

0

1

2

2.1

2.2

3

3.1

3.2

3.3

3.4

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

5

5.1

5.2

5.3

6

6.1

6.2

6.3

6.4

6.5

7

Table of Contents
Introduction

1. Software Resources

2. Deploy the Development Environment

2.1 Install Tools

2.2 Setup GCC Toolchain

3. Bulid System

3.1 Bulid Bootloader

3.2 Build Linux Kernel

3.3 Build Filesystem

3.4 Build QT

4. Linux Application Development

4.1 GPIO

4.2 LCD

4.3 Touch Screen

4.4 RTC

4.5 RS232

4.6 RS485

4.7 CAN Bus

4.8 KEY

4.9 LED

4.10 EEPROM

4.11 USB Host

4.12 USB DEVICE

4.13 CAMERA

4.14 AUDIO

4.15 HDMI

4.16 PRU

5. Qt Application Development

5.1 Install QtCreator

5.2 Config QtCreator

5.3 Build Qt Application

6. Update System

6.1 Boot from TF/SD Card(EXT4 file system)

6.2 Boot from TF/SD Card(Ramdisk file system)

6.3 Boot from EMMC(EXT4 file system)

6.4 Boot from Ethernet(NFS root filesystem)

6.5 Matrix-rootfs Tutorial

Appendix Warranty & Technical Support Services

MYD-AM437X Series Linux 4.1.18 Development Guide

Introduction

This document quickly provides the information you need most while evaluating and developing an embedded Linux system
on MYD-AM437X series development board,it includes the content of setup development environment, cross compiling
bootloader, kernel and linux applications. Finally, it covers how to update the embedded linux system.

This document is suitable for embedded Linux development engineers with a certain development experience

Version History:

Version Description Time

V1.0 Initial Version 2017.06.19

Hardware Version:

This document applies to MYD-C437X and MYD-C437X-PRU development board of MYIR.

MYD-C437X MYD-C437X-PRU

am437x general development board am437x PRU development board

Note: The default password for root of the embedded Linux system is not set.

1. Software Resources

Along with the MYD-AM437X series development board, we provide a SDK for developing an embedded Linux system on
MYD-AM437X series development board, it includes the fundamental cross compile toolchains,source code of U-boot,
Kernel, drivers and test applications of all the peripheral modules.

The contents of this section describe the software resources of the MYD-C437X and MYD-C437X-PRU in form.

Table 1-1 Software Resouces List

Category Name Description Source MYD-
C437X

MYD-
C437X-
PRU

Bootloader U-boot201605
First and second stage bootloader SPL
and U-Boot，responsible for system
initialization and boot Linux kernel

YES √ √

Kernel Linux 4.1.18 Kernel designed for MYD-AM437X YES √ √

Driver USB Host USB host driver YES √ √

Driver USB Device USB device driver（Gadget） YES √ √

Driver Ethernet Ethernet driver YES √ √

Driver PRU Ethernet Industrial ethernet driver YES × √

Driver MMC/SD MMC/SD card driver YES √ √

Driver EMMC EMMC driver YES √ √

Driver I2C I2C driver YES √ √

Driver SPI SPI driver YES √ √

Driver LCD LCD framebuffer driver, use 7 inches
800*480 LCD as default YES √ √

Driver RTC Internal RTC driver YES √ √

Driver RX-8025T External RTC driver YES × √

Driver RS485 RS485 driver YES √ √

Driver ADC ADC driver YES √ √

Driver Resistive
TouchScreen Resistive touchscreen driver YES √ √

Driver Capacitive
TouchScreen

Capacitive touchscreen driver with FT5X06
IC YES √ √

Driver UART Uart driver YES √ √

Driver CAN CAN driver YES √ √

Driver PMU Power manager unit driver YES √ √

Driver LED LED driver YES √ √

Driver Button GPIO Button driver YES √ √

Driver Camera camera driver with ov2659 IC YES √ √

Driver Audio Audio driver YES √ ×

Driver HDMI HDMI driver YES √ ×

Filesystem RAMDISK Ramdisk filesystem built with Buildroot
Binary
compression
package

√ √

Filesystem UBIFS UBIFS filesystem built with Buildroot Binary
compression
package

√ √

Application CAN CAN test application YES √ √

Application EEPROM EEPROM test application YES √ √

Application FrameBuffer Framebuffer test applicaton YES √ √

Application Keypad Keypad test application YES √ √

Application RTC RTC test application YES √ √

Application GPIO GPIO test application YES √ √

Application LED LED test application YES √ √

Application PRU PRU led test application YES × √

Application RS232 RS232 test application YES √ √

Application RS485 RS485 test application YES √ √

Application Camera Camera test application YES √ √

Application Audio Audio test application YES √ ×

Application Qt Qt Hello World demo application YES √ √

Tools Cross Compiler Linaro GCC 5.3 BIN √ √

Tools Win32DiskImager TF/SD image write EXE √ √

Tools Format Tools TF/SD format tools EXE √ √

2. Deploy Development Environment

The following section covers the setup of hardware, deployment and verification of software development environment.

Software Preparation：

One host PC with Ubuntu 12.04/14.04/16.04 64bit Desktop
One host PC Windows7/Windows10

Cross Compiler：

gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf.tar.xz
ti_cgt_pru_2.1.3_linux_installer_x86.bin

Hardware Preparation:

MYD-C437X

Connect the RS232 Debug Interface J16(Debug UART in the following picture)to PC with a USB to DB9 RS232 converter
cable and set the baudrate of serial port on host PC to 115200-8-n-1.If you need network debugging, please use the network
cable to connect the development board J11 (Ethernet0 in the following picture).
An actual whole picture of MYD-C437X is shown below:

Figure 2-1 MYD-C437X Interface Definition
MYD-C437X-PRU

Connect the TTL Debug Interface J25(Debug UART in the following picture)to PC with a USB to TTL converter and set the
baudrate of serial port on host PC to 115200-8-n-1. Ethernet interface J6(Giga Ethernet in the following picture) is
corresponding to MAC0 of MYD-C437X-PRU; J26 and J27 are industrial ethernet interface shown as PRUETH0 and
PRUETH1 in the following picture.
If you wat to debug with JTAG emulator, please connect the xds100v3 compatible emulator to J22(TI-JTAG interface).
An actual whole picture of MYD-C437X-PRU is shown below:

Figure 2-2 MYD-C437X-PRU Interface Definition

Create Work Directory:

Create a work directory and copy the resources from 04-Linux_Source of our release package to the work directory on
ubuntu host PC, <WORKDIR> here is defined by customers according to their development environment.

$ mkdir -p <WORKDIR>
$ cp -rf /cdrom/04-Linux_Source/* <WORKDIR>
$ ls <WORKDIR>
Bootloader/ Examples/ Filesystem/ Kernel/ ToolChain/ Tools/

2.1 Install Tools

There are some essential tools and libraries needed to be installed during developing an embedded Linux system, such as
 build-essential , zip , unzip and so on.
For the sake of convenience we install all the tools and libraries before as shown below:

Ubuntu 12.04

$ sudo apt-get install build-essential git-core libncurses5-dev
$ sudo apt-get install flex bison texinfo zip unzip zlib1g-dev gettext
$ sudo apt-get install gperf libsdl-dev libesd0-dev libwxgtk2.6-dev
$ sudo apt-get install uboot-mkimage
$ sudo apt-get install g++ xz-utils

Ubuntu 14.04

$ sudo apt-get install build-essential git-core libncurses5-dev u-boot-tools
$ sudo apt-get install flex bison texinfo zip unzip zlib1g-dev gettext
$ sudo apt-get install gperf libsdl-dev libesd0-dev
$ sudo apt-get install g++ xz-utils
$ sudo apt-get install subversion

Ubuntu 16.04

$ sudo apt-get install build-essential git-core libncurses5-dev u-boot-tools
$ sudo apt-get install flex bison texinfo zip unzip zlib1g-dev gettext
$ sudo apt-get install gperf libsdl-dev libesd0-dev
$ sudo apt-get install g++ xz-utils
$ sudo apt-get install subversion

On 64bit Ubuntu OS, some 32bit runtime libraries should be installed as shown below:

$sudo apt-get install libc6-i386 lib32stdc++6 lib32z1

2.2 Setup GCC Toolchain

Before compiling U-boot or Kernel, we should set some environment variables on Ubuntu.
The path of the cross compile toolchain should be added to PATH environment variable, and ARCH environment variable
should be set to arm , CROSS_COMPILE environment variable should be set to arm-linux-gnueabihf- .

$ cd <WORKDIR>/ToolChain
$ tar Jxvf gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf.tar.xz
$ export PATH=$PATH:<WORKDIR>/ToolChain/gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf/bin
$ export ARCH=arm
$ export CROSS_COMPILE=arm-linux-gnueabihf-

All of the above processes are only effective in the current shell.
In order to make the environment variables effective to the current user, customers should set the profile configuration of the
current user by adding or modifing
 ~/.profile in the home directory of the current user. It is shown as below:

vi ~/.profile

Add or modify ~./profile at the end of the file:

export ARCH=arm
export CROSS_COMPILE=arm-linux-gnueabihf-
export PATH=$PATH:<WORKDIR>/ToolChain/gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf/bin

Verify the Enviroment Variables：

$source ~/.profile
$echo $ARCH
arm
$echo $CROSS_COMPILE
arm-linux-gnueabihf-

Verify the Cross Compiler：

$ arm-linux-gnueabihf-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gnueabihf-gcc
......
Thread model: posix
gcc version 5.3.1 20160113 (Linaro GCC 5.3-2016.02)

3. Build System

There are many open source tools for building an embedded Linux system, they are more convenient for embedded
software engineers to build bootloader, kernel, filesystem all in one step. Currently, OpenWRT, Buildroot , Yocto are more
commonly used.

Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux systems through cross-compilation,thanks
to its kernel-like menuconfig, gconfig and xconfig configuration interfaces, building a basic system with Buildroot is easy, so
it's very popular among embedded software engineers.

The following sections will explain U-boot, kernel, filesystem respectively, in the part of filesystem, we build a filesystem with
QT5 included, customers can develop QT5 application based on this filesystem easily.

https://openwrt.org
http://buildroot.org
https://www.yoctoproject.org

3.1 Bootloader

Enter the directory of bootloader, uncompress the source code package as shown below：

$ cd <WORKDIR>/Bootloader
$ tar -zxvf myir-u-boot.tar.gz
$ cd myir-u-boot

Compile U-Boot：

Different development boards correspond to different configuration files,the configuration of U-boot for MYD-AM437X series
development board is located at myir-u-boot/configs/, the corresponding configuration file name and output files are shown
below:

Board Configuration File Name Output

MYD-C437X myd_c437x_evm_defconfig MLO and u-boot.img

MYD-C437X-PRU myd_c437x_idk_defconfig MLO and u-boot.img

Compile U-boot for MYD-C437X development board：

$ make distclean
$ make myd_c437x_evm_defconfig
$ make

One of the second make in the configuration options see table,after build is completed , in the u-boot directory will generate
MLO and u-boot.img files.the steps of compiling MYD-C437X-PRU is simliar to the one introudced of MYD-C437X
development board.

After compiling U-boot, MLO and u-boot.img will be generated for mmc boot mode, They can be used for booting from TF
Card(mmc0) and EMMC(mmc1).
Users can interrupt the running of U-boot by pressing SPACE key in the debug terminal on host PC to enter the console of U-
boot. Please input help command in the U-boot console to get the usage of U-boot as shown below:

># help -- Display help for U-boot
># echo -- View a U-boot environment variable

3.2 Build Linux Kernel

Enter the work directory and uncompress the Linux Kernel source code package：

$ cd <WORKDIR>/
$ tar -zxvf myir-kernel.tar.gz
$ cd myir-kernel

Compile Kernel：

Different development boards correspond to different configuration files,The configuration of Kernel for MYD-AM437X series
development board is located at myir-kernel/arch/arm/configs/, the corresponding configuration file name and output files
are shown below:
Customers can compile Kernel as shown below:

Board Kernel Configuration

MYD-C437X myd_c437x_evm_defconfig

MYD-C437X-PRU myd_c437x_idk_defconfig

The following to MYD-C437X development board, for example, that the kernel compiler process:

$ make mrproper
$ make myd_c437x_evm_defconfig
$ make zImage
$ make dtbs

One of the second make in the configuration options in the table above, the steps of compiling MYD-C437X-PRU is simliar to
the one introudced of MYD-C437X development board.
After Compiling is completed, in the arch/arm/boot directory zImage file is generated, in the arch/arm/boot/dts directory
device tree binary.dtb file is generated.

Different development boards have different device tree files, and the device tree files are located myir-
kernel/arch/arm/boot/dts directory :

Board Device Tree

MYD-C437X myd_c437x_evm.dts、myd_c437x_evm_hdmi.dts

MYD-C437X-PRU myd_c437x_idk.dts、myd_c437x_idk_lcd.dts

As the LCD and PRU Ethernet are hard multiplex on MYD-C437X-PRU development board, the two dtb files are designed to
work in different mode. myd_c437x_idk.dtb is designed for industrial ethernet, and myd_c437x_idk_lcd.dtb is designed for LCD,
please refer to the device tree source code of these two device tree binary files.

The two work mode of MYD-C437X-PRU are controlled by GPIO4-19 and GPIO4-21. When GPIO4-19 and GPIO4-21 output
low level, PRU Ethernet and CAMERA0 are choosed,and LCD does not work, so the device node &dss for LCD should be
set to disabled , the device node &vpfe0 for camera0 and device node pruss1_eth for PRU Ethernets should be set to
 okay , as shown in myd_c437x_idk.dts file as shown below:

/*
 * File: myd_c437x_idk.dts
 */

......

 gpio4_pins: gpio4_pins_default {
 pinctrl-single,pins = <
 0x1fc (PIN_OUTPUT_PULLUP | MUX_MODE7) /* (AE23) cam1_data5.gpio4[19] */
 0x204 (PIN_OUTPUT_PULLUP | MUX_MODE7) /* (AE24) cam1_data7.gpio4[21] */
 >;
 };

......

&gpio4 {
 pinctrl-names = "default";
 pinctrl-0 = <&gpio4_pins>;
 status = "okay";

 p19 {
 gpio-hog;
 gpios = <19 GPIO_ACTIVE_HIGH>;
 output-low;
 line-name = "SelPRUorLCDEN";
 };
 p21 {
 gpio-hog;
 gpios = <21 GPIO_ACTIVE_HIGH>;
 output-low;
 line-name = "SelPRUorLCDSEL";
 };
 /* SelPRUorLCDEN enable selects between PRU_ETH and LCD :
 * P19(OE) | P21 (SEL) | FUNCTION
 *----------|-----------|----------
 * LOW | LOW | PRU_ETH + CAMERA0
 * LOW | HIGHT | LCD
 * HIGH | ANY | NONE
 *
 * When changing this line make sure the newly
 * selected device node is enabled and the previously
 * selected device node is disabled.
 */
};

......

&dss {
 status = "disabled";
......
};

&vpfe0 {
 status = "okay";
......
};

&pruss1 {
 pruss1_mdio: mdio@54432400 {
 pinctrl-0 = <&pruss1_mdio_default>;
 pinctrl-names = "default";
 reset-gpios = <&gpio4 20 GPIO_ACTIVE_LOW>;
 status = "okay";

 pruss1_eth0_phy: ethernet-phy@0 {
 reg = <0>;
 };

 pruss1_eth1_phy: ethernet-phy@1 {
 reg = <1>;
 };
 };

 /* Dual mac ethernet application node on icss1 */
 pruss1_eth {
 compatible = "ti,am4372-prueth";
 pruss = <&pruss1>;
 sram = <&ocmcram_nocache>;
 status = "ok";

 pinctrl-0 = <&pruss1_eth_default>;
 pinctrl-names = "default";

 pruss1_emac0: ethernet-mii0 {
 phy-handle = <&pruss1_eth0_phy>;
 phy-mode = "mii";
 sysevent-rx = <20>; /* PRU_ARM_EVENT0 */
 /* Filled in by bootloader */
 local-mac-address = [00 00 00 00 00 00];
 };

 pruss1_emac1: ethernet-mii1 {
 phy-handle = <&pruss1_eth1_phy>;
 phy-mode = "mii";
 sysevent-rx = <21>; /* PRU_ARM_EVENT1 */
 /* Filled in by bootloader */
 local-mac-address = [00 00 00 00 00 00];
 };
 };
};

Otherwise, when GPIO4-19 outputs low level, GPIO4-21 outputs high level, the device node &dss for LCD should be set to
 okay , the device node &vpfe0 for camera0 and device node pruss1_eth for PRU Ethernets should be set to disabled ,
please refer to myd_c437x_idk.dts file for detail.

Another example of device tree is relative to the SGX feature of AM437X. The three processors, AM4372, AM4376 and
AM4377 have no SGX feature, so customers should set the device node &sgx to disabled .

&sgx {
 status = "disabled";
};

For AM4378 and AM4379, these two processors have SGX feature, the device node &sgx should be set to okay as shown
below:

&sgx {
 status = "okay";
};

3.3 Build Filesystem

This section covers the buiding of filesystem with Buildroot.

Note: After modifying source code of Kernel or U-boot, Buildroot can not update and build it automatically.
Customers should commit it to the master branch of their local git repo manually.

Note: If the source code of Kernel is updated, before building Buildroot again, customers should remove the package
"myir-buildroot/dl/linux-master.tar.gz" and the "myir-buildroot/output/build/linux-master" and "myir-
buildroot\output\build\linux-headers-master" directories manually. The same to rebuilding of U-boot.

3.3.1 Preparation before Building Buildroot

At the beginning of this document, we have setup the environment variables for Ubuntu, it is also effective for building
Buildroot.

Note: For Ubuntu 64bit OS, 32bit runtime libraries should be installed as shown below.

$sudo apt-get install libc6-i386 lib32stdc++6 lib32z1

Copy the Buildroot source package customized by MYIR from 04-Linux_Source/Filesystem/myir-buildroot.tar.gz of our
release package to work directory and uncompress it.
The content of myir-buildroot.tar.gz is shown below:

$ ls <WORKDIR>/Filesystem/myir-buildroot
arch CHANGES configs dl linux output support
board Config.in COPYING docs Makefile package system
boot Config.in.legacy DEVELOPERS fs Makefile.legacy README toolchain

For more details about the file structure of Buildroot , please refer to Buildroot manual
https://buildroot.org/downloads/manual/manual.html.The part related to the MYIR-AM437X series development board is
located in the <WORKDIR>/Filesystem/myir-buildroot/board/myir/ directory.

3.3.2 Buildroot Configuration

The configuration files of MYD-AM437X series development board for Buildroot are all located at <WORKDIR>/Filesystem/myir-
buildroot/configs/ ,The configuration of MYD-AM437X series development board is shown in the following table:

Board configuration file Description

MYD-C437X myd_c437x_evm_defconfig Buildroot configuration without QT5 for MYD-C437X
development board

MYD-C437X myd_c437x_evm_qt5_defconfig Buildroot configuration with QT5 for MYD-C437X development
board

MYD-C437X-
PRU myd_c437x_idk_defconfig Buildroot configuration without QT5 for MYD-C437X-PRU

development board

MYD-C437X-
PRU myd_c437x_idk_qt5_defconfig Buildroot configuration with QT5 for MYD-C437X-PRU

development board

The following to MYD-C437X series development board, for example, that Buildroot configuration process:

$ make clean
$ make myd_c437x_evm_defconfig
$ make menuconfig

One of the second make in the configuration options see table, the steps of compiling MYD-C437X-PRU is simliar to the one
introudced of MYD-C437X series development board.

https://buildroot.org/downloads/manual/manual.html

Configuration for Cross Compiler:

Buildroot can use internal cross compile toolchain generated by Buildroot itself, it can also use external cross compile
toolchain. In this document, we choose the internal cross compile toochain, it will be generated and stored to
 <WORKDIR>/Filesystem/myir-buildroot/output/host/usr/bin/ after compiling.

Figure 3-3-1 Configuration for Cross Compiler

Configuration for System:

The configuration for system includes the name of the target system, the welcome message, the init subsystem
(busybox/systemv/systemd) and device manage system,customers can also set the password for root user by configuration.
For MYD-AM437X series development board, the password for root is set to myirtech as default, it is shown below.
If customers do not need to set password, they no need to config the password.

Figure 3-3-2 Configuration for System

Configuration for Bootloader:

After the user gets the U-boot code, create the Git repository and replace BR2_TARGET_UBOOT_CUSTOM_REPO_URL
configuration in the configuration file.Operation is as follows:
Create a U-boot code repository:

$ cd ~/
$ tar zxvf myir-u-boot.tar.gz
$ cd myir-u-boot
$ git init
$ git add . -f
$ git commit -m "Initial Version" -a

Modify the configuration file located at <WORKDIR>/Filesystem/buildroot/configs/myd_c437x_evm_defconfig ,modify the following two
items:

BR2_TARGET_UBOOT_CUSTOM_REPO_URL="~/myir-u-boot/.git"
BR2_TARGET_UBOOT_CUSTOM_REPO_VERSION="master"

The configuration for Bootloader includes the URL of the source code of U-boot, the U-boot configuration file name, the
output images of U-boot and so on. They are shown in Figure 3-3-3 below.
We fetch the source code of U-boot with git here, customers can use other protocols or even local directory. For other
protocols, please refer to the Buildroot manual.

Figure 3-3-3 Configuration for Bootloader

Configuration for Kernel:

After the user gets the Kernel code, create the Git repository and replace BR2_TARGET_UBOOT_CUSTOM_REPO_URL
configuration in the configuration file.Operation is as follows:
Create a kernel code repository:

$ cd ~/
$ tar zxvf myir-kernel.tar.gz
$ cd myir-kernel
$ git init
$ git add . -f
$ git commit -m "Initial Version" -a

Modify the configuration file located at <WORKDIR>/Filesystem/buildroot/configs/myd_c437x_evm_defconfig ,modify the following two
items:

BR2_TARGET_KERNEL_CUSTOM_REPO_URL="~/myir-kernel/.git"
BR2_TARGET_KERNEL_CUSTOM_REPO_VERSION="master"

The configuration for Kernel is similar with the configuration for Bootloader.

Figure 3-3-4 Configuration for Kernel

Configuration for Filesystem:

The configuration for filesystem determines what filesystem images are generated in myir-buildroot/output/images/ directory
after compiling, If we choose created ramdisk in the configuration, we will get a ramdisk filesystem image. EXT2/4, UBIFS,
and rootfs tar package can also be create if they are choosed in configuration.
By the way, the rootfs.tar.gz can be uncompressed and used as the nfsroot directory, it can also be made to other formats of
filesystem images by host mtd-utils.
For example, we can create a UBIFS filesystem image without building Buildroot again after doing some modification for
rootfs. Firstly, we create a file ubinize.cfg as shown below:

[ubifs]
mode=ubi
vol_id=0
vol_type=dynamic
vol_name=rootfs
vol_alignment=1
vol_flags=autoresize
image=rootfs.ubifs

Then, make a UBIFS image with UBIFS tools by the following processes:

$ export PATH=$PATH:<WORKDIR>/Filesystem/myir-buildroot/output/host/usr/sbin
$ mkdir rootfs
$ tar zxvf rootfs.tar.gz -C ./rootfs
$ mkfs.ubifs -d rootfs -e 0x1f000 -c 2048 -m 0x800 -x lzo -F -o rootfs.ubifs
$ ubinize -o rootfs.ubi -m 0x800 -p 0x20000 -s 512 -m 2048 -O 2048 ubinize.cfg

Note: If mkfs.ubifs was installed already on Ubuntu OS, please rename it to another name. Users can check the path
of mkfs.ubifs with command which mkfs.ubifs to make sure the path is located at <WORKDIR>/Filesystem/myir-
buildroot/output/host/usr/sbin/ .

Figure 3-3-5 Configuration for Filesystem

Configuration for Target Packages:

The configuration for target packages is easier, but it is changed more frequently. Customers can choose some hardware
tools, such as I2C-tools, spi-tools, can-utils and so on, build them into the filesystem images for debugging. Some network
utils, such as DHCP, TFTP, SSH and so on, can aslo be choosed and built into the filesystem images for production.
Most commonly used tools are included in the target packages of Buildroot. Customers can also write new target packages
and integrate them to Buildroot, please refer to https://buildroot.org/downloads/manual/manual.html#adding-packages for
details.

https://buildroot.org/downloads/manual/manual.html#adding-packages

Figure 3-3-6 Configuration for Target Packages

3.3.3 Build Buildroot

Buildroot builds a process similar to the Linux kernel build, with just a simple command.

$ make clean
$ make myd_c437x_evm_defconfig
$ make

During compiling Buildroot, an output directory named as output will be created, and all the output images are all stored to
the sub directory images of output .
The following files are images for MYD-C437X development board generated by Buildroot.

$ls -al output/images
boot.vfat readme.txt rootfs.ext4 sdcard.img uEnv.txt
MLO rootfs.cpio rootfs.tar u-boot.img zImage
myd_c437x_evm.dtb rootfs.cpio.gz rootfs.tar.gz u-boot-spl.bin
myd_c437x_evm_hdmi.dtb rootfs.cpio.uboot rootfs.ubi uEnv_mmc.txt
ramdisk.gz rootfs.ext2 rootfs.ubifs uEnv_ramdisk.txt

The bootloader, kernel and all kinds of filesystem images are generated all in one step, they will be introduced in the
subsequent section.

3.3.4 Filesystem Built by Arago

Customers can also run an demo filesystem image created with Arago on a MYIR-AM437X series development board, it was
created by TI, please refer to the WIKI page on TI's websit.
http://processors.wiki.ti.com/index.php/Processor_SDK_Building_The_SDK.

http://processors.wiki.ti.com/index.php/Processor_SDK_Building_The_SDK

3.4 Build QT

QT5 is included in Buildroot as a target package, we have provided a config file with QT5 for MYD-C437X development
board, so it is easy to build filesystem images with QT5 shown as below.

$ cd <WORKDIR>/Filesystem/myir-buildroot
$ make myd_c437x_evm_qt5_defconfig
$ make

The configuration options for the second make are shown in the table following . The configuration of the MYD-C437X-PRU
is similar to that of the MYD-C437X.

Build Buildroot：

The following table shows the difference between the four config files.

Board configuration file Description

MYD-C437X myd_c437x_evm_defconfig Buildroot configuration without QT5 for MYD-C437X
development board

MYD-C437X myd_c437x_evm_qt5_defconfig Buildroot configuration with QT5 for MYD-C437X development
board

MYD-C437X-
PRU myd_c437x_idk_defconfig Buildroot configuration without QT5 for MYD-C437X-PRU

development board

MYD-C437X-
PRU myd_c437x_idk_qt5_defconfig Buildroot configuration with QT5 for MYD-C437X-PRU

development board

The MEasy HMI demo system is also generated from the buildroot configuration file with the QT5 runtime environment. For
more information on MEasy HMI, refer to the MEasy HMI Development Guide.

In myd_c437x_evm_qt5_defconfig , the following items are different with myd_c437x_evm_defconfig have been chosen:

BR2_PACKAGE_QT5=y
BR2_PACKAGE_QT5BASE_LICENSE_APPROVED=y
BR2_PACKAGE_QT5BASE_EXAMPLES=y
BR2_PACKAGE_QT5BASE_WIDGETS=y
BR2_PACKAGE_QT5BASE_LINUXFB=y
BR2_PACKAGE_QT5BASE_EGLFS=y
BR2_PACKAGE_QT5BASE_GIF=y
BR2_PACKAGE_QT5BASE_JPEG=y
BR2_PACKAGE_QT5BASE_PNG=y
BR2_PACKAGE_QT5BASE_DBUS=y
BR2_PACKAGE_QT5BASE_TSLIB=y
BR2_PACKAGE_QT5QUICKCONTROLS=y

After compiling, the filesystem includes eglfs, linuxfb, minimal, offscreen platform plugins for running QT5 applications, the
default platform plugin is eglfs.
If the processor is one of AM4372, AM4376 and AM4377 which has no SGX feature, the device node &sgx should be
disabled in the device tree source file, thus the eglfs platform plugin does not work in the filesystems. Another platform plugin
 linuxfb should be choosed for running QT5 applications here and now as shown below:

$./helloqt5 --platform linuxfb:fb=/dev/fb0

After compiling with the config file myd_c437x_evm_qt5_defconfig , all the target images are generated at path myir-
buildroot/output/images .
Beyond that, a cross compiler and a qmake tools for building QT5 applications are generated at path myir-
buildroot/output/host .
These will be described in detail in the subsequent sections.

4. Linux Application Development

This section focuses on application development based on embedded Linux, the following examples provided by myirtech
demonstrate how to take the control of some commonly used peripheral devices through Linux applications.

The source code of these examples is located at 04-Linux_Source\Examples of our release package. Please follow the
instructions provided in the readme file to set the environment variables, compile the source code and install the binary files
into MYD-AM437X series development board.

$ cd <WORKDIR>/Examples/

Make sure the following environment variables are right.

$ export ARCH=arm
$ export CROSS_COMPILE=arm-linux-gnueabihf-
$ export PATH=$PATH:<WORKDIR>/ToolChain/gcc-linaro-5.3-2016.02-x86_64_arm-linux-gnueabihf/bin

After building Buildroot, a cross compile toolchain has been created at myir-buildroot/output/host/usr/bin , it can be used
here by setting the environment variables instead of the above.

$ export CROSS_COMPILE=arm-linux-myir-gnueabihf-
$ export PATH=$PATH:<WORKDIR>/Filesystem/myir-buildroot/output/host/usr/bin

Camera and Audio routines Makefile need to specify the dependency on the directory and the first directory of the file, the
following examples of Camera routines:

$ cd <WORKDIR>/Examples/camera
$ cat Makefile
CC = $(CROSS_COMPILE)gcc
CFLAGS ?=-I /<WORKDIR>/Filesystem/myir-buildroot/output/host/usr/
 arm-myir-linux-gnueabihf/sysroot/usr/include/libdrm/ \
 -I <WORKDIR>/Filesystem/myir-buildroot/output/host/usr/
 arm-myir-linux-gnueabihf/sysroot/usr/include \
 -I <WORKDIR>/Filesystem/myir-buildroot/output/host/usr/
 arm-myir-linux-gnueabihf/sysroot/usr/include/omap
LDFLAGS ?= -lpthread -ljpeg -ldrm -ldrm_omap -L <WORKDIR>/Filesystem/
 myir-buildroot/output/host/usr/arm-myir-linux-gnueabihf/sysroot/usr/lib
TARGET = $(notdir $(CURDIR))_test
SRC = $(shell ls *.c)
OBJS = $(patsubst %.c ,%.o ,$(SRC))
.PHONY: all
all: $(TARGET)
$(TARGET) : $(OBJS)
 $(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^
%.o : %.c
 $(CC) $(CFLAGS) -c $< -o $@
clean:
 $(RM) *.o $(TARGET)

For building PRU test application, a PRU toolchain should be installed as shown below, it has been provided in our release
package at path 03-Tools/ti_cgt_pru_2.1.3_linux_installer_x86.bin.

$ cd <WORKDIR>/ToolChain/
$./ti_cgt_pru_2.1.3_linux_installer_x86.bin
$ export PRU_CGT=<WORKDIR>/ToolChain/ti-cgt-pru_2.1.3/

Customers could build examples all in one step,the following operation to MYD-C437X development board as an example:

$ cd <WORKDIR>/Examples/
$ make OPTION=MYD-C437X-EVM clean
$ make OPTION=MYD-C437X-EVM
$ make OPTION=MYD-C437X-EVM install

The installation path is specified by the PREFIX variable inside the Makefile defaults to <WORKDIR>/ Examples/rootfs , where the
OPTION variable specifies the development board for the MYIR series. For details, see README.md in
the <WORKDIR>/Examples/ directory, the steps of compiling MYD-C437X-PRU is simliar to the one introudced of MYD-C437X
development board.

or build the examples respectively:

$ cd <WORKDIR>/Examples/<APP_DIR>
$ make

If the binary files have no permission to run, please assign the running permission to them by chmod：

chmod +x *

Different applications require different device tree files, and the device tree file is modified as follows:

SD card boot : Edit in the SD card uEnv_ramdisk.txt in the fdtfile required for the application of the device tree file name,
edit the file name to uEnv.txt. The content is changed as follows

This uEnv.txt file can contain additional environment settings that you
want to set in U-Boot at boot time. This can be simple variables such
as the serverip or custom variables. The format of this file is:
variable=value
NOTE: This file will be evaluated after the bootcmd is run and the
bootcmd must be set to load this file if it exists (this is the
default on all newer U-Boot images. This also means that some
variables such as bootdelay cannot be changed by this file since
it is not evaluated until the bootcmd is run.
#optargs=video=HDMI-A-1:800x600

Uncomment the following line to enable HDMI display and disable LCD display.
fdtfile=myd_c437x_evm.dtb
#fdtfile=myd_c437x_evm_hdmi.dtb
devtype=mmc
devnum=0
bootdir=/
bootpart=0:1
uenvcmd=if run loadimage;
 then run loadfdt; run loadramdisk; echo Booting from mmc${mmcdev} ...;
 run ramargs; print bootargs; bootz ${loadaddr} ${rdaddr} ${fdtaddr}; fi

EMMC boot : Boot the board from emmc ,into the system inside, hanging eMMC boot partition to / mnt directory below:

mkdir /mnt/boot
mount -t vfat /dev/mmcblk0p1 /mnt/boot/
ls /mnt/boot/
MLO ramdisk.gz uEnv.txt
myd_c437x_evm.dtb u-boot.img ws-calibrate.rules
myd_c437x_evm_hdmi.dtb uEnv zImage

Use the vi command to edit the fdtfile of the uEnv.txt located in the /mnt /boot directory, save and exit after editing is
complete . The content is modified as follows:

This uEnv.txt file can contain additional environment settings that you
want to set in U-Boot at boot time. This can be simple variables such
as the serverip or custom variables. The format of this file is:
variable=value
NOTE: This file will be evaluated after the bootcmd is run and the
bootcmd must be set to load this file if it exists (this is the
default on all newer U-Boot images. This also means that some
variables such as bootdelay cannot be changed by this file since
it is not evaluated until the bootcmd is run.
#optargs=video=HDMI-A-1:800x600

Uncomment the following line to enable HDMI display and disable LCD display.
fdtfile=myd_c437x_evm.dtb
#fdtfile=myd_c437x_evm_hdmi.dtb

Save and exit after editing is complete, use the umount command to uninstall the boot partition. Restart the development
board and use the specified device tree to configure the kernel.

#umount /mnt/boot

NFS boot : Directly copy the application of the required device tree file to the tftp directory below, and then enter the
uboot console by setting the environment variable to select the corresponding device tree. The operation is as follows:

setenv serverip 192.168.30.2
setenv ipaddr 192.168.30.214
setenv rootpath /home/qinlh/export/rootfs
setenv fdtfile myd_c437x_evm.dtb //Modify the device tree required for the application
saveenv
run netboot

4.1 GPIO Test

This example demonstrates how to use Linux API to control GPIO of MYD-AM437X series development board, please refer to
the source code for detail.

Hardware Preparation：

One MYD-AM437X series development board

One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

Software Preparation:

Linux Kernel 4.1.18
gpio_test application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

Copy the executable gpio _test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run gpio_test application as below:

gpio_test -h
Usage: gpio_test [options]

Version 1.0
Options:
-n | -- number gpio gpio number.
-g | -- get get gpio level.
-s | -- set level set gpio level. 0: low; 1: high
-h | -- help Print this message

GPIO3_7 is used as the write-protect pin, write-protect is enabled when GPIO3_7 outputs high, disabled when GPIO3_7
outputs low.
Test with gpio_test application as below:

gpio_test -n 103 -s 1
==gpio3_7 direction is out
==gpio3_7 level is high
Set gpio3_7 level high success!
gpio_test -n 103 -s 0
==gpio3_7 direction is out
==gpio3_7 level is low
Set gpio3_7 level low success!

Users can also control GPIO by executing echo and cat commands to write and read /sys/class/gpio in a shell script.
For example, there is a bash script named as set_eeprom.sh used for controlling GPIO3_7, the content of file is shown below:

#!/bin/bash

EEPROM_WP_GPIO_PIN=103

wait_gpio() {
 sleep 1
}

wp_init() {
 if [! -d "/sys/class/gpio/gpio$EEPROM_WP_GPIO_PIN"]; then
 echo "$EEPROM_WP_GPIO_PIN" > /sys/class/gpio/export; wait_gpio
 fi

 echo "out" > /sys/class/gpio/gpio$EEPROM_WP_GPIO_PIN/direction; wait_gpio
}

up() {
 echo "0" > /sys/class/gpio/gpio$EEPROM_WP_GPIO_PIN/value; wait_gpio
}

down() {
 echo "1" > /sys/class/gpio/gpio$EEPROM_WP_GPIO_PIN/value; wait_gpio
}

if ["$1" = "1"]; then
 wp_init
 up
fi

if ["$1" = "0"]; then
 wp_init
 down
 echo "$EEPROM_WP_GPIO_PIN" > /sys/class/gpio/unexport; wait_gpio
fi

Run /usr/bin/set_eeprom.sh to control the write-protect pin of EEPROM：

chmod 777 /usr/bin/set_eeprom.sh
set_eeprom.sh 1 -- Enable write-protect
set_eeprom.sh 0 -- Disable write-protect

MYD-AM437X series of other development board GPIO test process is similar.

4.2 LCD Test

This example demonstrates the usage of Linux API for Linux framebuffer, users can use these API to paint points, lines and
areas on LCD frame buffer.
At the end of this section, demonstrate drawing a picture on LCD framebuffer with fbv application built by Buildroot.

Hardware Preparation：

One MYD-AM437X series development board
MY-TFF070CV2 connects to LCD interface of MYD-AM437X series development board

One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

LCD 16bit interface J8 LCD_16Bit J20 LCD_16B

Software Preparation:

Linux Kernel 4.1.18
framebuffer_test application
fbv application built by Buildroot

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb

MYD-C437X-PRU myd_c437x_idk_lcd.dtb

Test Steps:

Copy the executable framebuffer_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run framebuffer_test application as below:

chmod 777 /usr/bin/framebuffer_test
framebuffer_test -h
Usage: framebuffer_test [options]

Version 1.0
Available options:
-d | --device name framebuffer device name, default: /dev/fb0
-h | --help Print this message

framebuffer_test -d /dev/fb0
xres:800 >>> yres:480 >>> bpp:32>>>

During framebuffer_test running, serval colors of background are painted on LCD one by one, and then colorful points,
lines, areas are painted.

Copy a BMP file with 32BPP and resolution of 800*480 to /media/1.bmp of the development board, display the picture on
LCD by fbv application:

fbv
Usage: fbv [options] image1 image2 image3 ...

Available options:
 --help | -h : Show this help
 --alpha | -a : Use the alpha channel (if applicable)
 --dontclear | -c : Do not clear the screen before and after displaying the image
 --donthide | -u : Do not hide the cursor before and after displaying the image
 --noinfo | -i : Supress image information
 --stretch | -f : Strech (using a simple resizing routine) the image to fit onto
 screen if necessary
 --colorstretch| -k : Strech (using a 'color average' resizing routine) the image to
 fit onto screen if necessary
 --enlarge | -e : Enlarge the image to fit the whole screen if necessary
 --ignore-aspect| -r : Ignore the image aspect while resizing
 --delay <d> | -s <delay> : Slideshow, 'delay' is the slideshow delay in tenths of seconds.

Keys:
 r : Redraw the image
 a, d, w, x : Pan the image
 f : Toggle resizing on/off
 k : Toggle resizing quality
 e : Toggle enlarging on/off
 i : Toggle respecting the image aspect on/off
 n : Rotate the image 90 degrees left
 m : Rotate the image 90 degrees right
 p : Disable all transformations
Copyright (C) 2000 - 2004 Mateusz Golicz, Tomasz Sterna.
Error: Required argument missing.

fbv /meida/1.bmp
fbv - The Framebuffer Viewer
/media/1.bmp
800 x 480

After complete, the picture displays just right for the LCD.

MYD-AM437X series of other development board LCD test process is similar.

4.3 Touch Screen Test

This example demonstrates how to test touch screen by ts_calibrate application built with Buildroot.

Hardware preparation:

One MYD-AM437X series development board
One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

One MY-TFT070CV2 module connects to LCD interface of the MYD-AM437X series development board

Or one MY-TFT070RV2 module connects to LCD interface of the MYD-AM437X series development board

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

LCD 16bit interface J8 LCD_16Bit J20 LCD_16B

Software Preparation:

Linux Kernel 4.1.18
TS_CALIBRATE application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb

MYD-C437X-PRU myd_c437x_idk_lcd.dtb

Test Steps:

Due to the differences in the device tree, the event event number on the different MYD-AM437X series development board
will be the same as the event event number corresponding to the capacitive touch and the resistance touch, as shown in the
following table:

Touch screen MYD-C437X MYD-C437X-PRU

resistive event1 event2

capacitive event3 event3

Power off ,Connect MY-TFT070CV2 module to LCD interface of the development board, power on the board and view
the device node in /dev/input directory

ls /dev/input/
by-path event0 event1 event2 event3 mice mouse0 mouse1

cat /sys/class/input/event0/device/name
volume_keys@0

cat /sys/class/input/event1/device/name
ti-tsc

cat /sys/class/input/event2/device/name
tps65218_pwrbutton

cat /sys/class/input/event3/device/name
ft5x06_ts

The result above shows the resistive touch screen is corresponding to /dev/input/event1;
The capacitive touch screen is corresponding to /dev/input/event3, so test capactive touch screen as below:

export TSLIB_TSDEVICE=/dev/input/event3
ts_calibrate
xres = 800, yres = 480
Took 4 samples...
Top left : X = 54 Y = 46
Took 4 samples...
Top right : X = 745 Y = 58
Took 4 samples...
Bot right : X = 745 Y = 421
Took 3 samples...
Bot left : X = 68 Y = 429
Took 3 samples...
Center : X = 394 Y = 245
-5.867981 1.023202 -0.019352
-2.867676 -0.003020 1.017846
Calibration constants: -384564 67056 -1268 -187936 -197 66705 65536

Power off the development board, connect MY-TFT070RV2 module to LCD interface of the development board, power
on the board and view the device node in /dev/input directory

ls /dev/input/
by-path event0 event1 event2 mice mouse0 mouse1

cat /sys/class/input/event0/device/name
volume_keys@0

cat /sys/class/input/event1/device/name
ti-tsc

cat /sys/class/input/event2/device/name
tps65218_pwrbutton

The result above shows the resistive touch screen is corresponding to /dev/input/event1, so test resistive touch screen as
below:

export TSLIB_TSDEVICE=/dev/input/event2
ts_calibrate
xres = 800, yres = 480
Took 3 samples...
Top left : X = 54 Y = 55
Took 3 samples...
Top right : X = 740 Y = 56
Took 3 samples...
Bot right : X = 737 Y = 419
Took 4 samples...
Bot left : X = 44 Y = 425
Took 4 samples...
Center : X = 395 Y = 243
-4.342529 1.015266 0.018063
-9.879883 0.003775 1.036696
Calibration constants: -284592 66536 1183 -647488 247 67940 65536

MYD-AM437X series of other development board Touch Screen test process is similar.

4.4 RTC Test

This example demonstrates how to use Linux API to read and write real time on RTC，please refer to the source code for
detail.
Users can also test the RTC with date and hwclock command built with Buildroot.

Hardware Preparation:

One MYD-AM437X series development board
One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1.

One CR2032 button cell

Interface MYD-C437X MYD-C437X-PRU

Debug serial J16 UART0 J25 Debug UART

Software Preparation:

Linux Kernel 4.1.18
date, hwclock command
rtc_test application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

Copy the executable rtc_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run rtc_test application as below:

chmod 777 /usr/bin/rtc_test
rtc_test -h
Usage: rtc_test [options]

Version 1.0
Options:
-d | --device name rtc device name, default: /dev/rtc0
-w | --write time time string with format MMDDhhmm[CCYY][.ss]. such as: 111817582016.18
-h | --help Print this message

rtc_test -d /dev/rtc1 -w 111817582016.18

 date/time is updated to: 18-11-2016, 17:58:18.

Power off the development board, wait for a while, power on again and read the rtc time by rtc_test as below:

rtc_test -d /dev/rtc1

 Current RTC date/time is 18-11-2016, 17:59:12.

Users can also use date and hwclock command to test RTC as below:

date 081518002016.30 -- Set system time to 2016/8/15 18:00:30
Mon Aug 15 18:00:30 UTC 2016
date
Mon Aug 15 18:00:38 UTC 2016
hwclock -w /dev/rtc1 -- Write system time to rtc1

Power off the development board, wait for a while, power on again and read the rtc time by hwclock as below:

hwclock -r /dev/rtc1 --
Mon Aug 15 18:11:08 2016 0.000000 seconds

MYD-AM437X series of other development board RTC test process is similar.

4.5 RS232 Test

This example demonstrates how to use Linux API to send and receive data from RS232, please refer to the source code for
detail.

Hardware Preparation:

One MYD-AM437X series development board
Two data cables to connect RS232 interface of the two boards: GND<->GND，TXD<->RXD，RXD<->TXD, CTS<->RTS,
RTS<->CTS

Two USB to TTL converters, each connects MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1.

Interface MYD-C437X MYD-C437X-PRU

Debug serial J16 UART0 J25 Debug UART

RS232 interface J17 UART3 J12 RXD、TXD、RTS、CTS、GND

Software Preparation:

Linux Kernel 4.1.18
tty_test application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

Copy the executable tty_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run tty_test application as below:

tty_test -h
Usage: tty_test [options]
Version 1.0
Options:
-d | --device name tty device name, default: /dev/tty0
-m | --mode mode operate mode. 0: RS232, 1: RS485 default mode: 0
-f | --flow flow control
-b | --baudrate baudrate set baudrate, default baudrate: 115200
-l | --loop operate circularly
-w | --write frame frame string. such as: 0123456789
-h | --help Print this message

RS232 interface on the development board is a RS232 serial port with hardware flow control. It is corresponding to
/dev/ttyO3 on a embedded Linux system. One board is used as sender, the other is used as receiver, they communicate
with tty_test application as below:

tty_test -d /dev/ttyO3 -b 9600 -m 0 -w 0123456789 -f -l
 SEND:0123456789
 SEND:0123456789
 SEND:0123456789

Execute the following command at other board to receive data as below:

tty_test -d /dev/ttyO3 -b 9600 -m 0 -f -l
 RECV:0123456789, total:10
 RECV:0123456789, total:10
 RECV:0123456789, total:10

Exchange roles of the two boards, the result is the same.

MYD-AM437X series of other development board RS232 test process is similar.

4.6 RS485 Test

This example demonstrates how to use Linux APIs to send and receive data from RS485, please refer to the source code for
detail.

Hardware Preparation:

Two MYD-AM437X series development board
Two data cables to connect RS485 interface of the two boards: 485A<->485A，485B<->485B，GND<->GND
Two USB to TTL converters, each connects MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1.

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

RS485 interface J15 485_A、485_B、GND J10 485A、485B、GNDISO

Software Preparation:

Linux Kernel 4.1.18
tty_test application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

Copy the executable tty_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run tty_test application as below:

tty_test -h
Usage: tty_test [options]
Version 1.0
Options:
-d | --device name tty device name, default: /dev/tty0
-m | --mode mode operate mode. 0: RS232, 1: RS485 default mode: 0
-f | --flow flow control
-b | --baudrate baudrate set baudrate, default baudrate: 115200
-l | --loop operate circularly
-w | --write frame frame string. such as: 0123456789
-h | --help Print this message

RS485 interface on the development board is a RS485 serial port. It is corresponding to /dev/ttyO5 on a embedded
Linux system. One board is used as sender, the other is used as receiver, they communicate with tty_test application as
below:

tty_test -d /dev/ttyO5 -b 9600 -m 1 -w 0123456789 -l
 SEND:0123456789
 SEND:0123456789
 SEND:0123456789

Execute the following command at other board to receive data as below:

tty_test -d /dev/ttyO5 -b 9600 -m 1 -l
RECV:0, total:1
RECV:1, total:1
RECV:2, total:1
RECV:3, total:1
RECV:4, total:1
RECV:5, total:1
RECV:6, total:1
RECV:7, total:1
RECV:8, total:1
RECV:9, total:1

Exchange roles of the two boards, the result is the same.

MYD-AM437X series of other development board RS485 test process is similar.

4.7 CAN Bus Test

This example demonstrates how to use Linux APIs to send and receive data from CAN bus, please refer to the source code
for detail.

Hardware Preparation:

Two MYD-AM437X series development board
Two data cables to connect CAN Bus interface of the two boards: CANH<->CANH，CANL<->CANL，GND<->GND
Two USB to TTL converters, each connects MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1.

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

CAN Bus interface J15 CANH0、CANL1、GND、CANH1、CANL1 J10 CANH、CANL、GNDISO

Software Preparation:

Linux Kernel 4.1.18
can_test application
ip link applicatoin
can_utils tools built with Buildroot

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

Copy the executable can_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run can_test application as below:

can_test --help
Usage: can_test [options]

Version 1.0
Options:
-d | --device name can device name: can0
-b | --baudrate baudrate set baudrate, default baudrate:50000
-l | --loop operate circularly, default not operate circularly!
-w | --write frame frame string with format ID#MESSAGE. such as: 123#112233445566
-h | --help Print this message

Set the baudrate for CAN interface as below:

ip link set can0 down
ip link set can0 type can bitrate 50000 triple-sampling on
ip link set can0 up

The previous processes are no need to be executed manually. During running can_test , it will be set automatically.
One board is used as sender, the other is used as receiver, they communicate with can_test application as below:

chmod 777 /usr/bin/can_test
can_test -d can0 -w 123#112233445566
[6862.997962] c_can_platform 481cc000.can can0: setting BTR=1c1d BRPE=0000
====== write frame: ======
 frame_id = 0x123
 frame_len = 6
 frame_data = 0x11 0x22 0x33 0x44 0x55 0x66
===========================

Execute the following command at other board to receive data as below:

chmod 777 /usr/bin/can_test
can_test -d can0 -l
[6484.014811] c_can_platform 481cc000.can can0: setting BTR=1c1d BRPE=0000
 can0 0x123 [6] 0x11 0x22 0x33 0x44 0x55 0x66

Note: -l option is used for operating circularly.
Note: In case of the following error, please modify the value of "tx_queue_len" as below:

can_test -d can0 -w 123#112233445566
 can raw socket write: No buffer space available

echo 1000 > /sys/class/net/can0/tx_queue_len

Exchange roles of the two boards, the result is the same.

MYD-AM437X series of other development board CAN test process is similar.

4.8 KEY Test

This example demonstrates how to read the keypad event information by Linux user APIs, please refer to the source code for
detail.

Hardware Preparation:

One MYD-AM437X series development board
One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

Software Preparation:

Linux Kernel 4.1.18
hexdump command
keypad_test application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

MYD-AM437X series development board provides four keys POWER (SW1), RESET (SW2), USER0 (SW3), USER1 (SW4),
where the RESET button will reset the system so it is not tested in this test.

Due to the differences in the device tree, the event number corresponding to the POWER key on the MYD-AM437X series
development board will be different, as shown in the following table:

Key MYD-C437X MYD-C437X-PRU

POWER event2 event1

Copy the executable keypad_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run keypad_test application as below:

$ chmod 777 /usr/bin/keypad_test
$ keypad_test -h
Usage: keypad_test [options]

Version 1.0
Options:
-d | --device name keypad device name, default: /dev/input/event0
-h | --help Print this message

View the device nodes of keypad, the following information shows S3 and S4 keypads are corresponding to
 /dev/input/event0 ， S1 keypad is corresponding to /dev/input/event1 .

ls /dev/input/
by-path event0 event1 event2 event3 mice mouse0 mouse1

cat /sys/class/input/event0/device/name
volume_keys@0

cat /sys/class/input/event1/device/name
tps65218_pwrbutton

cat /sys/class/input/event2/device/name
ti-tsc

cat /sys/class/input/event3/device/name
ft5x06_ts

Test S3 and S4 keypads as below:

keypad_test -d /dev/input/event0
Event: Code = 115, Type = 1, Value=1 -- press S3
Event: Code = 0, Type = 0, Value=0
Event: Code = 115, Type = 1, Value=2
Event: Code = 0, Type = 0, Value=1
Event: Code = 115, Type = 1, Value=0 -- release S3
Event: Code = 0, Type = 0, Value=0
Event: Code = 114, Type = 1, Value=1 -- press S4
Event: Code = 0, Type = 0, Value=0
Event: Code = 114, Type = 1, Value=0 -- release S4
Event: Code = 0, Type = 0, Value=0

Test S1 keypad as below:

kepad_test -d /dev/input/event1
Event: Code = 116, Type = 1, Value=1 -- press S1
Event: Code = 0, Type = 0, Value=0
Event: Code = 116, Type = 1, Value=0 -- release S1
Event: Code = 0, Type = 0, Value=0

Each keypad has a event code as show above. the code should be consistent with the value in device tree source.
Users can use hexdump command to test keypads as below:

hexdump /dev/input/event0
0000000 3912 57b2 cc9e 0007 0001 0073 0001 0000
0000010 3912 57b2 cc9e 0007 0000 0000 0000 0000
0000020 3912 57b2 056d 000b 0001 0073 0000 0000
0000030 3912 57b2 056d 000b 0000 0000 0000 0000

0000040 3915 57b2 1e47 0004 0001 0072 0001 0000
0000050 3915 57b2 1e47 0004 0000 0000 0000 0000
0000060 3915 57b2 6c14 0007 0001 0072 0000 0000
0000070 3915 57b2 6c14 0007 0000 0000 0000 0000

Test S1 keypad with hexdump as below:

hexdump /dev/input/event1
0000000 3a0a 57b2 93a2 0009 0001 0074 0001 0000
0000010 3a0a 57b2 93a2 0009 0000 0000 0000 0000
0000020 3a0a 57b2 348b 000d 0001 0074 0000 0000
0000030 3a0a 57b2 348b 000d 0000 0000 0000 0000

MYD-AM437X series of other development board KEY test process is similar.

4.9 LED Test

On an embbeded Linux system, the LEDs are commonly controlled by sysfs interface.
This example demonstrates how to control the LEDs by sysfs with echo command or led_test application.

Hardware Preparation:

One MYD-AM437X series development board
One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

LED_CPU0 core-board D36 core-board D36

LED_HeartBeat baseboard D34 baseboard D20

LED_mmc1 baseboard D35 baseboard D19

LED_usr3 baseboard D36 baseboard D18

Software Preparation:

Linux Kernel 4.1.18
echo, led_test application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

View the device node of LED devices as below:

ls /sys/class/leds/
myc:blue:cpu0 myd:blue:mmc1
myd:blue:heartbeat myd:blue:usr3

Control the LED by echo command as below:

#echo "0" > /sys/class/leds/myc:blue:cpu0/brightness
#echo "1" > /sys/class/leds/myc:blue:cpu0/brightness
#echo "0" > /sys/class/leds/myc:blue:cpu0/brightness

#echo "1" > /sys/class/leds/myd:blue:mmc1/brightness
#echo "0" > /sys/class/leds/myd:blue:mmc1/brightness

#echo "1" > /sys/class/leds/myd:blue:heartbeat/brightness
#echo "0" > /sys/class/leds/myd:blue:heartbeat/brightness

#echo "1" > /sys/class/leds/myd:blue:usr3/brightness
#echo "0" > /sys/class/leds/myd:blue:usr3/brightness

Copy the executable led_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run led_test application as below:

led_test -h
Usage: led_test [options]

Version 1.0
Options:
-d | --device name led name myc:blue:cpu0
-l | --light brightness led brightness. 0~255 0: off.
-h | --help Print this message
led_test -d myc:blue:cpu0 -l 0
Set led myc:blue:cpu0 off, brightness = 0
led_test -d myc:blue:cpu0 -l 1
Set led myc:blue:cpu0 off, brightness = 1

Observe the state of the LEDs

Note: myc:blue:cpu0 is triggered by cpu0, so it can not be controlled directly.
In order to control this LED, the trigger should be disabled by writing '0' to /sys/class/leds/myc:blue:cpu0/brightness,
then it can be controlled normally as other LEDs.

MYD-AM437X series of other development board LED test process is similar.

4.10 EEPROM Test

This example demonstrates how to use Linux API to read and write the EEPROM of development board, please refer the
source code for detail.

Hardware Preparation:

One MYD-AM437X series development board
One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1
Make sure a EEPROM IC 24256E is soldered on the MYD-AM437X series development board

The MYD-AM437X series development board default have the EEPROM IC.

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

Software Preparation:

Linux Kernel 4.1.18
eeprom_test application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

Copy the executable eeprom_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run eeprom_test application as below:

chmod 777 /usr/bin/eeprom_test
eeprom_test -h
Usage: eeprom_test [options]

Version 1.0
Options:
-d | --device name i2c device name: /dev/i2c-0
-a | --address addr eeprom i2c address, default 0x50
-s | --start addr start offset to read/write
-r | --read count read byte count
-w | --write frame write frame string. such as: 0123456789
-h | --help Print this message

Before testing write on EEPROM, write-protect should be disabled by outputing low level on GPIO3_7. During running of
eeprom_test, it set write-protect to be disabled automatically, users do not need to handle manually.

echo 103 > /sys/class/gpio/export
echo "out" > /sys/class/gpio/gpio103/direction
echo 0 > /sys/class/gpio/gpio103/value

Read and write EEPROM as below:

eeprom_test -d /dev/i2c-0 -a 0x50 -w "hello world!"
WRITE:hello world!
WRITE SUCCESS!

eeprom_test -d /dev/i2c-0 -a 0x50 -r 12
READ:hello world!
TOTAL 12 BYTES.

MYD-AM437X series of other development board EEPROM test process is similar.

4.11 USB Host Test

This example demonstrates how to use USB host to mount mass stroage device and verify the driver of USB host.

Hardware Preparation:

One MYD-AM437X series development board

One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

One USB disk

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

USB Host J13、J12 J7

Software Preparation:

Linux Kernel 4.1.18
mount and umount commands

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

Plug the USB disk in the USB host interface of development board, use mount or umount command to load and unload
USB disk. When users plug in the USB disk, Linux kernel dumps the message as below:

[13752.969569] usb 1-1: new high-speed USB device number 2 using xhci-hcd
[13753.114361] usb 1-1: New USB device found, idVendor=0930, idProduct=6545
[13753.121504] usb 1-1: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[13753.129056] usb 1-1: Product: DT 101 G2
[13753.133580] usb 1-1: Manufacturer: Kingston
[13753.138021] usb 1-1: SerialNumber: 001D6095CA1EEC2146A90004
[13753.179033] usb-storage 1-1:1.0: USB Mass Storage device detected
[13753.189488] scsi host0: usb-storage 1-1:1.0
[13753.197187] usbcore: registered new interface driver usb-storage
[13754.266687] scsi 0:0:0:0: Direct-Access Kingston DT 101 G2 PMAP PQ: 0 ANSI: 0 CCS
[13755.539278] sd 0:0:0:0: [sda] 15240576 512-byte logical blocks: (7.80 GB/7.27 GiB)
[13755.547768] sd 0:0:0:0: [sda] Write Protect is off
[13755.553880] sd 0:0:0:0: [sda] No Caching mode page found
[13755.559903] sd 0:0:0:0: [sda] Assuming drive cache: write through
[13755.591585] sda: sda1
[13755.602727] sd 0:0:0:0: [sda] Attached SCSI removable disk

It show USB host works well and USB disk is detected, users can mount it to /mnt directory of the embedded Linux
system as below:

#
mount /dev/sda1 /mnt
[1301.201855] FAT-fs (sdb1): Volume was not properly unmounted. Some data may be corrupt.
Please run fsck.

ls /mnt
u-boot.img MLO helloworld

Plug out the USB disk, Linux kernel dump the message as below:

#
[14018.109698] usb 1-1: USB disconnect, device number 2

Other USB host interface test methods refer to the above operation.

MYD-AM437X series of other development board USB Host test process is similar.

4.12 USB DEVICE Test

This example demonstrates how to use USB device interface and verify the driver of USB client.The development board
works as a TF card reader, it is connected to the USB host of PC with a USB Type A to Mini B cable.

Hardware Preparation：

One MYD-AM437X series development board
One TF card
One USB Type A to Mini B cable
One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

USB DEVICE J14 J8

SD card interface J22 J19

Software Preparation:

Linux Kernel 4.1.18
lsmod, rmmod, modprobe command

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb、myd_c437x_idk_lcd.dtb

Test Steps:

After the development is booted, USB Type A interface connect to PC USB ,USB Mini B interface connect to development
board USB DEVICE interface , plugin a TF card to SD card interface. Load the mass storage gadget driver as below:

modprobe g_mass_storage stall=0 file=/dev/mmcblk0p1 removable=1
[15151.225218] Mass Storage Function, version: 2009/09/11
[15151.231350] LUN: removable file: (no medium)
[15151.236837] LUN: removable file: /dev/mmcblk0p1
[15151.242148] Number of LUNs=1
[15151.245236] Number of LUNs=1
[15151.248511] g_mass_storage gadget: Mass Storage Gadget, version: 2009/09/11
[15151.256739] g_mass_storage gadget: userspace failed to provide iSerialNumber
[15151.264318] g_mass_storage gadget: g_mass_storage ready
[15151.270155] dwc3 48390000.usb: otg: gadget gadget registered
[15152.172523] g_mass_storage gadget: high-speed config #1: Linux File-Backed Storage

After g_mass_storage driver is loaded, a removable disk will be detected on PC. The content of this removable disk is
just the same with the TF card in SD card interface.

Note: Beyond that, users can load different gadget modules to achieve different functions. such as g_ether is used to
make a RNDIS network interface,
g_serial is used to make a serial port.

MYD-AM437X series of other development board USB Device test process is similar.

4.13 CAMERA Test

This example demonstrates in linux through the V4L2 video framework API interface to achieve camera display, please refer
to the source code.

Hardware Preparation：

One MYD-AM437X series development board
Two MY-CAM011B camera modules
One MY-TFT070-K display screen
One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

camera interface J21、J23 J18

LCD interface J8 J20

NOTE: For MYD-C437X-PRU development board camera and LCD can not used at the same time

Software Preparation：

Linux Kernel 4.1.18

camera_test application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb、myd_c437x_evm_hdmi.dtb

MYD-C437X-PRU myd_c437x_idk.dtb

Test Steps：

MYD-C437X Test Steps：

Development board shutdown, the two camera modules MY-CAM011B were connected to the camera interface, MY-
TFT070-K display connect to the LCD interface, power on. Use the command to check whether the camera driver is
loading successful and generate the devices：

ls /dev/v*
/dev/vcs /dev/vcsa /dev/vga_arbiter /dev/video1
/dev/vcs1 /dev/vcsa1 /dev/video0

/dev/v4l:
by-path

You can see the driver load is normal and successfully found two camera devices video0, video1

Copy the executable camera_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board
 /usr/bin/ directory, run camera_test application as below :

#chmod +x /usr/bin/camera_test
camera_test -h
Usage: camera_test [options]

Version 1.0
Options:
-h | --help Print this message

You can see that this routine does not require any other parameters to run directly:

camera_test
xres:800 >>> yres:480 >>> bpp:32>>>
CRTCs size: 800x480

Capture 0: Opened Channel

Capture 0: Capable of streaming

Capture 0: Init done successfully

Exported buffer fd = 7

Exported buffer fd = 9

Exported buffer fd = 11

Capture 1: Opened Channel

Capture 1: Capable of streaming

Capture 1: Init done successfully

Exported buffer fd = 14

Exported buffer fd = 16

Exported buffer fd = 18

After successful operation of the 7-inch LCD display can be seen on the two cameras screen.

MYD-C437X-PRU Test Steps：

Development board shutdown, the camera module MY-CAM011B access to the camera interface, power on. Through the
command to see whether the camera driver is loading successfully and generate the device:

ls /dev/v
v4l/ vcs1 vcsa1 video0
vcs vcsa vga_arbiter

You can see the driver load is normal and successfully found a camera device video0.

Insert the SD card to the SD card interface, mount the SD card to the system /mnt/sdcard directory:

[221.139812] mmc0: host does not support reading read-only switch, assuming write-enable

mkdir /mnt/sdcard
mount -t vfat /dev/mmcblk0p1 /mnt/sdcard

Note: The device name of the SD card will change according to the system startup mode: When the SD card is started,
the device name is /dev/mmcblk0p1. When the EMMC starts, the device name is /dev/mmcblk1p1

Take a picture by command and stored in the SD card, the specific operation is as follows：

v4l2grab -d /dev/video0 -o /mnt/sdcard/test.jpg -W 800 -H 600
Unable to set frame interval.

ls /mnt/sdcard/
test.jpg
#umount /mnt/sdcard

Unplug the SD card and insert it into the PC's card reader to view the pictures taken.

MYD-AM437X series of other development board CAMERA test process is similar.

4.14 Audio Test

This example demonstrates the use of the Linux ALSA audio framework and its alsa-utils tool set to achieve audio playback
and recording functions.

Hardware Preparation：

One MYD-AM437X series development board
A pair of headphones

One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

headphone interface J19 LINE_OUT no

microphone interface J18 LINE_IN no

Software Preparation：

Linux Kernel 4.1.18

alsa-utils tool set，audio_test application

Development Board Device Tree

MYD-C437X myd_c437x_evm.dtb

Test Steps：

The development board boot, the headphones into the development board headphone jack, the microphone head into
the development board microphone interface
Test audio playback, copy the prepared WAV format audio files to the development board /media/test.wav directory, use
the alsa-utils tool set inside aplay to test audio playback：

cd media/
ls
test.wav
aplay test.wav
Playing WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

At this point through the headset can hear the music files being played, if you want to adjust the volume through the alsa-
utils tool set inside the alsamixer to adjust the command execution and then there will be characters in the form of graphical
interface, the use of four arrow keys can be adjusted：

+------------------------------ AlsaMixer v1.1.2 ------------------------------+
| Card: MYD-C437X-EVM F1: Help |
| Chip: F2: System information |
| View: F3:[Playback] F4: Capture F5: All F6: Select sound card |
| Item: Headphone [dB gain: -4.00, -4.00] Esc: Exit |
| |
| +--+ +--+ +--+ |
			aa			
			aa			
			aa			
			aa			
			aa			
			aa			
	aa		aa			
	aa		aa			
	aa		aa			
	aa		aa			
	aa		aa			
+--+ DAC +--+ +--+ +--+ +--+ MIC_IN +--+						
	OO		MM		OO	
+--+ +--+ +--+						
50<>50 100<>100 0						
<Headphon>Headphon Headphon PCM Mic Capture Capture Capture						
+--+

Switch the item left and right with the arrow keys，The [tem: Headphone [dB gain: -4.50, -4.50] item is volume adjustment，
Use the arrow keys to adjust the desired volume level up and down.

Test the audio input, use the alsa-utils tool set inside the arecord to test：

arecord -c 2 -r 44100 -f S16_LE record.wav
Recording WAVE 'record.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

End the recording, through aplay to play just the recording file：

aplay record.wav
Playing WAVE 'record.wav' : Signed 16 bit Little Endian, Rate 44100 Hz, Stereo

Users can also use the audio_test application to test audio, the function of this application to synchronize the playback of
audio recording.

Copy the executable audio_test in the directory <WORKDIR>/ Examples/rootfs/usr/bin/ to the development board /usr/bin/
directory, run audio_test application as below :

audio_test
rate set to 21999, expected 22000
Init capture successfully, rate: 21999, period_size: 128
rate set to 21998, expected 21999
Period size: 128 frames, buffer size: 256 bytes
^C38 frames

At this point through the microphone to speak, headphones can also hear the sound synchronization.

4.15 HDMI Test

This example demonstrates the interface through the linux libdmo library to access the kernel DRM display framework to
achieve HDMI interface screen display.

Hardware Preparation：

One MYD-AM437X series development board
One HDMI cable,One monitor with HDMI interface

One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

HDMI interface J9 HDMI no

Software Preparation：

Linux Kernel 4.1.18

modetest application

Development Board Device Tree

MYD-C437X myd_c437x_evm_hdmi.dtb

Test Steps：

Plug one end of the HDMI cable into the HDMI interface on the development board and the other end to the HDMI
interface on the monitor.

Power on into the development board, run modetest application as below：

modetest -s 25@27:1024x768
trying to open device 'i915'...failed
trying to open device 'amdgpu'...failed
trying to open device 'radeon'...failed
trying to open device 'nouveau'...failed
trying to open device 'vmwgfx'...failed
trying to open device 'omapdrm'...done
setting mode 1024x768-60Hz@XR24 on connectors 25, crtc 27

You can see the screen on the display.

MYD-AM437X series of other development board HDMI test process is similar.

4.16 PRU Test

This example demonstrates how to communicate between ARM and PRU with rpmsg and remoteproc feature of Linux kernel.
The PRU test application writes a number from 0 to 7 to PRU, and the PRU set the three LEDs on MYD-C437X-PRU
development board according to this number.

Hardware Preparation：

One MYD-AM437X series development board
One CAT5 cable ,One switches
One USB to TTL converter used to connect MYD-AM437X series development board Debug serial port and PC, PC side
baud rate setting 115200-8-n-1

Interface MYD-C437X MYD-C437X-PRU

debug serial J16 UART0 J25 Debug UART

PRU-ETH0 no J26 PRU-ETH0

PRU-ETH1 no J27 PRU-ETH1

Software Preparation：

Linux Kernel 4.1.18
pru_led_test application

Development Board Device Tree

MYD-C437X-PRU myd_c437x_idk.dtb

Test Steps：

Apply a patch to enable PRU-ICSS0 and disable PRU-ICSS1, because the three LEDs are controlled by PRU-ICSS0
instead of PRU-ICSS1

After appling the patch located at 04-Linux_sources/patches/0001-Enable-PRUSS0-instead-of-PRUSS1-on-the-
MYD_C437x_PRU, customers should rebuild
the Kernel and device tree source to generate zImage and device tree binary files again.

// set pinmux for AD21, AE22, AD22 to be controlled by PRUSS0
@@ -168,9 +148,10 @@
 leds_pins: leds_pins {
 pinctrl-single,pins = <
 0x244 (PIN_OUTPUT_PULLUP | MUX_MODE7) /* (F23) gpio5_11.gpio5[11] */
- 0x1f0 (PIN_OUTPUT_PULLUP | MUX_MODE7) /* (AD21) cam1_data2.gpio4[16] */
- 0x1f4 (PIN_OUTPUT_PULLUP | MUX_MODE7) /* (AE22) cam1_data3.gpio4[17] */
- 0x1f8 (PIN_OUTPUT_PULLUP | MUX_MODE7) /* (AD22) cam1_data4.gpio4[18] */
+ 0x1f0 (PIN_OUTPUT_PULLUP | MUX_MODE4) /* (AD21) cam1_data2.pr0_pru1_gpo[10] */
+ 0x1f4 (PIN_OUTPUT_PULLUP | MUX_MODE4) /* (AE22) cam1_data3.pr0_pru1_gpo[11] */
+ 0x1f8 (PIN_OUTPUT_PULLUP | MUX_MODE4) /* (AD22) cam1_data4.pr0_pru1_gpo[12] */
+

Compile the firmware running on PRU

The source code of PRU firmware is located at 04-Linux_Source\Examples\pru_led\PRU_RPMsg_LED0_1, it should be
compiled by ti_cgt_pru toolchain.
After compiling is complete, the firmware for PRU PRU_RPMsg_LED0_1.out is generated, please rename it to am437x-pru0_1-fw
and copy to /lib/firmware/ of the embedded Linux
root file system. If ti_cgt_pru is not installed, please install it and compile pru_led test application as below:

$ cd <WORKDIR>/ToolChain/
$./ti_cgt_pru_2.1.3_linux_installer_x86.bin
$ export PRU_CGT=<WORKDIR>/ToolChain/ti-cgt-pru_2.1.3/
$ cd <WORKDIR>/04-Linux_Source\Examples\pru_led
$ make

**
Building project: PRU_RPMsg_LED0_1

Finished building project: PRU_RPMsg_LED0_1
**

Restart the embedded Linux system rebuilt with PRU-ICSS0 enabled

A device node /dev/rpmsg_pru31 generated after booting shows PRU working well, then users can move on to the following
steps.
Users can use rmmod or modprobe to unload or reload PRU remoteproc driver and firmware for debugging as below:

rmmod pru_rproc -f
[5702.650841] pru-rproc 54478000.pru1: pru_rproc_remove: removing rproc 54478000.pru1
[5702.660895] pruss-rproc 54440000.pruss: unconfigured system_events = 0x0800000000000000
host_intr = 0x00000002
[5702.672138] remoteproc2: stopped remote processor 54478000.pru1
[5702.678938] remoteproc2: releasing 54478000.pru1
[5702.684928] pru-rproc 54474000.pru0: pru_rproc_remove: removing rproc 54474000.pru0
[5702.694806] pruss-rproc 54440000.pruss: unconfigured system_events = 0x1000000000000000
host_intr = 0x00000001
[5702.706273] remoteproc1: stopped remote processor 54474000.pru0
[5702.713233] remoteproc1: releasing 54474000.pru0
modprobe pru_rproc
[5707.305735] remoteproc1: 54474000.pru0 is available
[5707.314208] remoteproc1: Note: remoteproc is still under development and considered
experimental.
[5707.324384] remoteproc1: THE BINARY FORMAT IS NOT YET FINALIZED, and backward
compatibility isn't yet guaranteed.
[5707.342644] remoteproc1: powering up 54474000.pru0
[5707.347860] remoteproc1: Booting fw image am437x-pru0_0-fw, size 84928
[5707.355459] pruss-rproc 54440000.pruss: configured system_events = 0x1000000000000000
intr_channels = 0x00000001 host_intr = 0x00000001
[5707.368458] remoteproc1: remote processor 54474000.pru0 is now up
[5707.375567] virtio_rpmsg_bus virtio0: rpmsg host is online
[5707.381484] remoteproc1: registered virtio0 (type 7)
[5707.386895] pru-rproc 54474000.pru0: PRU rproc node /ocp/pruss@54440000/pru0@54474000
probed successfully
[5707.397446] virtio_rpmsg_bus virtio0: creating channel rpmsg-pru addr 0x1e
[5707.405191] remoteproc2: 54478000.pru1 is available
[5707.415107] rpmsg_pru rpmsg4: new rpmsg_pru device: /dev/rpmsg_pru30
[5707.421988] remoteproc2: Note: remoteproc is still under development and considered
experimental.
[5707.432231] remoteproc2: THE BINARY FORMAT IS NOT YET FINALIZED, and backward
compatibility isn't yet guaranteed.
[5707.448155] remoteproc2: powering up 54478000.pru1
[5707.453860] remoteproc2: Booting fw image am437x-pru0_1-fw, size 84360
[5707.461062] pruss-rproc 54440000.pruss: configured system_events = 0x0800000000000000
 intr_channels = 0x00000002 host_intr = 0x00000002
[5707.474342] remoteproc2: remote processor 54478000.pru1 is now up
[5707.481129] virtio_rpmsg_bus virtio1: rpmsg host is online
[5707.487010] remoteproc2: registered virtio1 (type 7)
[5707.492891] pru-rproc 54478000.pru1: PRU rproc node /ocp/pruss@54440000/pru1@54438000
probed successfully
[5707.503186] virtio_rpmsg_bus virtio1: creating channel rpmsg-pru addr 0x1f
[5707.517016] rpmsg_pru rpmsg5: new rpmsg_pru device: /dev/rpmsg_pru31

Use pru_led_test application to control LEDs as below:

pru_led_test -h
Usage: pru_led_test [options]

Version 1.0
Options:
-d | --device name pru rpmsg char device name /dev/rpmsg_pru31
-l | --loop operate circularly, default not operate circularly!
-n | --number num number send to pru! must be 0~7.
-h | --help Print this message

pru_led_test -d /dev/rpmsg_pru31 -n 7
Opened /dev/rpmsg_pru31, sending 1 messages

1 - Sent to PRU: 7
1 - Received from PRU:7

Received 1 messages, closing /dev/rpmsg_pru31

Observe the state of the three LEDs on the motherboard of MYD-C437X-PRU development board.

They are turned on and off depending on the number along with -n . The variation regularity of the LEDs is relative to the
binary value of the number.
For example, if customers set the number to 3(011b), then D18 will be turned off, D19 and D20 will be turned on.

5. Qt Application Development

In the previous sections, a build tool for QT5 application qmake has been created. It is used for generate Makefiles and
other project files for QT5 application, after that, users can build QT5 application with cross compile toolchain. For
development of larger QT5 application, a IDE tools named as QtCreator is commonly used.
There is a evaluation edition of QtCreator in our release package at the path 03-Tools/qt-creator-opensource-linux-x86_64-
4.1.0.run.

In the following sections, we will introduce the installation, configuration of QtCreator, and demonstrate how to create a
simple QT5 application running on MYD-AM437X series development board.

5.1 Install QtCreator
On Ubuntu 64bit OS, customers can install QtCreator as shown below:

$ cd <WORKDIR>
$ cp /media/cdrom/03-Tools/Qt/qt-creator-opensource-linux-x86_64-4.1.0.run .
$ chmod a+x qt-creator-opensource-linux-x86_64-4.1.0.run
$ sudo ./qt-creator-opensource-linux-x86_64-4.1.0.run

QtCreator will be installed on Ubuntu OS step by step automatically.

5.2 Config QtCreator
Configure Build&Run Environment:

Open QtCreator, choose tools -> options , then the Build & Run dialog popups. Please choose the Compilers tab to set
compiler for QtCreator as shown below:

Figure 5-2-1 Settings of Compiler

Press Add button at the right side of this dialog, choose Custom in the dropdown list, and then set Name , Compiler path ,
 Make path and ABI as shown below.
After complete, press the Apply button to save.

Figure 5-2-2 Add Compiler for QtCreator

At the same dialog, choose Qt Version Tab to add qmake, at the right side of this dialog, press Add button, then a new
dialog popups,
please choose the qmake tools described at Chapter 3-4-1. After complete, press Open to set qmake, and then Apply to
save.

Figure 5-2-3 Choose qmake

In the Build&Run window, continue to choose Kits tab, and at the right side of this dialog, press Add button, then add
settings of running environment for QT5 application. In the Sysroot editbox, write the path of cross compile toolchain, in the
 Compiler and Qt Version editboxs, write the settings being set before, set Debugger to None , set CMake Tools to default as
shown below:

Figure 5-2-4 Add Kits for QtCreator

Create Helloworld Project:

In the main menu of QtCreate, choose File -> New File or Project , and in the popup dialog, choose Application -> Qt

Widgets Application as shown below:

Figure 5-2-5 Create a QT Widgets Application

After pressing Choose... button, the Qt Widgets Application settings dialog popups, please set the name and path of the
project as shown below in Name and Create in editboxs as shown below:

Figure 5-2-6 Set the Name and Path of the Project

Press Next button and choose the setting for Kits as below:

Figure 5-2-7 Set Kits for the Project

Choose the base class of the project as shown below:

Figure 5-2-8 Choose Base Class

Press Finish button to create and save the project.

Figure 5-2-9 Finish Creating a New Project

5.3 Build QT Application
In the previous section, a QT5 project named as helloworld has been created.
It is shown in the project manage of QtCreator as below:

Figure 5-3-1 Project Manager of QtCreator

Double click the mainwindow.ui at the left side to open the Design view for designing a UI for helloworld project visually.
Please drag a Label widget to the center of the mainwindow from the widgets list, double click the label and input `Hello,
world!".

Figure 5-3-2 UI Design View

After complete, choose Build -> Build Project in the main menu of QtCreator to build the helloworld project.
Some log information outputs to the Compile Output sub window during compiling, in case of any erros and warning, please
fix them and build again.

Figure 5-3-3 Build Project

After building, a binary format QT5 application is generated at ~/build-helloworld-myir_dev_kit-Debug/, please use file
command to check it and make sure it can work on ARM embedded Linux system as below:

file helloworld
helloworld: ELF 32-bit LSB executable, ARM, version 1 (GNU/Linux), dynamically linked
 (uses shared libs), for GNU/Linux 4.1.0, not stripped

Finally, please copy the binary format application helloworld to /usr/bin directory of development board and execute as
below:

helloworld --platform linuxfb:fb=/dev/fb0

A Window with a Hello,World! text label displays on the LCD screen as below:

Figure 5-3-4 Execute QT5 Application

6. Update System

This chapter covers the updating of an embedded Linux system on MYD-AM437X series development board.
In our release package along with MYD-AM437X series development board , the prebuilt Linux system images located at 02-
Images/linux were provided for customers to evaluate the system quickly.

The MYD-AM437X series development board factory image file is located under the 02-Images directory of the CD-ROM,
and the linux-images directory is a simplified version of the file system image.

The MEasy_HMI-images directory is a file system image that supports the MEasy_HMI demo system.
All the image files are shown in Table 6-1 as below:

Table 6-1 Prebuilt Images for MYIR-AM437X series development board

File Name Description

MLO First stage bootloader（SPL）

u-boot.img Second stage bootloader

myd_c437x_evm.dtb Device tree binary for LCD display mode of MYD-C437X

myd_c437x_evm_hdmi.dtb Device tree binary for HDMI display mode of MYD-C437X

myd_c437x_idk.dtb Device tree binary for PRU Ethernet work mode of MYD-C437X-PRU

myd_c437x_idk_lcd.dtb Device tree binary for LCD work mode of MYD-C437X-PRU

zImage Kernel image

uEnv.txt Default environment variables for U-boot

uEnv_ramdisk.txt Environment variables for boot ramdisk images on TF/SD card, it should be renamed to
uEnv.txt and copied to TF/SD card

ramdisk.gz ramdisk filesystem compressed by gzip

rootfs.ubi UBIFS filesystem image

rootfs.ext4 EXT4 filesystem image

rootfs.tar.gz Root directory compressed package

sdcard.img TF/SD/EMMC disk image

matrix-rootfs.tar.gz TI official file system directory compression package

There are four boot modes for MYD-AM437X series development board to run a embedded Linux system:

1. Boot from TF/SD card(EXT4 file system)
2. Boot from TF/SD card(Ramdisk file system)
3. Boot from EMMC（EXT4 file system)
4. Boot from Ethernet（NFS root for debug）

Boot from EMMC is the default for delivery. All the four boot modes will be illustrated in the following sections:

U-Boot Environment Variables

uEnv.txt is useful for U-boot to set default environment variables, During booting, U-boot loads a device tree binary file
assigned by fdtfile environment variable.
For MYD-C437X series development board, the device tree binary file determines its work mode, so users can change the
 fdtfile environment variable in uEnv.txt to change the work mode of MYD-C437X development board. A sample uEnv.txt
with fdtfile environment variable is shown as below:

fdtfile=myd_c437x_evm.dtb # Used for LCD display mode
#fdtfile=myd_c437x_evm_hdmi.dtb # User for HDMI dispaly mode

6.1 Boot from TF/SD Card(EXT4 file system)

After building Buildroot, a TF/SD card image file named as sdcard.img is generated at <WORKDIR>/Filesystem/myir-
buildroot/output/images .
It consists of two partitions, one is FAT partition contains MLO , u-boot.img , zImage , uEnv.txt and device tree binary files for
MYIR-AM437X series development board,the other partition is EXT4 partition, it will be used as the root partition of Linux.

Figure 6-1-1 Write sdcard.img to TF/SD card with win32diskimager

Put a TF card into the card reader, and connect the card reader to Windows host PC
Write 02-Image\linux-images\sdcard.img to the TF card with win32diskimager.exe as shown in Figure 6-1 above
After writing, power off the development board, put the TF card to its TF slot, set the board to boot from TF/SD card by
boot switch.
Power on the development board, it will boot from TF card and mount the second partition of the TF card as root file
system

Note: Writing sdcard.img will format the TF card, please backup important files.

6.2 Boot from TF/SD Card(Ramdisk file system)

After building Buildroot, a compressed ramdisk file system image file named as ramdisk.gz is generated at
 <WORKDIR>/Filesystem/myir-buildroot/output/images .

Figure 6-2-1 Formate TF/SD card

Note: Please backup important files and use the format tool HP USB Disk Storage Format Tool 2.0.6 in 03-Tools of our
release package to format

Format the TF card as shown in Figure 6-2 above
Put all the image files from 02-Images\linux-images to the formated TF card, and rename the uEnv_ramdisk.txt to
 uEnv.txt , overwrite the old uEnv.xt
power off the development board, put the TF card to its TF slot, set the board to boot from TF/SD card by boot switch.
Power on the development board, it will boot from TF card and use ramdisk.gz in the TF card as root file system .

6.3 Boot from EMMC(EXT4 file system)

The rootfs.tar.gz file is also availabe for booting from EMMC, but it can not be written to emmc by win32diskimager.exe .
It can be written to EMMC after Linux booting from TF/SD card with ramdisk filesystem by some commands of Linux, please
refer to updatesys.sh for details.

Boot from TF/SD card with ramdisk file system
After booting is complete, run updatesys.sh in Linux console to write rootfs.tat.gz on the TF card to EMMC as shown
below.
After writing emmc is complete, power off the development board, set it to EMMC boot mode by boot switch and take out
the TF card
Power on the development board, it will boot from EMMC and mount the second partition in the EMMC as root file system

The following to MYD-C437X development board as an example to illustrate the implementation of updatesys.sh process,the
MYD-C437X-PRU development board is similar to the MYD-C437X.

#cd /
./updatesys.sh

All data on eMMC now will be destroyed! Continue? [y/n]
y //User input，Verify that whether or not to erase all EMMC data
[138.794247] FAT-fs (mmcblk0p1): Volume was not properly unmounted. Some data may be
 corrupt. Please run fsck.
1024+0 records in
1024+0 records out
DISK SIZE - 3867148288 bytes
mkfs.fat 4.0 (2016-05-06)
mkfs.fat: warning - lowercase labels might not work properly with DOS or Windows
mkfs.fat 4.0 (2016-05-06)
mkfs.fat: warning - lowercase labels might not work properly with DOS or Windows
umount: /dev/mmcblk1p2: not mounted
mke2fs 1.43.3 (04-Sep-2016)
/dev/mmcblk1p2 contains a ext4 file system labelled 'rootfs'
 last mounted on /root/rootfs on Mon Jul 3 16:48:15 2017
Proceed anyway? (y,n) y //userinput,Verify that whether or not continue
Discarding device blocks: done
Creating filesystem with 261615 4k blocks and 65408 inodes
Filesystem UUID: ec25c446-3589-4f51-a6ff-d092053157e5
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

Allocating group tables: done
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done

===> Update loader to emmc...
===> Updating kernel and devicetree to emmc...
===> Update uEnv to emmc...
===> Updating filesystem to emmc...

 Update system completed, The board can be booted from eMMC now

If you need to modify the size of the root partition can also modify the updatesys.sh script to achieve, which emmc_partition ()
function for the eMMC partition function.

emmc_partition()
{
 #
 # Format the eMMC, the partition table were be deleted
 #
 umount $EMMC_DRIVE"p1" > /dev/null 2>&1
 umount $EMMC_DRIVE"p2" > /dev/null 2>&1
 umount $EMMC_DRIVE"p3" > /dev/null 2>&1

 dd if=/dev/zero of=$EMMC_DRIVE bs=1024 count=1024
 if [$? -ne 0]; then
 echo "===> Format emmc failed"
 exit 1
 fi

 SIZE=`fdisk -l $EMMC_DRIVE | grep Disk | awk '{print $5}'`

 echo DISK SIZE - $SIZE bytes

 CYLINDERS=475
 {
 echo ,395352,0x0C,*
 echo ,2092920,,-
 echo ,,,-
 } | sfdisk -u S $EMMC_DRIVE >/dev/null 2>&1

 if [$? -ne 0]; then
 echo "===> eMMC partition failed"
 exit 1
 fi

 umount $EMMC_DRIVE"p1" > /dev/null 2>&1
 sleep 1
 mkfs.fat -F 32 -n "boot" "$EMMC_DRIVE"p1
 if [$? -ne 0]; then
 echo "===> Creating boot partition failed"
 exit 1
 fi

 umount $EMMC_DRIVE"p3" > /dev/null 2>&1
 sleep 1
 mkfs.fat -F 32 -n "extented" "$EMMC_DRIVE"p3
 if [$? -ne 0]; then
 echo "===> Create extended partition failed"
 exit 1
 fi

 umount $EMMC_DRIVE"p2" >> /dev/null
 sleep 1
 mkfs.ext4 -L "rootfs" "$EMMC_DRIVE"p2
 if [$? -ne 0]; then
 echo "===> Creating rootfs partition failed"
 exit 1
 fi

 mkdir $EMMC_BOOT_MP
 mount $EMMC_DRIVE"p1" $EMMC_BOOT_MP
 mkdir $EMMC_ROOTFS_MP
 mount -t ext4 $EMMC_DRIVE"p2" $EMMC_ROOTFS_MP
}

Partition is mainly used to achieve the sfdisk command, format: start, size, ID, default partition information as shown below,
the user can modify according to their own needs.

{
echo ,395352,0x0C,* //Partition P1, boot partition
echo ,2092920,,- //Partition P2, root partition
echo ,,,- //Partition P3, extended partition
} | sfdisk -u S $EMMC_DRIVE >/dev/null 2>&1

After the partition is completed in the terminal using fdisk -l can see eMMC partition information:

Device Boot Start End Sectors Size Id Type
/dev/mmcblk0p1 * 2048 397399 395352 193M c W95 FAT32 (LBA)
/dev/mmcblk0p2 399360 2492279 2092920 1022M 83 Linux
/dev/mmcblk0p3 2492416 7553023 5060608 2.4G 83 Linux

6.4 Boot from Ethernet(NFS root filesystem)

After building Buildroot, a compressed package named as rootfs.tar.gz is generated at <WORKDIR>/Filesystem/myir-
buildroot/output/images .
This package can be used to work as NFS root for development board. In order to boot from ethernet, TFTP and NFS
services should be
installed and configed as below:

Install TFTP Service

$ sudo apt-get install tftp-hpa tftpd-hpa

Config TFTP Service

Create a work directory for TFTP, open the configuration file for TFTP as shown below:

$ mkdir -p <WORKDIR>/tftpboot
$ chmod 777 <WORKDIR>/tftpboot
$ sudo vi /etc/default/tftpd-hpa

Add or modify the parameters as shown below:

TFTP_DIRECTORY="<WORKDIR>/tftpboot"
TFTP_OPTIONS="-l -c -s"

Restart TFTP Service:

$ sudo service tftpd-hpa restart

Copy the MLO , u-boot.img , zImage , ramdisk.gz and device tree binary files to the work directory of TFTP service,
then users can load these image files to the RAM of development board by TFTP in U-boot console, it is shown below:

># help tftpboot
tftpboot - boot image via network using TFTP protocol

Usage:
tftpboot [loadAddress] [[hostIPaddr:]bootfilename]
># tftpboot ${loadaddr} 192.168.1.111:zImage

Install NFS Service

NFS(Network File System) is a file system can be mounted remotely through network. A directory on NFS server can be used
as the root file system of an embedded Linux system. The installation and configuration of NFS service are described below:

$ sudo apt-get install nfs-kernel-server

Config NFS Service

Edit the /etc/exports file of NFS server, and export a directory at the end of file:

$ sudo vi /etc/exports

Add or modify the directory to be exported , such as /home/myir/rootfs has been added as below:

/home/myir/rootfs *(rw,nohide,insecure,no_subtree_check,async,no_root_squash)

Restart NFS service:

$ cd /home/myir/rootfs
$ sudo tar zxvf <WORKDIR>/images/rootfs.tar.gz
$ sudo service nfs-kernel-server restart

Verify NFS service on NFS server:

$ sudo mount -t nfs 127.0.0.1:/home/myir/rootfs /mnt

If NFS service works well, /home/myir/rootfs will be mounted at /mnt with NFS , and then the NFS server is available for
development board.
For example, the IP address of the NFS server is set to 192.168.1.111 , then customers can set the IP of development board
to the same sub network, such as
 192.168.1.112 in U-boot console, it is shown below:

># setenv ipaddr 192.168.1.112

Verify the ethernet connection by ping command in U-boot console:

># ping 192.168.1.111

Run run netboot command to load image files from tftpboot and boot with NFS root filesystem in U-boot console:

># setenv serverip 192.168.1.111
># setenv ipaddr 192.168.1.112
># ping 192.168.1.111 -- verify ethernet connection
># setenv rootpath /home/myir/rootfs
># run findfdt
># echo $fdtfile -- display the dtb file name
># run netboot

6.5 Matrix-rootfs Tutorial

Currently only EMMC boot and NFS startup are supported,only AM4378 and AM4379 cpu can be used.

EMMC boot：

Update the file-system in EMMC

First, use start mode Boot from TF/SD card (Ramdisk file system) , confirm the TF card has matrix-rootfs.tar.gz
compression package, start the development board.

After the system is started, go to the linux console and modify the value of FILE_FILESYSTEM in updatasys.sh. The
modification process is as follows：

cd /
vi updatesys.sh

This script to update myd_c437x_evm or Rico Board system
This script will respectively update the u-boot, device tree, zImage to
QSPI.U_BOOT, QSPI.U-BOOT-DEVICETREE, QSPI.KERNEL, and update the filesystem
to emmc
#
Author: MYiR
Email: support@myirtech.com
Date: 2015.1.21
Initial Version
Date: 2017.05.24
update to kernel4.1.18 and u-boot201605

#!/bin/sh

The path sdcard mounted
SD_MOUNT_POINT="/media/mmcblk1p1"
The rootfs partition would be mounted on current 'rootfs' directory
EMMC_BOOT_MP="boot"
EMMC_ROOTFS_MP="rootfs"

FILE_MLO="MLO"
if ["$1" = "loader2qspi"]; then
 FILE_UBOOT="u-boot.bin"
else
 FILE_UBOOT="u-boot.img"
fi
FILE_ZIMAGE="zImage"
FILE_DEVICETREE="myd_c437x_evm.dtb"
FILE_FILESYSTEM="matrix-rootfs.tar.gz"
FILE_RAMDISK="ramdisk.gz"
FILE_UBOOTENV="u-boot-env.bin"
FILE_UENV="uEnv"
FILE_DEFAULT_UENV="uEnv/uEnv.txt"
- updatesys.sh 1/286 0%

Change the value of FILE_FILESYSTEM to matrix-rootfs.tar.gz, save and exit, and then execute the updatasys.sh script to
update the file system on the EMMC to matrix-rootfs.

After the programming is complete, unplug the TF card, set the development board for EMMC boot mode, power can
boot from the EMMC boot, and load the matrix-rootfs file system on EMMC.

NFS Boot：

The main process with reference to the previous program 4: Boot from Ethernet（NFS root for debug) , where the matrix-
rootfs.tar.gz extract to the NFS ROOT root file system directory.

$ cd /home/myir/rootfs
$ sudo tar zxvf <WORKDIR>/images/matrix-rootfs.tar.gz
$ sudo service nfs-kernel-server restart

After the operation is completed, start the development board according to the NFS start mode, and enter the TI matrix-
rootfs demo system.

Appendix A Warranty & Technical Support Services
MYIR Tech Limited is a global provider of ARM hardware and software tools, design solutions for embedded applications. We
support our customers in a wide range of services to accelerate your time to market.

MYIR is an ARM Connected Community Member and work closely with ARM and many semiconductor vendors. We sell
products ranging from board level products such as development boards, single board computers and CPU modules to help
with your evaluation, prototype, and system integration or creating your own applications. Our products are used widely in
industrial control, medical devices, consumer electronic, telecommunication systems, Human Machine Interface (HMI) and
more other embedded
applications. MYIR has an experienced team and provides custom design services based on ARM processors to help
customers make your idea a reality.

The contents below introduce to customers the warranty and technical support services provided by MYIR as well as the
matters needing attention in using MYIR’s products.

Service Guarantee
MYIR regards the product quality as the life of an enterprise. We strictly check and control the core board design, the
procurement of components, production control, product testing, packaging, shipping and other aspects and strive to
provide products with best quality to customers. We believe that only quality products and excellent services can ensure the
long-term cooperation and mutual benefit.

Price
MYIR insists on providing customers with the most valuable products. We do not pursue excess profits which we think only for
short-time cooperation. Instead, we hope to establish long-term cooperation and win-win business with customers. So we will
offer reasonable prices in the hope of making the business greater with the customers together hand in hand.

Delivery Time
MYIR will always keep a certain stock for its regular products. If your order quantity is less than the amount of inventory, the
delivery time would be within three days; if your order quantity is greater than the number of inventory, the delivery time
would be always four to six weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods in
advance.

Technical Support
MYIR has a professional technical support team. Customer can contact us by email (support@myirtech.com), we will try to
reply you within 48 hours. For mass production and customized products, we will specify person to follow the case and
ensure the smooth production.

After-sale Service
MYIR offers one year free technical support and after-sales maintenance service from the purchase date. The service
covers:

Technical support service

MYIR offers technical support for the hardware and software materials which have provided to customers;

To help customers compile and run the source code we offer;
To help customers solve problems occurred during operations if users follow the user manual documents;
To judge whether the failure exists;
To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical support service:

Hardware or software problems occurred during customers’ own development;
Problems occurred when customers compile or run the OS which is tailored by themselves;
Problems occurred during customers’ own applications development;
Problems occurred during the modification of MYIR’s software source code.

After-sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free maintenance service since the
purchase date. But following situations are not included in the scope of our free maintenance service:

The warranty period is expired;
The customer cannot provide proof-of-purchase or the product has no serial number;
The customer has not followed the instruction of the manual which has caused the damage the product;
Due to the natural disasters (unexpected matters), or natural attrition of the components, or unexpected matters leads
the defects of appearance/function;
Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards, all those reasons which have
caused the damage of the products or defects of appearance;
Due to unauthorized weld or dismantle parts or repair the products which has caused the damage of the products or
defects of appearance;
Due to unauthorized installation of the software, system or incorrect configuration or computer virus which has caused
the damage of products.

Warm tips:

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the LCD when receiving the
goods. In case the LCD cannot run or no display, customer should contact MYIR within 7 business days from the
moment get the goods.

2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use, please avoid clean the
surface with fingers or hands to leave fingerprint.

4. Do not clean the surface of the screen with chemicals.

5. Please read through the product user manual before you using MYIR’s products.

6. For any maintenance service, customers should communicate with MYIR to confirm the issue first. MYIR’s support team
will judge the failure to see if the goods need to be returned for repair service, we will issue you RMA number for return
maintenance service after confirmation.

Maintenance period and charges

MYIR will test the products within three days after receipt of the returned goods and inform customer the testing result.
Then we will arrange shipment within one week for the repaired goods to the customer. For any special failure, we will
negotiate with customers to confirm the maintenance period.

For products within warranty period and caused by quality problem, MYIR offers free maintenance service; for products
within warranty period but out of free maintenance service scope, MYIR provides maintenance service but shall charge
some basic material cost; for products out of warranty period, MYIR provides maintenance service but shall charge some
basic material cost and handling fee.

Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be responsible by user; MYIR will pay for the
return shipping cost to users when the product is repaired. If the warranty period is expired, all the shipping cost will be
responsible by users.

Products Life Cycle

MYIR will always select mainstream chips for our design, thus to ensure at least ten years continuous supply; if meeting some
main chip stopping production, we will inform customers in time and assist customers with products updating and upgrading.

Value-added Services

1. MYIR provides services of driver development base on MYIR’s products, like serial port, USB, Ethernet, LCD, etc.
2. MYIR provides the services of OS porting, BSP drivers’ development, API software development, etc.
3. MYIR provides other products supporting services like power adapter, LCD panel, etc.
4. ODM/OEM services.

MYIR Tech Limited

Address: Room 04, 6th Floor, Building No.2, Fada Road, Yunli Smart Park, Bantian, Longgang District, Shenzhen,
Guangdong, China 518129

Support Email: support@myirtech.com

Sales Email: sales@myirtech.com

Phone: +86-755-22984836

Fax: +86-755-25532724

Website: www.myirtech.com

	Introduction
	1. Software Resources
	2. Deploy the Development Environment
	2.1 Install Tools
	2.2 Setup GCC Toolchain

	3. Bulid System
	3.1 Bulid Bootloader
	3.2 Build Linux Kernel
	3.3 Build Filesystem
	3.4 Build QT

	4. Linux Application Development
	4.1 GPIO
	4.2 LCD
	4.3 Touch Screen
	4.4 RTC
	4.5 RS232
	4.6 RS485
	4.7 CAN Bus
	4.8 KEY
	4.9 LED
	4.10 EEPROM
	4.11 USB Host
	4.12 USB DEVICE
	4.13 CAMERA
	4.14 AUDIO
	4.15 HDMI
	4.16 PRU

	5. Qt Application Development
	5.1 Install QtCreator
	5.2 Config QtCreator
	5.3 Build Qt Application

	6. Update System
	6.1 Boot from TF/SD Card(EXT4 file system)
	6.2 Boot from TF/SD Card(Ramdisk file system)
	6.3 Boot from EMMC(EXT4 file system)
	6.4 Boot from Ethernet(NFS root filesystem)
	6.5 Matrix-rootfs Tutorial

	Appendix Warranty & Technical Support Services

