all the target images are
generated at path myir-buildroot/output/images . There is a HMI demo named as
 MEasy HMI inclued, which was designed by MYIR Electornics Limited , for more details
about MEasy HMI , please refer to MEasy HMI Development Guide .

Beyond the image files, a cross compiler and a qmake tools are generated at path
 myir-buildroot/output/host after building QT5 applications. These will be described in
detail in the subsequent sections.

28

4. Linux Applications Development
This section focuses on application development based on embedded Linux, the
following examples provided by MYIR Tech demonstrate how to take the control of
some commonly used peripheral devices through Linux applications. The source
code of these examples is located at 04-Linux_Source\Examples of our release
package. Please follow the instructions provided in the readme file to set the
environment variables, compile the source code and install the binary files into MYD-
AM335X series development board.

$ cd <WORKDIR>/Examples/

Make sure the following environment variables are right.

$ export PATH=$PATH:<WORKDIR>/Toolchain/
gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf/bin
$ export ARCH=arm
$ export CROSS_COMPILE=arm-linux-gnueabihf-

After building Buildroot, a cross compile toolchain has been created at myir-
buildroot/output/host/usr/bin, it can be used here by setting the environment
variables instead of the above.

$ export ARCH=arm
$ export CROSS_COMPILE=arm-myir-linux-gnueabihf-
$ export PATH=$PATH:<WORKDIR>/Filesystem/myir-buildroot/output/host/usr/bin
$ export PATH=$PATH:<WORKDIR>/Filesystem/myir-buildroot/output/host/usr/sbin

Customers could build examples all in one step:

$ cd <WORKDIR>/Examples/
$ make OPTION=MYD-AM335X-SERIES

Or build the examples respectively:

$ cd <WORKDIR>/Examples/<APP_DIR>

29

$ make

If the binary files have no permission to run, please assign the running permission to
them by chmod：

chmod +x *

30

4.1 LCD
This example demonstrates the usage of Linux API for Linux framebuffer, users can
use these API to paint points, lines and areas on LCD frame buffer. At the end of this
section, demonstrate drawing a picture on LCD framebuffer with fbv application
built by Buildroot.

Hardware Preparation:

Hardware debugging environment to see chapter second.

Board
Type MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

LCD
interface

(MY-TFT070CV2) 7
inch capacitive
screen connection
J8

(MY-TFT070CV2) 7
inch capacitive
screen connection
J7

(MY-TFT070CV2) 7
inch capacitive
screen connection
J8

Note: MY-TFT070CV2 information please click LCD Screen.

Software Preparation:

Linux Kernel 4.1.18
framebuffer_test application
fbv application built by Buildroot

Test Steps:

Copy cross compiled <WORKDIR>/Examples/framebuffer/framebuffer_test to /usr/bin
directory of the MYD-AM335X series development board, run framebuffer_test
application as below:

chmod 777 /usr/bin/framebuffer_test
framebuffer_test -h
Usage: framebuffer_test [options]

Version 1.0
Available options:
-d | --device name framebuffer device name, default: /dev/fb0
-h | --help Print this message

framebuffer_test -d /dev/fb0

31

http://www.myir-tech.com/product/my-tft070cv2.htm

xres:800 >>> yres:480 >>> bpp:32>>>

During framebuffer_test running, serval colors of background are painted on LCD
one by one, and then colorful points, lines, areas are painted.

Restart the development board,copy a BMP file with 24BPP and resolution of
800*480 to /media of the MYD-AM335X series development board, display the
picture on LCD by fbv application:

fbv
Usage: fbv [options] image1 image2 image3 ...

Available options:
 --help | -h : Show this help
 --alpha | -a : Use the alpha channel (if applicable)
 --dontclear | -c : Do not clear the screen before and after displaying the image
 --donthide | -u : Do not hide the cursor before and after displaying the image
 --noinfo | -i : Supress image information
 --stretch | -f : Strech (using a simple resizing routine) the image to fit onto
 screen if necessary
 --colorstretch| -k : Strech (using a 'color average' resizing routine) the image to
 fit onto screen if necessary
 --enlarge | -e : Enlarge the image to fit the whole screen if necessary
 --ignore-aspect| -r : Ignore the image aspect while resizing
 --delay <d> | -s <delay> : Slideshow, 'delay' is the slideshow delay in tenths of s
econds.

Keys:
 r : Redraw the image
 a, d, w, x : Pan the image
 f : Toggle resizing on/off
 k : Toggle resizing quality
 e : Toggle enlarging on/off
 i : Toggle respecting the image aspect on/off
 n : Rotate the image 90 degrees left
 m : Rotate the image 90 degrees right
 p : Disable all transformations
Copyright (C) 2000 - 2004 Mateusz Golicz, Tomasz Sterna.
Error: Required argument missing.

fbv /meida/800-480.bmp
fbv - The Framebuffer Viewer
/media/800-480.bmp
800 x 480

32

After complete, the picture displays just right for the LCD.

33

4.2 Touch Panel
This example demonstrates how to test touch screen by ts_calibrate application built
with Buildroot.

Hardware preparation:

Hardware debugging environment to see chapter second.

Board
Type

MYD-
AM335X MYD-AM335X-Y MYD-AM335X-J

Touch
screen
interface

(MY-
TFT070RV2)
7 inch
resistive
screen
connection
J8

(MY-TFT070CV2) 7
inch capacitive
screen/(MY-
TFT070RV2) 7 inch
resistive screen
connection J7

(MY-TFT070CV27)
inch capacitive
screen/(MY-
TFT070RV2) 7 inch
resistive screen
connection J8

Software Preparation:

Linux Kernel 4.1.18
TS_CALIBRATE application

Test Steps:

Connect MY-TFT070CV2 module to MYD-AM335X series development board,
power on the board and view the device node in /dev/input directory.

ls /dev/input
by-path event1 event3 mice mouse1
event0 event2 event4 mouse0
cat /sys/class/input/event0/device/name
beeper
cat /sys/class/input/event1/device/name
tps65217_pwrbutton
cat /sys/class/input/event2/device/name
ft5x06_ts
cat /sys/class/input/event3/device/name
ti-tsc

34

The result above shows the resistive touch screen is corresponding to
 /dev/input/event3 ; The capacitive touch screen is corresponding to
`/dev/input/event2, so test capactive touch screen as below:

export TSLIB_TSDEVICE=/dev/input/event2
ts_calibrate
xres = 800, yres = 480
Took 4 samples...
Top left : X = 57 Y = 56
Took 2 samples...
Top right : X = 743 Y = 64
Took 4 samples...
Bot right : X = 742 Y = 438
Took 4 samples...
Bot left : X = 61 Y = 443
Took 4 samples...
Center : X = 398 Y = 246
-8.802551 1.024123 -0.004216
-8.078796 -0.002245 0.998305
Calibration constants: -576884 67116 -276 -529452 -147 65424 65536
#

Power off the MYD-AM335X series development board，connect MY-
TFT070RV2 module to MYD-AM335X series development board, power on the
board and view the device node in /dev/input directory.

ls /dev/input
by-path event0 event1 event2 event3 mice mouse0
cat /sys/class/input/event0/device/name
beeper
cat /sys/class/input/event1/device/name
ti-tsc
cat /sys/class/input/event2/device/name
tps65217_pwrbutton
cat /sys/class/input/event3/device/name
volume_keys@0
#

The result above shows the resistive touch screen is corresponding to
 /dev/input/event1 , so test resistive touch screen as below:

export TSLIB_TSDEVICE=/dev/input/event1
ts_calibrate

35

xres = 800, yres = 480
Took 32 samples...
Top left : X = 299 Y = 619
Took 21 samples...
Top right : X = 3689 Y = 659
Took 29 samples...
Bot right : X = 3732 Y = 3463
Took 27 samples...
Bot left : X = 280 Y = 3423
Took 18 samples...
Center : X = 2009 Y = 2072
-7.786255 0.204611 -0.000881
-34.248169 -0.001587 0.135514
Calibration constants: -510280 13409 -57 -2244488 -103 8881 65536

36

4.3 RTC
This example demonstrates how to use Linux API to read and write real time on
RTC，please refer to the source code for detail. Users can also test the RTC with
 date and hwclock command built with Buildroot.

Hardware Preparation:

Hardware debugging environment to see chapter second.
CR1220 3V button cell

Board Type MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

CR1220 button cell J1 J2 J23

Software Preparation:

Linux Kernel 4.1.18
date, hwclock command
rtc_test application

Test Steps:

Copy cross compiled <WORKDIR>/Examples/rtc/rtc_test to /usr/bin directory of the
MYD-AM335X seriesdevelopment board, run rtc_test application as below:

chmod 777 /usr/bin/rtc_test
rtc_test -h
Usage: rtc_test [options]

Version 1.0
Options:
-d | --device name rtc device name, default: /dev/rtc0
-w | --write time time string with format MMDDhhmm[CCYY][.ss]. such as: 111817582
016.18
-h | --help Print this message

rtc_test -d /dev/rtc -w 111817582016.18
date/time is updated to: 18-11-2016, 17:58:18.

Power off the development board, wait for a while, power on again and read the
rtc time by rtc_test as below:

37

rtc_test -d /dev/rtc

 Current RTC date/time is 18-11-2016, 18:04:32.

Users can also use date and hwclock command to test RTC as below:

date 081518002016.30 -- Set the system time to August 15
, 2016 18:00:30
Mon Aug 15 18:00:30 UTC 2016
date
Mon Aug 15 18:00:38 UTC 2016
hwclock -w /dev/rtc -- Write the system time to rtc

Power off the development board, wait for a while, power on again and read the
rtc time by hwclock as below:

hwclock -r /dev/rtc
Mon Aug 15 18:11:08 2016 0.000000 seconds

38

4.4 RS485
This example demonstrates the MYD-AM335X series of the same type of two
development board how to use the Linux API configuration development board on
the RS485 and send and receive data,please refer to the source code for detail.

Hardware Preparation:

Hardware debugging environment to see chapter second.

Board
Type MYD-AM335X MYD-AM335X-

Y MYD-AM335X-J

RS485
interface

U16 4,5 Pin
were
connected to
the same type
of
development
board 4,5 Pin

CON2 5,4 Pin
were
connected to
the same type
of development
board 5,4 Pin

JP2 and JP3 shorted，JP5
and JP7 shorted，J18 1，2，
4，5 Pin were connected to
the same type of development
board 1，2，4，5 Pin

Software Preparation:

Linux Kernel 4.1.18
tty_test application

Board Type MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

Device node ttyO1 ttyO2 ttyO2 ttyO3

Test Steps:

Copy cross compiled <WORKDIR>/Examples/tty/tty_test to /usr/bin directory of the
MYD-AM335X series development board, run tty_test application as below:

tty_test -h
Usage: tty_test [options]
Version 1.0
Options:
-d | --device name tty device name, default: /dev/tty0
-m | --mode mode operate mode. 0: RS232, 1: RS485 default mode: 0
-f | --flow flow control
-b | --baudrate baudrate set baudrate, default baudrate: 115200
-l | --loop operate circularly

39

-w | --write frame frame string. such as: 0123456789
-h | --help Print this message

One board is used as sender, the other is used as receiver, they communicate
with tty_test application as below:

tty_test -d /dev/ttyO1 -b 9600 -w "123456789" -m 1 -l
SEND:123456789
SEND:123456789
SEND:123456789

Execute the following command at other board to receive data as below:

tty_test -d /dev/ttyO2 -b 9600 -m 1 -l
RECV:1, total:1
RECV:2, total:1
RECV:3, total:1
RECV:4, total:1
RECV:5, total:1
RECV:6, total:1
RECV:7, total:1
RECV:8, total:1
RECV:9, total:1
RECV:1, total:1
RECV:2, total:1
RECV:3, total:1
RECV:4, total:1
RECV:5, total:1
RECV:6, total:1
RECV:7, total:1
RECV:8, total:1
RECV:9, total:1

Exchange roles of the two boards, the result is the same.

40

4.5 CAN Bus
This example demonstrates the MYD-AM335X series of the same type of two
development board how to use Linux APIs to send and receive data from CAN bus,
please refer to the source code for detail.

Hardware Preparation:

Hardware debugging environment to see chapter second.

Board
Type MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

CAN
interface

U16 7,8 Pin
were connected
to the same
type of
development
board 7,8 Pin

CON2 1,2 Pin
were connected
to the same type
of development
board 1,2 Pin

Disconnect jumper cap
JP7,Shorted JP4, J17 1,2
Pin were connected to the
same type of development
board 1,2 Pin

Software Preparation:

Linux Kernel 4.1.18
can_test application
ip link applicatoin

Board Type MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

Operation node can1 can1 can0

Test Steps:

Copy cross compiled <WORKDIR>/Examples/can/can_test to /usr/bin directory of the
MYD-AM335x series development board, run can_test application as below:

can_test --help
Usage: can_test [options]

Version 1.0
Options:
-d | --device name can device name: can0
-b | --baudrate baudrate set baudrate, default baudrate:50000
-l | --loop operate circularly, default not operate circularly!
-w | --write frame frame string with format ID#MESSAGE. such as: 123#112233445566

41

-h | --help Print this message

ip link set can1 down
ip link set can1 type can bitrate 50000 triple-sampling on
ip link set can1 up

The previous processes are no need to be executed manually. During running
 can_test , it will be set automatically. One board is used as sender, the other is
used as receiver, they communicate with can_test application as below:

chmod 777 /usr/bin/can_test
can_test -d can0 -w 123#112233445566
[5783.823623] c_can_platform 481cc000.can can0: setting BTR=1c1d BRPE=0000
[5786.888723] can: controller area network core (rev 20120528 abi 9)
[5786.895565] NET: Registered protocol family 29
[5786.952090] can: raw protocol (rev 20120528)
====== write frame: ======
 frame_id = 0x123
 frame_len = 6
 frame_data = 0x11 0x22 0x33 0x44 0x55 0x66
===========================

Execute the following command at other board to receive data as below:

chmod 777 /usr/bin/can_test
can_test -d can1 -l
[5888.821956] c_can_platform 481d0000.can can1: setting BTR=1c1d BRPE=0000
[5891.884726] can: controller area network core (rev 20120528 abi 9)
[5891.898711] NET: Registered protocol family 29
[5891.952878] can: raw protocol (rev 20120528)
can1 0x123 [6] 0x11 0x22 0x33 0x44 0x55 0x66

-l option is used for operating circularly.

Note: In case of the following error, please modify the value of "tx_queue_len"
as below:

can_test -d can0 -w 123#112233445566
 can raw socket write: No buffer space available

echo 1000 > /sys/class/net/can0/tx_queue_len

42

Exchange roles of the two boards, the result is the same.

43

4.6 Ethernet
This example demonstrates how to use Linux APIs to send and receive data from
Network port, please refer to the source code for detail.

Hardware Preparation:

Hardware debugging environment to see chapter second.

Board Type MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

Network port
interface

Cable
connection J5

Cable
connection J5

Cable
connection J5

Software Preparation:

Linux Kernel 4.1.18
server application
client applicatoin

Test Steps:

Copy cross compiled <WORKDIR>/Examples/network/client to /usr/bin directory of
the MYD-AM335x series development board,Copy cross compiled
 <WORKDIR>/Examples/network/server to ubuntu 12.04.Assume that the ubuntu12.04
ip is 192.168.30.114.

Configure the development board ip：

ifconfig eth0 192.168.30.122 up

Configure the network, the development board eth0 connected to the PC with a
network cable,to the virtual machine as the server, the development board for the
client, first in the virtual machine to execute the following command:

$./server 192.168.30.122

And then in the development board to execute the following command to see the
information sent:

44

./client 192.168.30.114
send messages: 1234567890 to 192.168.30.114
send messages: 1234567890 to 192.168.30.114
send messages: 1234567890 to 192.168.30.114
send messages: 1234567890 to 192.168.30.114
send messages: 1234567890 to 192.168.30.114
send messages: 1234567890 to 192.168.30.114

At the same time you can see the virtual machine to receive the data sent by the
development board:

$./server 192.168.30.122
received messages: 1234567890@ from 192.168.30.122
received messages: 1234567890@ from 192.168.30.122
received messages: 1234567890@ from 192.168.30.122
received messages: 1234567890@ from 192.168.30.122
received messages: 1234567890@ from 192.168.30.122
received messages: 1234567890@ from 192.168.30.122

45

4.7 NAND Flash
This example demonstrates how to use the Linux API to erase, write, and read
NAND Flash on the development board,please refer to the source code for detail.

Hardware Preparation:

Hardware debugging environment to see chapter second.
MYD-AM335X series development board.

Software Preparation:

Linux Kernel 4.1.18
mtd_test application

Test Steps:

Copy cross compiled <WORKDIR>/Examples/mtd/mtd_test to /usr/bin directory of the
MYD-AM335x series development board,Executing the following command to
nandflash erase, write and read data:

./mtd_test /dev/mtd7

MTD Type: 4
MTD total size: 131072 bytes
MTD erase size: 131072 bytes
MTD write size: 2048 bytes

erase the last block at 0

erase done!

writing 16 bytes data to flash...
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f
write done!

reading data from flash...
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f
read done!

46

4.8 KeyPad
This example demonstrates how to read the keypad event information by Linux user
APIs, please refer to the source code for detail.

Hardware Preparation:

Hardware debugging environment to see chapter second.
MYD-AM335x series development board

Software Preparation:

Linux Kernel 4.1.18
hexdump command
keypad_test application

Test Steps:

Copy cross compiled <WORKDIR>/Examples/keypad/keypad_test to /usr/bin directory
of the MYD-AM335x series development board, run keypad_test application as
below:

$ chmod 777 /usr/bin/keypad_test
$ keypad_test -h
Usage: keypad_test [options]

Version 1.0
Options:
-d | --device name keypad device name, default: /dev/input/event0
-h | --help Print this message

View the device nodes of MYD-AM335X keypad, the following information
shows K2 and K3 keypads are corresponding to /dev/input/event1 。

ls /dev/input/
by-path/ event0 event1 mice mouse0

cat /sys/class/input/event0/device/name
ti-tsc

cat /sys/class/input/event1/device/name

47

volume_keys@0

Test MYD-AM335X K2 and K3 keypads as below:

keypad_test -d /dev/input/event1
Event: Code = 115, Type = 1, Value=1 -- press K2
Event: Code = 0, Type = 0, Value=0
Event: Code = 115, Type = 1, Value=0 -- release K2
Event: Code = 0, Type = 0, Value=0
Event: Code = 114, Type = 1, Value=1 -- press K3
Event: Code = 0, Type = 0, Value=0
Event: Code = 114, Type = 1, Value=2
Event: Code = 0, Type = 0, Value=1
Event: Code = 114, Type = 1, Value=0 -- release K3
Event: Code = 0, Type = 0, Value=0

View the device nodes of MYD-AM335X-Y keypad, the following information
shows K3 and K4 keypads are corresponding to /dev/input/event3 ， K5

keypad is corresponding to /dev/input/event2 .

ls /dev/input/
by-path event0 event1 event2 event3 mice mouse0

cat /sys/class/input/event0/device/name
beeper
cat /sys/class/input/event1/device/name
ti-tsc
cat /sys/class/input/event2/device/name
tps65217_pwrbutton
cat /sys/class/input/event3/device/name
volume_keys@0

Test MYD-AM335X-Y K3 and K4 keypads as below:

keypad_test -d /dev/input/event3
Event: Code = 115, Type = 1, Value=1 -- press K3
Event: Code = 0, Type = 0, Value=0
Event: Code = 115, Type = 1, Value=0 -- release K3
Event: Code = 0, Type = 0, Value=0
Event: Code = 114, Type = 1, Value=1 -- press K4
Event: Code = 0, Type = 0, Value=0
Event: Code = 114, Type = 1, Value=0 -- release K4
Event: Code = 0, Type = 0, Value=0

48

Test MYD-AM335X-Y K5 keypads as below:

keypad_test -d /dev/input/event2
Event: Code = 116, Type = 1, Value=1 -- press K5
Event: Code = 0, Type = 0, Value=0
Event: Code = 116, Type = 1, Value=0 -- release K5
Event: Code = 0, Type = 0, Value=0

View the device nodes of MYD-AM335X-J keypad, the following information
shows K3 and K4 keypads are corresponding to /dev/input/event3 ， K2

keypad is corresponding to /dev/input/event1 .

ls /dev/input/
by-path event0 event1 event2 event3 mice mouse0 mouse1

cat /sys/class/input/event0/device/name
ti-tsc
cat /sys/class/input/event1/device/name
tps65217_pwrbutton
cat /sys/class/input/event2/device/name
ft5x06_ts
cat /sys/class/input/event3/device/name
volume_keys@0

Test MYD-AM335X-J K3 and K4 keypads as below:

keypad_test -d /dev/input/event3
Event: Code = 115, Type = 1, Value=1 -- press K3
Event: Code = 0, Type = 0, Value=0
Event: Code = 115, Type = 1, Value=0 -- release K3
Event: Code = 0, Type = 0, Value=0
Event: Code = 114, Type = 1, Value=1 -- press K4
Event: Code = 0, Type = 0, Value=0
Event: Code = 114, Type = 1, Value=0 -- release K4
Event: Code = 0, Type = 0, Value=0

Test MYD-AM335X-J K2 keypads as below:

keypad_test -d /dev/input/event1
Event: Code = 116, Type = 1, Value=1 -- press K2
Event: Code = 0, Type = 0, Value=0
Event: Code = 116, Type = 1, Value=0 -- release K2
Event: Code = 0, Type = 0, Value=0

49

Each keypad has a event code as show above. the code should be consistent with
the value in device tree source.Users can use hexdump command to test keypads as
below，The following to MYD-AM335X, for example, other types of KeyPad test
similar.

hexdump /dev/input/event1
0000000 022b 0000 2a83 0005 0001 0073 0001 0000
0000010 022b 0000 2a83 0005 0000 0000 0000 0000
0000020 022b 0000 78b5 0007 0001 0073 0000 0000
0000030 022b 0000 78b5 0007 0000 0000 0000 0000

0000040 0231 0000 8c69 0001 0001 0072 0001 0000
0000050 0231 0000 8c69 0001 0000 0000 0000 0000
0000060 0231 0000 fc11 0003 0001 0072 0000 0000
0000070 0231 0000 fc11 0003 0000 0000 0000 0000

50

4.9 GPIO-LED
On a embbeded Linux system, the LEDs are commonly controlled by sysfs interface.
This example demonstrates how to control the LEDs by sysfs with echo command
or led_test application.

Hardware Preparation:

Hardware debugging environment to see chapter second.
MYD-AM335x series development board

Software Preparation:

Linux Kernel 4.1.18
echo, led_test application

Test Steps:

Copy cross compiled <WORKDIR>/Examples/led/led_test to /usr/bin directory of the
MYD-AM335x series development board.

View the device node of MYD-AM335X LED devices as below:

ls /sys/class/leds
myc:green:user1 myd:green:user2 myd:green:user3

Control the MYD-AM335X LED by echo command as below:

D3：
#echo "1" > /sys/class/leds/myc\:green\:user1/brightness
#echo "0" > /sys/class/leds/myc\:green\:user1/brightness
D39：
#echo "1" > /sys/class/leds/myd\:green\:user2/brightness
#echo "0" > /sys/class/leds/myd\:green\:user2/brightness
D40：
#echo "1" > /sys/class/leds/myd\:green\:user3/brightness
#echo "0" > /sys/class/leds/myd\:green\:user3/brightness

View the device node of MYD-AM335X-Y LED devices as below:

ls /sys/class/leds

51

myc:green:user1 myd:green:user2

Control the MYD-AM335X-Y LED by echo command as below:

D3：
#echo "1" > /sys/class/leds/myc\:green\:user1/brightness
#echo "0" > /sys/class/leds/myc\:green\:user1/brightness
D2：
#echo "1" > /sys/class/leds/myd\:green\:user2/brightness
#echo "0" > /sys/class/leds/myd\:green\:user2/brightness

View the device node of MYD-AM335X-J LED devices as below:

ls /sys/class/leds
myc:green:user1 myd:green:user2

Control the MYD-AM335X-J LED by echo command as below:

D3：
echo "1" > /sys/class/leds/myc\:green\:user1/brightness
echo "0" > /sys/class/leds/myc\:green\:user1/brightness
D2：
echo "1" > /sys/class/leds/myd\:green\:user2/brightness
echo "0" > /sys/class/leds/myd\:green\:user2/brightness

Control the LEDs by 'led_test' application as below:

led_test -h
Usage: led_test [options]

Version 1.0
Options:
-d | --device name led name myc:blue:cpu0
-l | --light brightness led brightness. 0~255 0: off.
-h | --help Print this message

led_test -d myc:green:user1 -l 0
Set led myc:green:user1 off, brightness = 0
led_test -d myc:green:user1 -l 1
Set led myc:green:user1 on, brightness = 1

52

4.10 Audio
This example demonstrates how to use the Linux API to control the input and output
of audio,please refer to the source code for detail.

Hardware Preparation:

Hardware debugging environment to see chapter second.

Board
Type MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

Audio
interface

Audio input J11，
Headphones
Connect J10

Audio input J9，
Headphones
Connect J8

Audio input J10，
Headphones
Connect J9

Software Preparation:

Linux Kernel 4.1.18
audio_test application

Test Steps:

Copy cross compiled <WORKDIR>/Examples/audio/audio_test to /usr/bin directory of
the MYD-AM335x series development board.Plug the headset into the audio
output port, enter the audio input to the audio input port, enter the following
command at the Linux terminal:

audio_test
rate set to 21999, expected 22000
Init capture successfully, rate: 21999, period_size: 128
rate set to 21998, expected 21999
Period size: 128 frames, buffer size: 256 bytes

53

4.11 USB Host
This example demonstrates how to use USB host to mount mass stroage device and
verify the driver of USB host,to achieve the function of reading and writing USB flash
disk.

Hardware Preparation:

Hardware debugging environment to see chapter second.
USB flash disk

Board Type MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

USB Host interface J3 or J4 J19 J27

Software Preparation:

Linux Kernel 4.1.18
mount and umount commands

Test Steps:

Plug the USB disk in the USB host interface of development board, use mount
or umount command to load and unload USB disk. When users plug in the USB
disk, Linux kernel dumps the message as below:

[334.568567] usb 2-1.4: new high-speed USB device number 3 using musb-hdrc
[334.688922] usb 2-1.4: New USB device found, idVendor=1908, idProduct=0226
[334.696305] usb 2-1.4: New USB device strings: Mfr=0, Product=0, SerialNumber=0
[334.743502] usb-storage 2-1.4:1.0: USB Mass Storage device detected
[334.751563] scsi host0: usb-storage 2-1.4:1.0
[334.762053] usbcore: registered new interface driver usb-storage
[334.788766] cpu cpu0: clk_voltdm_notifier_handler: Failed to scale voltage(1100000)
: -22
[334.797531] cpu cpu0: clk_voltdm_notifier_handler: Failed to scale voltage(950000):
 -22
[334.806827] cpu cpu0: failed to set clock rate: -16
[334.812093] cpufreq: __target_index: Failed to change cpu frequency: -16
[335.759638] scsi 0:0:0:0: Direct-Access Generic Mass-Storage 1.11 PQ: 0 AN
SI: 2
[336.488565] sd 0:0:0:0: [sda] 15605760 512-byte logical blocks: (7.99 GB/7.44 GiB)
[336.497237] sd 0:0:0:0: [sda] Write Protect is off
[336.503459] sd 0:0:0:0: [sda] Mode Sense: 03 00 00 00

54

[336.509699] sd 0:0:0:0: [sda] No Caching mode page found
[336.515366] sd 0:0:0:0: [sda] Assuming drive cache: write through
[336.531208] sda: sda1
[336.552003] sd 0:0:0:0: [sda] Attached SCSI removable disk

It shows USB host works well and USB disk is detected, users can mount it to
/mnt directory of the embedded Linux system as below:

mount /dev/sda1 /mnt
[429.892793] FAT-fs (sda1): Volume was not properly unmounted. Some data may be corr
upt. Please run fsck.
cd /mnt
ls
1.bmp mtd rootfs.ubi
MLO myd_c335x.dtb spi
audio myir-linux-examples u-boot.img
audio1 network zImage
#

Plug out the USB disk, Linux kernel dumps the message as below:

[493.899143] usb 2-1.4: USB disconnect, device number 3

55

4.12 USB Device
This example demonstrates how to use USB device interface and verify the driver of
USB client. The MYD-AM335X series development board works as a TF card reader,
it is connected to the USB host of PC with a USB mini B to USB A cable.

Hardware Preparation：

Hardware debugging environment to see chapter second.
One TF card
One USB mini B to USB A cable.

Board Type MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

MINI USB interface J2 J3 J3

TF Card J17 J12 J19

Software Preparation:

Linux Kernel 4.1.18
modprobe command

Test Steps:

After the MYD-AM335X series development is booted, connect it to the USB
host interface of PC with a USB mini B to USB A cable, Insert the TF card to
MYD-AM335X series development. Load the mass storage gadget driver as
below:

modprobe g_mass_storage stall=0 file=/dev/mmcblk0p1 removable=1
[687.171803] udc musb-hdrc.0.auto: registering UDC driver [g_mass_storage]
[687.179455] Mass Storage Function, version: 2009/09/11
[687.184933] LUN: removable file: (no medium)
[687.192157] lun0: open backing file: /dev/mmcblk0p1
[687.197379] LUN: removable file: /dev/mmcblk0p1
[687.202952] Number of LUNs=1
[687.206057] g_mass_storage gadget: adding config #1 'Linux File-Backed Storage'/bf2
a45cc
[687.215260] Number of LUNs=1
[687.219060] g_mass_storage gadget: I/O thread pid: 185
[687.224576] g_mass_storage gadget: adding 'Mass Storage Function'/dc896b00 to confi
g 'Linux File-Backed Storage'

56

/bf2a45cc
[687.236802] g_mass_storage gadget: cfg 1/bf2a45cc speeds: high full
[687.243534] g_mass_storage gadget: interface 0 = Mass Storage Function/dc896b00
[687.252005] g_mass_storage gadget: Mass Storage Gadget, version: 2009/09/11
[687.259466] g_mass_storage gadget: userspace failed to provide iSerialNumber
[687.266948] g_mass_storage gadget: g_mass_storage ready
[687.273141] g_mass_storage musb-hdrc.0.auto: usb_gadget_udc_start

After g_mass_storage driver is loaded, a removable disk will be detected on PC.
The content of this removable disk is just the same with the TF card.

Note: Beyond that, users can load different gadget modules to achieve different
functions. such as g_ether is used to make a RNDIS network interface.

57

5. Qt Applications Development
In the previous sections, a build tool for QT5 application qmake has been created. It
is used for generate Makefiles and other project files for QT5 application, after that,
users can build QT5 application with cross compile toolchain. For development of
larger QT5 application, IDE tools named as QtCreator is commonly used. There is a
evaluation edition of QtCreator in our release package at the path 03-Tools/qt-
creator-opensource-linux-x86_64-4.1.0.run.

In the following sections, we will introduce the installation, configuration of QtCreator,
and demonstrate how to create a simple QT5 application running on MYD-AM335x
series development board.

58

5.1 Install QtCreator
On Ubuntu 64bit OS, customers can install QtCreator as shown below:

$ cd <WORKDIR>
$ cp /media/cdrom/03-Tools/Qt/qt-creator-opensource-linux-x86_64-4.1.0.run .
$ chmod a+x qt-creator-opensource-linux-x86_64-4.1.0.run
$ sudo ./qt-creator-opensource-linux-x86_64-4.1.0.run

QtCreator will be installed on Ubuntu OS step by step automatically.

59

5.2 Config QtCreator
Config Build&Run Environment:

Open QtCreator, choose Tools -> Options , then the Build & Run dialog popups .

Please choose the Compilers` tab to set compiler for QtCreator as shown below:

Figure 5-2-1 Settings of Compiler

Press Add button at the right side of this dialog, choose Custom in the dropdown list,
and then set Name , Compiler path , Make path 和 ABI as shown below. After
complete, press the Apply button to save.

60

Figure 5-2-2 Add Compiler for QtCreator

At the same dialog, choose Qt Version Tab to add qmake, at the right side of this
dialog, press Add button, then a new dialog popups, please choose the qmake tools
described at Chapter 3-4-1. After complete, press Open to set qmake, and then
 Apply to save.

61

Figure 5-2-3 Choose Qmake

In the Build&Run window, continue to choose Kits tab, and at the right side of this
dialog, press Add button, then add settings of running environment for QT5
application. In the Sysroot editbox, write the path of cross compile toolchain, in the
 Compiler and Qt Version editboxs, write the settings being set before, set Debugger
to None , set CMake Tools to default as shown below:

Figure 5-2-4 Add Kits for QtCreator

Create Helloworld Project:

In the main menu of QtCreate, choose File -> New File or Project , and in the popup
dialog, choose Application -> Qt Widgets Application as shown below:

62

Figure 5-2-5 Create a QT Widgets Application

After pressing Choose... button, the Qt Widgets Application settings dialog popups,
please set the name and path of the project as shown below in Name and Create in
editboxs as shown below:

Figure 5-2-6 Set the Name and Path of the Project

63

Press Next button and choose the setting for Kits as below:

Figure 5-2-7 Set Kits for the Project

Choose the base class of the project as shown below:

Figure 5-2-8 Choose Base Class

Press Finish button to create and save the project.

64

Figure 5-2-9 Finish Creating a New Project

65

5.3 Build QT Application
In the previous section, a QT5 project named as helloworld has been created. It is
shown in the project manage of QtCreator as below:

Figure 5-3-1 Project Manager of QtCreator

Double click the mainwindow.ui at the left side to open the Design view for designing
a UI for helloworld project visually. Please drag a Label widget to the center of the
mainwindow from the widgets list, double click the label and input `Hello, world!".

66

Figure 5-3-2 UI Design View

After complete, choose Build -> Build Project in the main menu of QtCreator to
build the helloworld project. Some log information outputs to the Compile Output sub
window during compiling, in case of any erros and warning, please fix them and build
again.

Figure 5-3-3 Build Project

67

After building, a binary format QT5 application is generated at ~/build-helloworld-
myir_dev_kit-Debug/, please use file command to check it and make sure it can
work on ARM embedded Linux system as below:

file helloworld
helloworld: ELF 32-bit LSB executable, ARM, version 1 (GNU/Linux), dynamically linked
 (uses shared libs), for GNU/Linux 4.1.0, not stripped

Finaly, please copy the binary format application helloworld to /usr/bin directory of
MYD-AM335X series development board and execute as below:

helloworld --platform linuxfb:fb=/dev/fb0

A Window with a Hello,World! text label displays on the LCD screen as below:

Figure 5-3-4 Execute QT5 Application

68

6. Update System
This section introduces the Linux system tf card boot, NAND Flash burn,NFS ROOT
file system mount. CD image file description：

Table 6-1 Prebuild Image Files Description

File Name Description

MLO First stage bootloader（SPL), generated when
compiling Buildroot

MLO_nand First stage bootloader（SPL) for NAND, prebuild
by myir from "board/myir/myd_c335x/"

MLO_sd First stage bootloader（SPL) for TF Card, prebuild
by myir from "board/myir/myd_c335x/"

MLO_emmc First stage bootloader（SPL) for EMMC, prebuild
by myir from "board/myir/myd_c335x/"

MLO_usbmsc
First stage bootloader（SPL) for USB Mass
Storage, prebuild by myir from
"board/myir/myd_c335x/"

u-boot.img Second stage bootloader, generated when
compiling Buildroot

u-boot_nand.img Second stage bootloader for NAND, prebuild by
myir from "board/myir/myd_c335x/"

u-boot_sd.img Second stage bootloader for TF Card, prebuild by
myir from "board/myir/myd_c335x/"

u-boot_emmc.img Second stage bootloader for EMMC, prebuild by
myir from "board/myir/myd_c335x/"

u-boot_usbmsc.img Second stage bootloader for USB Mass Storage,
prebuild by myir from "board/myir/myd_c335x/"

uEnv.txt Default environment variables for U-boot

uEnv_ramdisk.txt Environment variables for boot ramdisk images on
TF/SD card. Need to be renamed to uEnv.txt

uEnv_sd.txt Environment variables for boot images on TF/SD
card. Need to be renamed to uEnv.txt

uEnv_sd_ramdisk.txt Environment variables for boot ramdisk images on
TF/SD card. Need to be renamed to uEnv.txt

69

uEnv_usbmsc.txt Environment variables for boot images on USB
Mass Storage. Need to be renamed to uEnv.txt

uEnv_usbmsc_ramdisk.txt
Environment variables for boot ramdisk images on
USB Mass Storage. Need to be renamed to
uEnv.txt

uEnv_mmc.txt Environment variables for boot images on EMMC.
Need to be renamed to uEnv.txt

zImage Kernel image

myd_c335x.dtb Device tree binary for MYD-AM335X with NAND
Flash

myd_c335x_emmc.dtb Device tree binary for MYD-AM335X with EMMC

myd_y335x.dtb Device tree binary for MYD-AM335X-Y with NAND
Flash

myd_y335x_emmc.dtb Device tree binary for MYD-AM335X-Y with
EMMC

myd_j335x.dtb Device tree binary for MYD-AM335X-J with NAND
Flash

myd_j335x_emmc.dtb Device tree binary for MYD-AM335X-J with EMMC

rootfs.tar.gz ramdisk filesystem compressed by gzip

rootfs.ubi UBIFS filesystem image

ramdisk.gz ramdisk filesystem compressed by gzip

sdcard.img TF/SD/EMMC disk image

 uEnv*.txt are text files, they define the environment parameters for U-boot, and then
determine the boot process of U-boot. We take the uEnv_ramdisk.txt as an example:

 fdtfile define the device tree name of the board, devtype define the boot device
type, devnum define the device number(0: TF Card, 1: EMMC). bootdir define the
path of the image files on the boot partition. bootpart define the boot partition on the
device(0:1 means the first partition on device 0). uenvcmd define a script for U-boot, it
will load kernel, device tree and bootup.

This uEnv.txt file can contain additional environment settings that you
want to set in U-Boot at boot time. This can be simple variables such
as the serverip or custom variables. The format of this file is:
variable=value
NOTE: This file will be evaluated after the bootcmd is run and the
bootcmd must be set to load this file if it exists (this is the

70

default on all newer U-Boot images. This also means that some
variables such as bootdelay cannot be changed by this file since
it is not evaluated until the bootcmd is run.
#optargs=video=HDMI-A-1:800x600

Uncomment the following line to enable HDMI display and disable LCD display.
fdtfile=myd_c335x.dtb
devtype=mmc
devnum=0
bootdir=/
bootpart=0:1
uenvcmd=if run loadimage; then run loadfdt; run loadramdisk; echo Booting from mmc${mm
cdev} ...; run ramargs; print bootargs; bootz ${loadaddr} ${rdaddr} ${fdtaddr}; fi;

Note: Startup of the MYD-AM335X Before starting the development board,
note the connection of the JP8 jumper, connect JP8-1 and JP8-2 will boot
system from SD Card, JP8-2 and JP8-3 will boot system from NandFlash.
To effect JP8’S connection modification, please repower up the board
after modification.MYD-AM335X-Y for jp1, MYD-AM335X-J for jp6.

There are four boot modes for MYD-AM335X series development board to run
embedded Linux system:

1. Boot from TF/SD card(EXT4 file system).
2. Boot from TF/SD card(Ramdisk file system).
3. Boot from NAND Flash（Ubi file system for core board with NAND Flash).
4. Boot from EMMC(EXT4 file system for core board with EMMC).
5. Boot from Ethernet（NFS root for debug）.

Boot from TF/SD card(EXT4 file system)
Note: Writing sdcard.img will format the TF card, please backup important
files.

After building Buildroot, a TF/SD card image file named as sdcard.img is generated
at <WORKDIR>/Filesystem/myir-buildroot/output/images . It consists of two partitions, one is
FAT partition contains MLO , u-boot.img , zImage , uEnv.txt and device tree binary
files for MYD-AM335x series development board, the other partition is EXT4
partition, it will be used as the root partition of Linux.

71

Figure 6-1 Write 'sdcard.img' to TF/SD card with 'win32diskimager'

Put a TF card into the card reader, and connect the card reader to Windows
host PC.
Write sdcard.img to the TF card with win32diskimager.exe as shown in Figure 6-
1 above.
After writing, power off the MYD-AM335x series development board, put the TF
card to its TF slot(J19), set the board to boot from TF/SD card by J5.
Power on the MYD-AM335x series development board, it will boot from TF card
and mount the second partition of the TF card as root file system.

Boot from TF/SD card(Ramdisk file system)
Note: HP USB Disk Storage Format Tool will clear original partitions of the
TF card. To save the partitions, please use the formatting software
provided by the computer system. Note: The size of ramdisk.gz is smaller
than 32MB.

Format TF card

72

Figure 6-2 Formate TF Card with `HP USB Disk Storage Format Tool 2.0.6`

Please use “HP USB Disk Storage Format Tool 2.0.6” from CD directory “03-Tools”
to format TF card.

1.Insert MMC/SD card into the card reader ,then connect the reader with the computer.

2.Open the HP USB Disk Storage Format Tool, the following steps will show in detail:

3.Select “FAT32”

4.Click “Start”.

5.When the formatting process is completed, click “OK”.

Update the images.

Copy all files under directory “02-Images\Linux-image” from the CD to the TF card,
move uEnv_ramdisk.txt to replace uEnv.txt . Then insert the TF card to the slot on
the development board, Connect the corresponding board to set the start mode of
the jumper cap 1-2 Pin, power on the board again,Enter root login.

73

Boot from NAND Flash（ubi file system for
core board with NAND Flash)
Update of NAND boot image needs the aid of u-boot. Whether or not NAND Flash
has data, the u-boot booted through TF card can be used to update NAND Flash
images.

Preparation

1.Format the TF card to FAT or FAT32 file system by “HP USB Disk Storage
Format Tool 2.0.6” from directory “03-Tools/” of CD.

2.Copy "MLO", "u-boot.img", "uEnv.txt", "zImage","myd_*335x.dtb" and
"rootfs.ubi" image files under directory “02-Images\Linux-image” to the TF card
from the CD.

Update

Insert the TF card with the system images into the development board, Connect
the corresponding board to set the boot mode of the jumper cap 1-2 pin, power
on and boot it. Press any key on the PC keyboard to enter the u-boot according
to the following prompts:

 U-Boot 2016.05 (Jan 09 2017 - 19:37:43 +0800)

 Watchdog enabled
 I2C: ready
 DRAM: 512 MiB
 NAND: 512 MiB
 MMC: OMAP SD/MMC: 0, OMAP SD/MMC: 1
 *** Warning - bad CRC, using default environment

 Net: cpsw
 Press SPACE to abort autoboot in 2 seconds
 MYIR>#

After entering the u-boot command line, input run updatesys from the PC keyboard to
start automatic updating process. If the partitions were changed, users should erase
the whole NAND Flash with command nand erase.chip :

 MYIR># nand erase.chip

74

 NAND erase.chip: device 0 whole chip
 Erasing at 0x1ffe0000 -- 100% complete.
 OK

 MYIR># run updatesys
 switch to partitions #0, OK
 mmc0 is current device
 reading MLO
 55092 bytes read in 10 ms (5.3 MiB/s)

 NAND write: device 0 offset 0x0, size 0xd734
 55092 bytes written: OK
 reading myd_c335x.dtb
 39229 bytes read in 10 ms (3.7 MiB/s)

 NAND write: device 0 offset 0x80000, size 0x993d
 39229 bytes written: OK
 reading u-boot.img
 321300 bytes read in 34 ms (9 MiB/s)

 NAND write: device 0 offset 0xc0000, size 0x4e714
 321300 bytes written: OK
 reading zImage
 4480016 bytes read in 396 ms (10.8 MiB/s)

 NAND write: device 0 offset 0x200000, size 0x445c10
 4480016 bytes written: OK
 reading rootfs.ubi
 24248320 bytes read in 2111 ms (11 MiB/s)

 NAND write: device 0 offset 0xa00000, size 0x1720000
 24248320 bytes written: OK
 MYIR>#

After the system is updated, set the boot mode jumper to 2-3 pins. And then repower
the board to boot from the Nand Flash.

Boot from EMMC(EXT4 filesystem for core
board with EMMC)
Users who need large size of disk storage will assemble EMMC instead of NAND
Flash on MYC-C335X core board. We can program the EMMC by aid of a TF Card
with a ramdisk. The steps are shown below:

75

Preparation

1. Format a TF/SD with fat/fat32 format.
2. Copy MLO, MLO_emmc, u-boot.img, u-boot_emmc.img, uEnv_ramdisk.txt,

uEnv_mmc.txt, zImage, myd_c335x_emmc.dtb, ramdisk.gz, rootfs.tar.gz to
TF/SD card.

3. Set "fdtfile=myd_c335x_emmc.dtb" in uEnv_ramdisk.txt and rename
uEnv_ramdisk.txt to uEnv.txt.

4. Boot from TF/SD and login into linux
Update

1. Run "/etc/modules-load.myir/updatesys.sh loader2emmc sd" to write the
image files from TF/SD to emmc

2. Change the boot mode to emmc and repower up.

Boot from Ethernet（NFS root for debug）
After building Buildroot, a compressed package named as rootfs.tar.gz is
generated at <WORKDIR>/Filesystem/myir-buildroot/output/images . This package can be
used to work as NFS root for MYD-AM335X series development board. In order to
boot from ethernet, TFTP and NFS services should be installed and configed as
below:

Install TFTP Service

$ sudo apt-get install tftp-hpa tftpd-hpa

Config TFTP Service

Create a work directory for TFTP, open the configuration file for TFTP as shown
below:

$ mkdir -p <WORKDIR>/tftpboot
$ chmod 777 <WORKDIR>/tftpboot
$ sudo vi /etc/default/tftpd-hpa

Add or modify the parameters as shown below:

76

TFTP_DIRECTORY="<WORKDIR>/tftpboot"
TFTP_OPTIONS="-l -c -s"

Restart TFTP Service:

$ sudo service tftpd-hpa restart

Copy the MLO , u-boot.img , zImage , ramdisk.gz and device tree binary files to the
work directory of TFTP service, then users can load these image files to the RAM of
MYD-AM335X series development board by TFTP in U-boot console, it is shown
below:

># help tftpboot
tftpboot - boot image via network using TFTP protocol

Usage:
tftpboot [loadAddress] [[hostIPaddr:]bootfilename]
># tftpboot ${loadaddr} 192.168.1.111:zImage

Install NFS Service.

NFS(Network File System) is a file system can be mounted remotely through
network. A directory on NFS server can be used as the root file system of an
embedded Linux system. The installation and configuration of NFS service are
described below:

$ sudo apt-get install nfs-kernel-server

Config NFS Service.

Edit the /etc/exports file of NFS server, and export a directory at the end of file:

$ sudo vi /etc/exports

Add or modify the directory to be exported , such as /home/myir/rootfs has been
added as below:

/home/myir/rootfs *(rw,nohide,insecure,no_subtree_check,async,no_root_squash)

77

Restart NFS service:

$ cd /home/myir/rootfs
$ sudo tar zxvf <WORKDIR>/images/rootfs.tar.gz
$ sudo service nfs-kernel-server restart

Verify NFS service on NFS server:

$ sudo mount -t nfs 127.0.0.1:/home/myir/rootfs /mnt

Mount the NFS ROOT filesystem If NFS service works well, /home/myir/rootfs
will be mounted at /mnt with NFS , and then the NFS server is available for
MYD-AM335x series development board.Power Up Modification Startup Mode
The jumper cap is started for the nandflash mode，Nandflash must have
uboot，The factory has been burned. Copy the zImage and dtb files to the
/tftpboot directory, as follows:

cp <WORKDIR>/Filesystem/myir-buildroot/output/images/zImage <WORKDIR>/tftpboot
cp <WORKDIR>/Filesystem/myir-buildroot/output/images/myd_c335x.dtb <WORKDIR>/tftp
boot

Decompression rootfs.tar.gz to the /home/myir/rootfs directory as follows:

cd /home/myir/rootfs
sudo tar -xvf <WORKDIR>/Filesystem/myir-buildroot/output/images/rootfs.tar.gz ./

For example, the IP address of the NFS server is set to 192.168.1.111 ,the IP
address of the development board U-boot is set to 192.168.1.112 ,as follows:

># setenv ipaddr 192.168.1.112
># setenv serverip 192.168.1.111

Verify the ethernet connection by ping command in U-boot console:

ping 192.168.1.111

Set the development board nfs mount directory and device tree file name, as follows:

># setenv rootpath /home/myir/rootfs -- Extract the rootfs.tar.gz to the nfs di
rectory

78

># setenv fdtfile myd_c335x.dtb
># echo $fdtfile -- Check if the fdtfile name is correct

Save the relevant environment variables,as follows:

># saveenv

Under the U-Boot console, execute the netboot command to start the mounted NFS
ROOT file system as follows:

># run netboot

Note:Ping serverip normal, run runboot after tftp failure, please check the server
side tftp service is normal, as follows:

$ tftp 192.168.1.111
tftp> get myd_c335x.dtb
tftp> quit --quit tftp

If it fails, restart tftp service, as follows:

$ sudo service tftpd-hpa restart

79

7.Peripheral Module Use

This chapter mainly describes the software hardware environment construction and
testing process of the MYIR peripheral module on the development board.

The peripheral module support of the MYD-AM335X series development board is
shown in the following table:

Module
Name Description MYD-

AM335X
MYD-
AM335X-
Y

MYD-
AM335X-
J

Reference
Chapter

MY-
TFT043RV2

4.3-Inch
Resistive
Touch
Screen

√ √ √

7.1 4.3-
Inch
Resistive
Touch
Screen

MY-
TFT070CV2

7-Inch
Capacitive
Touch
Screen

√ √ √ 4.1 LCD
Test

MY-
TFT070RV2

7-Inch
Resistive
Touch
Screen

√ √ √ 4.1 LCD
Test

MY-
WF003U

USB WIFI
Module √ √ √ 7.2 WIFI

Module

MY-
GPS008C

GPS
Module √ √ √ 7.4 GPS

Module

MY-
CAM002U

USB
Camera
Module

√ √ √
7.3 USB
Camera
Module

MY-
GPRS007C

GPRS
Module √ √ √ 7.5 GPRS

Module

MY-
WF004S

SDIO WIFI
Module √ √ √ 7.2 WIFI

Module

MY-
CAM011B

BUS
Camera × × × NONE

80

7.1 4.3-Inch Resistive Touch Screen

This chapter describes the environment construction and testing process of the 4.3-
inch resistive screen on the development board.

Hardware Preparation：

One MYD-AM335X series development board

MY-TFT043RV2 connects to LCD interface of MYD-AM335X series
development board

One USB to TTL converter used to connect MYD-AM335X series development
board Debug serial port and PC, PC side baud rate setting 115200-8-n-1

Interface MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

Debug Serial J12 UART0 J10 Debug UART J3 USB_UART

LCD Interface J8 J7 J8

Software Preparation:

Linux Kernel 4.1.18

framebuffer_test application

fbv application

Development Board Device Tree

MYD-AM335X myd_c335x.dtb

MYD-AM335X-Y myd_y335x.dtb

MYD-AM335X-J myd_j335x.dtb

The factory software supports the 7-inch capacitor and the resistance screen directly
by default. Now you need to use the 4.3-inch resistive screen. You need to modify
the device tree to support it.

The configuration of the 4.3-inch screen in the device tree is commented by default.
Search for / 4.3 inch, 480x272 resolution LCD, MYiR / in the device tree to release
the commented code and comment the configuration of the 7-inch screen. After the

81

modification is completed, use the command make dtbs to compile the device tree,
then copy the compiled device to the SD card and update the software of the
development board using the methods in Chapter 6.

Test Steps:

Copy the executable framebuffer_test in the directory <WORKDIR>/
Examples/rootfs/usr/bin/ to the development board /usr/bin/ directory,
run framebuffer_test application as below:

chmod 777 /usr/bin/framebuffer_test
framebuffer_test -h
Usage: framebuffer_test [options]

Version 1.0
Available options:
-d | --device name framebuffer device name, default: /dev/fb0
-h | --help Print this message

framebuffer_test -d /dev/fb0
xres:480 >>> yres:272 >>> bpp:32>>>

During framebuffer_test running, serval colors of background are painted on LCD
one by one, and then colorful points, lines, areas are painted.

Copy a BMP file with 32BPP and resolution of 480*272 to /media/1.bmp of the
development board, display the picture on LCD by fbv application:

fbv
Usage: fbv [options] image1 image2 image3 ...

Available options:
 --help | -h : Show this help
 --alpha | -a : Use the alpha channel (if applicable)
 --dontclear | -c : Do not clear the screen before and after displaying the image
 --donthide | -u : Do not hide the cursor before and after displaying the image
 --noinfo | -i : Supress image information
 --stretch | -f : Strech (using a simple resizing routine) the image to fit onto
 screen if necessary
 --colorstretch| -k : Strech (using a 'color average' resizing routine) the image to
 fit onto screen if necessary
 --enlarge | -e : Enlarge the image to fit the whole screen if necessary
 --ignore-aspect| -r : Ignore the image aspect while resizing
 --delay <d> | -s <delay> : Slideshow, 'delay' is the slideshow delay in tenths of s
econds.

82

Keys:
 r : Redraw the image
 a, d, w, x : Pan the image
 f : Toggle resizing on/off
 k : Toggle resizing quality
 e : Toggle enlarging on/off
 i : Toggle respecting the image aspect on/off
 n : Rotate the image 90 degrees left
 m : Rotate the image 90 degrees right
 p : Disable all transformations
Copyright (C) 2000 - 2004 Mateusz Golicz, Tomasz Sterna.
Error: Required argument missing.

fbv /meida/1.bmp
fbv - The Framebuffer Viewer
/media/1.bmp
480 x 272

After complete, the picture displays just right for the LCD.

83

7.2 WIFI Module

This chapter describes the environment setup and testing process for USB WIFI and
SIDO WIFI on the development board.

Hardware Preparation：

One MYD-AM335X series development board

MY-WF003U module、MY-WF004S module

One USB to TTL converter used to connect MYD-AM335X series development
board Debug serial port and PC, PC side baud rate setting 115200-8-n-1

Interface MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

Debug Serial J12 UART0 J10 Debug UART J3 USB_UART

USB Interface J3 J4 J19 USB_HOST J27 USB_HOST

SDIO Interface J17 TF_CARD J12 J19 Micro_SD

Software Preparation:

Linux Kernel 4.1.18

wpa_supplicant application

hostapd application

iptables application

Development Board Device Tree

MYD-AM335X myd_c335x.dtb

MYD-AM335X-Y myd_y335x.dtb

MYD-AM335X-J myd_j335x.dtb

Test Steps:

Insert the MY-WF003U module into the development board USB interface or the MY-
WF004S module into the development board TF card interface. Use the command
 ifconfig -a to see that the module has loaded the driver and generated the WLAN
device.

84

ifconfig -a

eth0 Link encap:Ethernet HWaddr 68:9E:19:BC:1C:84
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
 Interrupt:240

eth1 Link encap:Ethernet HWaddr 68:9E:19:BC:1C:86
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 inet6 addr: ::1/128 Scope:Host
 UP LOOPBACK RUNNING MTU:65536 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

wlan0 Link encap:Ethernet HWaddr 00:1D:43:A0:04:11
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

WIFI STA Mode

1. Modify the value of ssid and psk in the /etc/wap_supplicant.conf configuration
file, ssid is the name of the WIFI AP in the test environment, and psk is the
password of the WIFI AP in the test environment.

cat /etc/wpa_supplicant.conf
ctrl_interface=/var/run/wpa_supplicant
ap_scan=1
p2p_disabled=1

network={

85

 ssid="MYIR_TECH"
 scan_ssid=1
 proto=WPA RSN
 pairwise=CCMP TKIP NONE
 key_mgmt=WPA-EAP WPA-PSK IEEE8021X NONE
 group=TKIP CCMP
 psk="myir2016"
 priority=10
}

2.Connect WIFI AP.

wpa_supplicant -i wlan0 -c /etc/wpa_supplicant.conf -B

3.Get the IP address and DNS.

#udhcpc -b -i wlan0
udhcpc: started, v1.25.1
udhcpc: sending discover
udhcpc: sending select for 192.168.30.115
udhcpc: lease of 192.168.30.115 obtained, lease time 3600
deleting routers
adding dns 223.5.5.5
adding dns 201.104.111.114

4.Ping Test.

ping www.baidu.com
PING www.baidu.com (61.135.169.125): 56 data bytes
64 bytes from 61.135.169.125: seq=0 ttl=56 time=29.253 ms
64 bytes from 61.135.169.125: seq=1 ttl=56 time=32.218 ms
64 bytes from 61.135.169.125: seq=2 ttl=56 time=24.717 ms
64 bytes from 61.135.169.125: seq=4 ttl=56 time=141.210 ms
64 bytes from 61.135.169.125: seq=5 ttl=56 time=64.064 ms
64 bytes from 61.135.169.125: seq=11 ttl=56 time=133.112 ms

WIFI SoftAP Mode

1.Modify the value of ssid and wpa_passphrase in the /etc/hostapd.conf
configuration file. ssid is the name of the ap hotspot generated by the wifi module,
and wpa_passphrase is the password of the ap hotspot.

cat /etc/hostapd.conf
interface=wlan0

86

ssid=myirAP
hw_mode=g
channel=6
macaddr_acl=0
auth_algs=1
ignore_broadcast_ssid=0
wpa=2
wpa_passphrase=123456789
wpa_key_mgmt=WPA-PSK
wpa_pairwise=TKIP
rsn_pairwise=CCMP

2.Modify the contents of the /etc/dhcp/dhcpd.conf configuration file as needed. This
configuration file is mainly used to provide DHCP services for devices connected to
WIFI APs.

cat /etc/dhcp/dhcpd.conf
ddns-update-style interim;
ignore client-updates;

subnet 192.168.43.0 netmask 255.255.255.0{
range 192.168.43.100 192.168.43.150;
default-lease-time 86400;
max-lease-time 86400;
option routers 192.168.43.1;
option broadcast-address 192.168.43.255;
option subnet-mask 255.255.255.0;
option domain-name "redpinesignals.com";
option domain-name-servers 114.114.114.114;
host VAP_0.redpinesignals.com{
 hardware ethernet 00:23:a7:3a:11:d1;
 fixed-address 192.168.43.1;
 }
}

3.Create an ap hotspot.

hostapd /etc/hostapd.conf -B
Configuration file: /etc/hostapd.conf
Using interface wlan0 with hwaddr 00:1d:43:a0:04:11 and ssid "myirAP"
random: Only 15/20 bytes of strong random data available from /dev/random
random: Not enough entropy pool available for secure operations
WPA: Not enough entropy in random pool for secure operations - update keys later when
the first station connects
wlan0: interface state UNINITIALIZED->ENABLED

87

wlan0: AP-ENABLED

4.Configure the ip address and subnet mask of the ap hotspot. This IP address
needs to be set according to the value of the routers in /etc/dhcp/dhcpd.conf.

ifconfig wlan0 192.168.43.1 netmask 255.255.255.0 up

5.Start the DHCP service of wlan0.

dhcpd wlan0
Internet Systems Consortium DHCP Server 4.3.5
Copyright 2004-2016 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/
WARNING: Host declarations are global. They are not limited to the scope you declared
 them in.
Config file: /etc/dhcp/dhcpd.conf
Database file: /var/lib/dhcp/dhcpd.leases
PID file: /var/run/dhcpd.pid
Wrote 0 deleted host decls to leases file.
Wrote 0 new dynamic host decls to leases file.
Wrote 0 leases to leases file.
Listening on LPF/wlan0/00:1d:43:a0:04:11/192.168.43.0/24
Sending on LPF/wlan0/00:1d:43:a0:04:11/192.168.43.0/24
Sending on Socket/fallback/fallback-net

After completing the above five steps, you can use other WIFI STA mode devices to
connect to the created AP hotspots, but only LAN communication. If you need to
perform external network communication, you need to complete the following steps.

1.Connect eth0 to the Internet and obtain an IP address.

udhcpc eth0
udhcpc: started, v1.25.1
udhcpc: sending discover
udhcpc: sending select for 192.168.30.160
udhcpc: lease of 192.168.30.160 obtained, lease time 3600
deleting routers
adding dns 223.5.5.5
adding dns 201.104.111.114

2.Enable IP packet forwarding.

88

echo 1 > /proc/sys/net/ipv4/ip_forward

3.Configure eth0 as the exit of all packets.

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

After performing the above three steps, the WIFI device can access the Internet
through this AP hotspot.

89

7.3 USB Camera Module

This chapter describes the environment setup and testing process for the USB
camera on the development board.

Hardware Preparation：

One MYD-AM335X series development board

MY-CAM002U module

One USB to TTL converter used to connect MYD-AM335X series development
board Debug serial port and PC, PC side baud rate setting 115200-8-n-1

Interface MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

Debug Serial J12 UART0 J10 Debug UART J3 USB_UART

USB Interface J3 J4 J19 USB_HOST J27 USB_HOST

Software Preparation:

Linux Kernel 4.1.18

fswebcam application

fbv application

Development Board Device Tree

MYD-AM335X myd_c335x.dtb

MYD-AM335X-Y myd_y335x.dtb

MYD-AM335X-J myd_j335x.dtb

Test Steps:

Insert the camera module into the USB interface of the development board, the
system will automatically match the driver and create the device head device
/dev/video0.

Use the test program fswebcam to take a photo.

fswebcam -d /dev/video0 --no-banner -r 640x480 image.jpg

90

Copy image.jpg to the PC to display. If the development board is connected to
the LCD screen, you can use the command to output the captured photos to the
LCD for display.

fbv image.jpg
fbv - The Framebuffer Viewer
image.jpg
640 x 480

91

7.4 GPS Module

This chapter describes the environment construction and testing process of the GPS
module on the development board.

Hardware Preparation：

One MYD-AM335X series development board

MY-GPS008C module

One USB to TTL converter used to connect MYD-AM335X series development
board Debug serial port and PC, PC side baud rate setting 115200-8-n-1

Interface MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

Debug Serial J12 UART0 J10 Debug UART J3 USB_UART

Expand Interface J20 J13 J25

Software Preparation:

Linux Kernel 4.1.18

microcom application

Development Board Device Tree

MYD-AM335X myd_c335x.dtb

MYD-AM335X-Y myd_y335x.dtb

MYD-AM335X-J myd_j335x.dtb

Test Steps:

If the development board has an expand interface, the GPS module is directly
connected to the expand interface, and the development board without the
expand interface directly uses the idle serial port of the development board to
perform docking.
Use the microcom tool to read the data returned by the GPS module.

microcom -s 9600 /dev/ttyO1
$GPGSA,A,2,01,04,11,17,28,,,,,,,,2.8,2.7,0.9*3C
$GPGSV,3,1,09,01,59,035,53,03,31,127,21,04,30,037,50,06,06,219,33*75

92

$GPGSV,3,2,09,11,45,032,42,17,24,285,54,19,09,059,35,28,40,334,51*7C
$GPGSV,3,3,09,32,21,084,27*4B
$GPGGA,061102.0,2233.150278,N,11356.386896,E,1,05,2.7,83.5,M,-1.0,M,,*79
$GPVTG,,T,0.0,M,0.0,N,0.0,K,A*0D
$GPRMC,061102.0,A,2233.150278,N,11356.386896,E,0.0,,230715,0.0,E,A*2E

93

7.5 GPRS Module

This chapter describes the environment construction and testing process of the
GPRS module on the development board.

Hardware Preparation：

One MYD-AM335X series development board

MY-GPRS007C module

One USB to TTL converter used to connect MYD-AM335X series development
board Debug serial port and PC, PC side baud rate setting 115200-8-n-1

Interface MYD-AM335X MYD-AM335X-Y MYD-AM335X-J

Debug Serial J12 UART0 J10 Debug UART J3 USB_UART

Expand Interface J20 J13 J25

Software Preparation:

Linux Kernel 4.1.18

pppd application

Development Board Device Tree

MYD-AM335X myd_c335x.dtb

MYD-AM335X-Y myd_y335x.dtb

MYD-AM335X-J myd_j335x.dtb

Test Steps:

If the development board has an expand interface, the GPRS module is directly
connected to the expand interface, and the development board without the
expand interface directly uses the idle serial port of the development board to
perform docking.

Modify /etc/ppp/peers/gprs in the configuration file /dev/ttyUSB1 to the currently
connected serial device, such as /dev/ttyO3.

#/etc/ppp/peers/gprs

94

Usage: root>pppd call gprs
/dev/ttyO3
115200
#crtscts
modem
noauth
debug
nodetach
#hide-password
usepeerdns
noipdefault
defaultroute
user "cmnet"
0.0.0.0:0.0.0.0
#ipcp-accept-local
#ipcp-accept-remote
#lcp-echo-failure 12
#lcp-echo-interval 3
noccp
#novj
#novjccomp
persist
connect '/usr/sbin/chat -s -v -f /etc/ppp/peers/gprs-connect-chat'
#connect '/bin/chat -v -s -f /etc/ppp/gprs-connect-chat'
#disconnect '/bin/chat -v -f /etc/ppp/gprs-disconnect-chat'

Use the command to make a dial-up connection.

#pppd call gprs &

ping test。

ping www.baidu.com
PING www.baidu.com (61.135.169.125): 56 data bytes
64 bytes from 61.135.169.125: seq=0 ttl=56 time=29.253 ms
64 bytes from 61.135.169.125: seq=1 ttl=56 time=32.218 ms
64 bytes from 61.135.169.125: seq=2 ttl=56 time=24.717 ms
64 bytes from 61.135.169.125: seq=4 ttl=56 time=141.210 ms

95

Appendix 1 Warranty & Technical
Support Services
MYIR Tech Limited is a global provider of ARM hardware and software tools, design
solutions for embedded applications. We support our customers in a wide range of
services to accelerate your time to market.

MYIR is an ARM Connected Community Member and work closely with ARM and
many semiconductor vendors. We sell products ranging from board level products
such as development boards, single board computers and CPU modules to help with
your evaluation, prototype, and system integration or creating your own applications.
Our products are used widely in industrial control, medical devices, consumer
electronic, telecommunication systems, Human Machine Interface (HMI) and more
other embedded applications. MYIR has an experienced team and provides custom
design services based on ARM processors to help customers make your idea a
reality.

The contents below introduce to customers the warranty and technical support
services provided by MYIR as well as the matters needing attention in using MYIR’s
products.

Service Guarantee

MYIR regards the product quality as the life of an enterprise. We strictly check and
control the core board design, the procurement of components, production control,
product testing, packaging, shipping and other aspects and strive to provide products
with best quality to customers. We believe that only quality products and excellent
services can ensure the long-term cooperation and mutual benefit.

Price

MYIR insists on providing customers with the most valuable products. We do not
pursue excess profits which we think only for short-time cooperation. Instead, we
hope to establish long-term cooperation and win-win business with customers. So we
will offer reasonable prices in the hope of making the business greater with the
customers together hand in hand.

Delivery Time

96

MYIR will always keep a certain stock for its regular products. If your order quantity is
less than the amount of inventory, the delivery time would be within three days; if
your order quantity is greater than the number of inventory, the delivery time would
be always four to six weeks. If for any urgent delivery, we can negotiate with
customer and try to supply the goods in advance.

Technical Support

MYIR has a professional technical support team. Customer can contact us by email
(support@myirtech.com), we will try to reply you within 48 hours. For mass
production and customized products, we will specify person to follow the case and
ensure the smooth production.

After-sale Service

MYIR offers one year free technical support and after-sales maintenance service
from the purchase date. The service covers:

1. Technical support service

 * MYIR offers technical support for the hardware and software materials which ha
ve provided to customers;
 * To help customers compile and run the source code we offer;
 * To help customers solve problems occurred during operations if users follow th
e user manual documents;
 * To judge whether the failure exists;
 * To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical
support service:

 * Hardware or software problems occurred during customers’ own development;
 * Problems occurred when customers compile or run the OS which is tailored by them
selves;
 * Problems occurred during customers’ own applications development;
 * Problems occurred during the modification of MYIR’s software source code.

1. After-sales maintenance service

The products except LCD, which are not used properly, will take the twelve months
free maintenance service since the purchase date. But following situations are not
included in the scope of our free maintenance service:

97

* The warranty period is expired;
* The customer cannot provide proof-of-purchase or the product has no serial number;
* The customer has not followed the instruction of the manual which has caused the dam
age the product;
* Due to the natural disasters (unexpected matters), or natural attrition of the compo
nents,
or unexpected matters leads the defects of appearance/function;
* Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the
 boards,
all those reasons which have caused the damage of the products or defects of appearanc
e;
* Due to unauthorized weld or dismantle parts or repair the products which has caused
the damage of the products or defects of appearance;
* Due to unauthorized installation of the software,
system or incorrect configuration or computer virus which has caused the damage of pro
ducts.

Warm tips:

1. MYIR does not supply maintenance service to LCD. We suggest the customer
first check the LCD when receiving the goods. In case the LCD cannot run or no
display, customer should contact MYIR within 7 business days from the moment
get the goods.

2. Please do not use finger nails or hard sharp object to touch the surface of the
LCD.

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after
long time use, please avoid clean the surface with fingers or hands to leave
fingerprint.

4. Do not clean the surface of the screen with chemicals.

5. Please read through the product user manual before you using MYIR’s products.

6. For any maintenance service, customers should communicate with MYIR to
confirm the issue first. MYIR’s support team will judge the failure to see if the
goods need to be returned for repair service, we will issue you RMA number for
return maintenance service after confirmation.

1. Maintenance period and charges

MYIR will test the products within three days after receipt of the returned
goods and inform customer the testing result. Then we will arrange

98

shipment within one week for the repaired goods to the customer. For any
special failure, we will negotiate with customers to confirm the maintenance
period.
For products within warranty period and caused by quality problem, MYIR
offers free maintenance service; for products within warranty period but out
of free maintenance service scope, MYIR provides maintenance service but
shall charge some basic material cost; for products out of warranty period,
MYIR provides maintenance service but shall charge some basic material
cost and handling fee.

2. Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be
responsible by user; MYIR will pay for the return shipping cost to users when the
product is repaired. If the warranty period is expired, all the shipping cost will be
responsible by users.

1. Products Life Cycle

MYIR will always select mainstream chips for our design, thus to ensure at least ten
years continuous supply; if meeting some main chip stopping production, we will
inform customers in time and assist customers with products updating and
upgrading.

Value-added Services

1. MYIR provides services of driver development base on MYIR’s products, like
serial port, USB, Ethernet, LCD, etc.

2. MYIR provides the services of OS porting, BSP drivers’ development, API
software development, etc.

3. MYIR provides other products supporting services like power adapter, LCD
panel, etc.

4. ODM/OEM services.

MYIR Tech Limited

Room 04,6th Floor, Building No.2,Fada Road,

Yunli Intelligent Park, Bantian, Longgang District, Shenzhen, Guangdong, China
518129

Support Email: support@myirtech.com

99

mailto:support@myirtech.com

Sales Email: sales@myirtech.com

Phone: +86-755-22984836

Fax: +86-755-25532724

Website: www.myirtech.com

100

mailto:sales@myirtech.com
http://www.myirtech.com/

	Introduction
	1. Software Resources
	2. Deploy development environment
	2.1 Install tools
	2.2 Setup GCC Toolchain

	3. Bulid System
	3.1 Bulid Bootloader
	3.2 Build Linux Kernel
	3.3 Build Filesystem
	3.4 Build QT

	4. Linux Applications Development
	4.1 LCD
	4.2 Touch Panel
	4.3 RTC
	4.4 RS485
	4.5 CAN Bus
	4.6 Ethernet
	4.7 NAND Flash
	4.8 KeyPad
	4.9 GPIO-LED
	4.10 Audio
	4.11 USB Host
	4.12 USB Device

	5. Qt Applications Development
	5.1 Install QtCreator
	5.2 Config QtCreator
	5.3 Build QT Application

	6. Update System
	7. Peripheral Module Use
	7.1 4.3-Inch Resistive Touch Screen
	7.2 WIFI Module
	7.3 USB Camera Module
	7.4 GPS Module
	7.5 GPRS Module

	Appendix Warranty & Technical Support Services

