

1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.5.7

1.5.8

1.5.9

1.5.10

1.5.11

1.5.12

1.5.13

1.5.14

1.5.15

1.5.16

1.6

1.6.1

1.6.2

1.6.3

1.7

1.7.1

1.7.2

1.8

Table	of	Contents
Introduction

1.	Software	resources

2.	Deploy	development	environment

3.	Yocto	system

3.1	Yocto	compile	complete	image

3.2	Yocto	compile	U-Boot

3.3	Yocto	compile	Kernel

3.4	Yocto	generate	SDK	tools

4.	Linux	application	development

4.1	GPIO-KEY	Test

4.2	GPIO-LED	Test

4.3	USB-HOST	Test

4.4	USB-DEVICE	Test

4.5	Ethernet	Test

4.6	Audio	Test

4.7	Serial	port	Test

4.8	SPI	Test

4.9	WIFI	Test

4.10	BT	Test

4.11	4G	Test

4.12	RTC	Test

4.13	M.2	Test

4.14	HDMI	Test

4.15	MIPI-DSI	Test

4.16	MIPI-CSI	Test

5.	QT	application	development

5.1	Install	Qt	toolchain	and	QtCreator

5.2	Configure	QtCreate

5.3	Test	qt	application

6.	Update	system

6.1	UUU	update	system

6.2	SD	card	update	sytem

Appendix	Warranty	&	Technical	Support	Services

2

3

MYD-JX8MX	Linux	Development	Guide

Introduction

This	document	aim	to	introduce	how	to	setup	environment,compile	source	code	,install	application,use	the	hardware	API	,
develop	QT	application	on	MYD-JX8MX	series	development	boards.

History

Version Note Date

V1.0 Initial	Version 2019.03.29

V1.1 1.Distinguish	DDR	size	of	uboot	
2.Modify	the	update	method	with	SD	card 2019.06.02

V1.2 1.Correct	the	linux-imx-src.inc	path	
2.Use	Fn-link6222bmodule 2019.08.12

Hardware	Version

This	document	applies	to	MYD-JX8MX	series	Development	Board	of	MYIR	currently.

Introduction

4

1.	Software	resources

The	MYD-JX8MX	Development	Board	offers	linux	system	which	kernel	version	is	4.9.88.	It	provides	rich	system	resources	and
software	resources.Some	of	the	functions	have	to	be	working	with	the	extension	modules.

A	list	of	resources	as	bellow：

Type Name Description Source	Code

Bootstrap U-boot bootstrap YES

Linux	kernel Image base	on	imx_4.9.88_2.0.0_ga	of	NXP YES

Device	Driver PMIC BD71873	driver YES

Device	Driver USB	Host USB	Host	3.driver YES

Device	Driver USB	OTG USB	OTG	3.driver YES

Device	Driver I2C I2C	bus	driver YES

Device	Driver SPI SPI	bus	driver YES

Device	Driver Ethernet 10M/100M/1000M	driver YES

Device	Driver MMC MMC/EMMC/TFcard	stoage	driver YES

Device	Driver HDMI HDMI	display	driver YES

Device	Driver LCD MIPI-LVDS	driver YES

Device	Driver PWM PWM	control	driver YES

Device	Driver RTC Real	Time	Clock	driver YES

Device	Driver GPIO GPIO	driver YES

Device	Driver Touch Touch	of	Capactive	driver YES

Device	Driver Audio WM8904	driver YES

Device	Driver Camera Ov5640	driver YES

Device	Driver WiFi	&	BT QCA6174	driver YES

Device	Driver Watchdog Watchdog	driver YES

Device	Driver LTE	module Support	EC20	module，use	USB	driver YES

Device	Driver M.2 NVME	driver YES

Rootfs Yocto	rootfs Base	on	Yocto	`s	xwayland	rootfs YES

Application GPIO	KEY/LED GPIO	button	and	led	appication YES

Application NET TCP/IP	Sokect	C/S	appication YES

Application RTC Real	Time	Clock	application YES

Application Audio Audio	application YES

Application LCD Dispaly	screen	application YES

Application Camera Multiple	cameras	application YES

toolchain Cross	compiler Yocto	GCC	7.3.0	Hardfloat YES

1.	Software	resources

5

1.	Software	resources

6

2.	Deploy	development	environment

To	get	the	Yocto	Project	expected	behavior	in	a	Linux	Host	Machine,it	is	recommonded	to	use	the	Ubuntu	16.04	64bit
distribution.	The	DDR	size	should	be	larger	than	8GB	and	the	hard	disk	space	requird	at	least	150G(500GB,recommended).And
then	connect	and	configure	the	network，some	packages	should	be	installed.

Repalce	the	Ubuntu	sources-list

Notice	that	this	only	applies	to	the	developer	in	china.	If	you	are	in	china	,the	tuna	resource	should	instead	of	the	default.

The	website	is	as	follows：

https://mirrors.tuna.tsinghua.edu.cn/help/ubuntu/
Choose	16.04	，and	then	copy	the	contents	to	update	/etc/apt/source.list	.

Operating	procedures	：

1.Backup	the	default	file

cp	/etc/apt/sources.list	/etc/apt/sources.list-bak

2.Copy	contents	from	the	tuna	16.04	column	to	/etc/apt/sources.list	file.

3.Update	source

apt-get	update

PS:	If	error	happens	to	appstream3	,you	can	remove	the	package	first	and	then	update.

apt-get	remove	libappstream3

apt-get	update

Host	packages

Essential	Yocto	Project	host	packages	are:

sudo	apt-get	install	gawk	wget	git-core	diffstat	unzip	texinfo	gcc-multilib	build-essential	chrpath	socat	libsd

l1.2-dev	u-boot-tools

sudo	apt-get	install	libsdl1.2-dev	xterm	sed	cvs	subversion	coreutils	texi2html	docbook-utils	python-pysqlite2	

help2man	make	gcc	g++	desktop-file-utils		libgl1-mesa-dev	libglu1-mesa-dev	mercurial	autoconf	automake	groff	cu

rl	lzop	asciidoc

Set	repo	file

The	repo	file	is	used	to	download	resources,	and	it	is	located	in	03-Tools/Repo	for	chinese,	it	should	be	installed	on	your	computer
by	performing	these	step:

mkdir	~/bin

cp	~/03-Tools/Repo/repo	~/bin

chmod	a+x	~/bin/repo

export	PATH=~/bin:$PATH

Please	follow	below	steps	instead	of	above	,if	you	are	able	to	access	google.

2.	Deploy	development	environment

7

https://mirrors.tuna.tsinghua.edu.cn/help/ubuntu/

mkdir	~/bin

curl	https://storage.googleapis.com/git-repo-downloads/repo	>	~/bin/repo

chmod	a+x	~/bin/repo

export	PATH=~/bin:$PATH

Configure	git

Make	sure	that	git	is	set	up	properly	with	the	commands	below.

git	config	--global	user.name	"abc123"

git	config	--global	user.email	"def456@gmail.com"

git	config	--list

2.	Deploy	development	environment

8

3.	Yocto	build	system

There	are	many	open-source	system	framework	based	on	Linux	platform.	Developers	can	build	the	system	and	customize
development	easily.At	present,	Buildroot,Yocto	,openEmbedded	are	widely	used.	Here,Yocto	is	suggested	to	be	used	to	build	a
Linux	system	for	embedded	products.	Yocto	is	not	only	a	tool	to	build	rootfs	system	but	also	to	provide	a	complete	set	of	Linux-
based	development	and	maintenance	workflows,enabling	the	underlying	embedded	developers	and	upper-level	application
developers	to	develop	under	a	unified	framework.

Yocto	is	an	open	source	"umbrella"	project,	which	means	there	are	many	sub-projects	under	it.	Yocto	just	integrates	all	the
projects	together	and	provides	a	reference	build	project	Poky	to	guide	developers	on	how	to	apply	these	projects.	It	contains
Bitbake,	OpenEmbedded-Core,	board	support	packages,	and	configuration	files	for	various	packages.	With	Poky,	you	can	build
systems	with	different	types	of	requirements,	such	as	the	smallest	system	coreimage-minimal,	the	full-featured	command	line
system	core-image-base,	and	the	fsl-image-qt5	with	Qt5	graphics	library.

This	chapter	mainly	introduces	the	MYD-JX8MX	development	board,	builds	the	system	using	yocto,	and	compiles	the	image.

The	MYD-JX8MX	Linux	system	consists	of	the	following	sections:

imx-boot:	consists	of	SPL，U-boot	，ARM	trust	firmware	and	HDMI	firmware	.Bootstrap	support	EMMC	and	SD	card.

Linux	Kernel:	4.9.88	linux	kernel	with	many	peripheral	resources.

device	tree	file：associated	with	hardware	configuration.

rootfs：	rootfs	system.

3.	Yocto	system

9

3.1	Yocto	compile	complete	image

This	chapter	mainly	introduces	how	to	use	yocto	to	compile	the	complete	image.

Decompress	the	yocto	packages	which	store	in	the	04-Source	directory:fsl-release-yocto.tar.gz	and	compile	image	use	fsl-image-
qt5-validation-imx	as	target,perform	as	follows:

tar	-zxvf		fsl-release-yocto.tar.gz

cd	fsl-release-yocto

DISTRO=fsl-imx-xwayland	MACHINE=imx8mqevk	source	fsl-setup-release.sh	-b	build-xwayland

bitbake	fsl-image-qt5-validation-imx

The	generated	images	would	be	located	in	below	direction	when	it	compiled.

${WORK_DIR}/build-xwayland/tmp/deploy/images/imx8mqevk

Introduce	some	important	resources：

Name Function

imx-boot-imx8mqevk-sd.bin bootstrap	image

Image kernel

myd-fsl-imx8mq-evk.dtb dtb	configure	file

fsl-image-qt5-validation-imx-imx8mqevk-
20190401035300.rootfs.ext4 the	rootfs	system	with	EXT4	format

fsl-image-qt5-validation-imx-imx8mqevk-
20190401035300.rootfs.tar.bz2 the	rootfs	use	tar	-jxf	to	compress

fsl-image-qt5-validation-imx-imx8mqevk-
20190401035300.rootfs.sdcard.bz2

the	compete	images	consist	of	imx-
uboot+dtb+kernel+rootfs

Besides	the	target	of	fsl-image-qt5-validation-imx，there	are	some	other	ones	to	be	chosen	from	below：

Target	Nanem feature

core-image-minimal the	minimal	rootfs	system

fsl-image-validation-imx the	image	with	gui	without	any	QT	content

fsl-image-qt5-validation-imx the	image	with	qt5

3.1	Yocto	compile	complete	image

10

3.2	Yocto	compile	U-Boot

The	I.mx8m	bootstrap	which	named	imx-boot	is	consist	of	u-boot,SPL,ARM	trust	firmware	and	HDMI	firmware.

Configure	the	DDR	size

There	are	two	different	type	of	memory	for	configure，1G	DDR	or	2G	DDR.

Determined	by	this	file	：

sources/meta-fsl-bsp-release/imx/meta-bsp/recipes-bsp/u-boot/u-boot-imx_2017.03.bb

Main	content	as	bellow:

UBOOT_SRC	?=	"git:///${PWD}/../uboot-imx;protocol=file"

SRCBRANCH	=	"imx_v2017.03_4.9.88_2.0.0_ga"

SRC_URI	=	"${UBOOT_SRC};branch=${SRCBRANCH}"

SRCREV	=	"947e79fa7b49ae66ba7ae8edde094d7e4d433df4"

You	can	find	the	name	of	uboot	source	code	directory	called	uboot-imx,branch	name	is	imx_v2017.03_4.9.88_2.0.0_ga	and	git
commit	value	is	947e79fa7b49ae66ba7ae8edde094d7e4d433df4	.

Choose	the	requested	branch	and	commit	value	can	set	the	correct	ddr	configure.

View	branch	command	as	bellow：

duxy@myir:~/linux_8m_software/myd-j8mx/04-Source/fsl-release-yocto/uboot-imx$	git	branch

*	imx_v2017.03_4.9.88_2.0.0_ga

		imx_v2017.03_4.9.88_2.0.0_ga-2g-ddr

Checkout	branch	command	as	below:

git	checkout	imx_v2017.03_4.9.88_2.0.0_ga-2g-ddr

view	the	git	commit	value	command	as	below:

git	log

After	configured	the	file,	we	can	compile	the	imx-boot	by	performing	below	step:

			cd	fsl-release-yocto

			.	./setup-environment	build-xwayland

			bitbake	-c	cleansstate	u-boot

			bitbake	-c	compile	u-boot	-f

			bitbake	-c	deploy	u-boot	

			bitbake	imx-boot

The	generated	images	would	be	located	in	below	direction	when	it	compiled:

build-xwayland/tmp/deploy/images/imx8mqevk/imx-boot-imx8mqevk-sd.bin

3.2	Yocto	compile	U-Boot

11

3.3	Yocto	compile	Kernel

The	kernel	is	the	second	stage	after	imx-uboot	launch,it	can	be	compiled	by	performing	the	following	steps:

	.	./setup-environment	build-xwayland

			bitbake	-c	cleansstate	virtual/kernel

			bitbake	-c	patch	virtual/kernel	

			bitbake	-c	compile	virtual/kernel	-f

The	generated	images	would	be	located	in	below	direction	when	it	compiled:

build-xwayland/tmp/work/imx8mqevk-poky-linux/linux-imx/4.9.88-r0/build/arch/arm64/boot/Image

Kernel	is	same	as	uboot	to	set	the	configuration	through	the	file:	sources/meta-fsl-bsp-release/imx/meta-bsp/recipes-
kernel/linux/linux-imx-src.inc

3.3	Yocto	compile	Kernel

12

3.4	Yocto	generate	SDK	tools

This	chapter	mainly	introduces	how	to	use	Yocto	to	generate	SDK	toolchain	and	use	it	to	compile	applications	which	can	run	on
development	board.

Download	toolchain

In	charter	3.1	you	had	obtained	the	decompression	of	yocto	files	，so	perform	the	following	steps：

cd	fsl-release-yocto

.	./setup-environment	build-xwayland

bitbake	meta-toolchain

After	download	completed,	the	resources	are	located	in	/temp/deploy/sdk.

.

├──	fsl-imx-xwayland-glibc-x86_64-meta-toolchain-aarch64-toolchain-4.9.88-2.0.0.host.manifest

├──	fsl-imx-xwayland-glibc-x86_64-meta-toolchain-aarch64-toolchain-4.9.88-2.0.0.sh

├──	fsl-imx-xwayland-glibc-x86_64-meta-toolchain-aarch64-toolchain-4.9.88-2.0.0.target.manifest

├──	fsl-imx-xwayland-glibc-x86_64-meta-toolchain-aarch64-toolchain-4.9.88-2.0.0.testdata.json

Install	to	toolchain

Perform	the	following	step:

./fsl-imx-xwayland-glibc-x86_64-meta-toolchain-aarch64-toolchain-4.9.88-2.0.0.sh

Result:

NXP	i.MX	Release	Distro	SDK	installer	version	4.9.88-2.0.0

==

Enter	target	directory	for	SDK	(default:	/opt/fsl-imx-xwayland/4.9.88-2.0.0):	~/opt/fsl-imx-xwayland/4.9.88-2.0

.0

You	are	about	to	install	the	SDK	to	"/home/duxy/opt/fsl-imx-xwayland/4.9.88-2.0.0".	Proceed[Y/n]?	y

Extracting	SDK........................done

Setting	it	up...done

SDK	has	been	successfully	set	up	and	is	ready	to	be	used.

Each	time	you	wish	to	use	the	SDK	in	a	new	shell	session,	you	need	to	source	the	environment	setup	script	e.g.

	$.	/home/duxy/opt/fsl-imx-xwayland/4.9.88-2.0.0/environment-setup-aarch64-poky-linux

Compile	the	executable	application	on	board

Perform	the	following	step:

source	/home/duxy/opt_test/environment-setup-aarch64-poky-linux

$CC	main.c	-o	main

Use	the	file	command	to	check	main	and	view	the	result:

#file	main	

main:	ELF	64-bit	LSB	executable,	ARM	aarch64,	version	1	(SYSV),	dynamically	linked,	interpreter	/lib/ld-linux-a

arch64.so.1,	for	GNU/Linux	3.14.0,	BuildID[sha1]=75b922974f533df4107a5cd413cb7e7667335e94,	not	stripped

The	above	toolchain	has	been	provided	in	03-Tools/Toolchain.	QT	toolchain	is	also	provided.

More	detail	information	of	yocto,	please	refer	to	the	following	link:

3.4	Yocto	generate	SDK	tools

13

Yocto	Project	Quick	start

Bitback	User	Manual

Yocto	Project	Reference	Manual

Yocto	Project	Development	Manual

Yocto	Project	Complete	Documentation	Set

3.4	Yocto	generate	SDK	tools

14

http://www.yoctoproject.org/docs/2.1.2/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/2.1.2/bitbake-user-manual/bitbake-user-manual.html
http://www.yoctoproject.org/docs/2.1.2/ref-manual/ref-manual.html
http://www.yoctoproject.org/docs/2.1.2/dev-manual/dev-manual.html
http://www.yoctoproject.org/docs/2.1.2/mega-manual/mega-manual.html

4.	Linux	application	development

This	chapter	mainly	introduces	how	to	use	sample	to	test	MYD-JX8MX	peripheral	hardware.	First	of	all	,host	pc	should	install	the
SDK	toolchain	provided	by	yocto,	if	not	installed	of	the	toolchain	yet,	please	refer	to	chapter	3.4.	Second	,compile	the	source	code
of	sample	and	copy	them	to	the	development	board.

Compile	application

If	the	toolchain	has	been	installed,	we	should	make	sure	the	gcc	version	is	right.

source	~/opt/fsl-imx-xwayland/4.9.88-2.0.0/environment-setup-aarch64-poky-linux

aarch64-poky-linux-gcc	--version

aarch64-poky-linux-gcc	(GCC)	7.3.0

Copyright	(C)	2017	Free	Software	Foundation,	Inc.

This	is	free	software;	see	the	source	for	copying	conditions.		There	is	NO

warranty;	not	even	for	MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.

Compile	the	source	code	of	sample	by	performing	the	following	step:

cd	04-Sources

tar	-zxvf	example.tar.gz

cd	example

make

Finally	copy	the	entire	example	contents	to	the	USB	disk	and	insert	into	the	board	use	for	later	testing.

4.	Linux	application	development

15

4.1	GPIO-KEY	Test

This	example	demonstrates	how	to	read	key	status	and	key	values	in	the	Linux	user	space.	After	executed	the	sample	,press	or
release	K3	button	.	It	will	output	information	in	the	serial	port.	Press	"ctrl+c"	to	exit	the	sample.

Hardware	connection

Insert	the	USB	disk	into	the	development	board,which	stored	the	example	in	the	4	chapters.

Software	test

Execute	the	sample	on	the	terminal	of	the	development	board,	and	then	press	the	K3	button	to	print	the	key	value	use	pressed	or
released,	as	follows:

cd	/run/media/sda/example/gpio_key

./gpio_key	/dev/input/event1

Hit	any	key	on	board

key	2	Pressed

key	2	Released

key	2	Pressed

key	2	Released

4.1	GPIO-KEY	Test

16

4.2	GPIO-LED	Test

This	example	demonstrates	how	to	control	the	D49	and	D50	led	.	After	executed	the	sample	,	the	D49	and	D50	led	will	blink	.
Press	"ctrl+c"	to	exit	the	sample.

Hardware	connection

Insert	the	USB	disk	into	the	development	board,which	stored	the	example	in	the	4	chapters.

Software	test

Execute	the	sample	on	the	control	terminal	of	the	development	board	,	the	led	blink.

./gpio_led			/sys/class/leds/user/brightness			/sys/class/leds/cpu/brightness

4.2	GPIO-LED	Test

17

4.3	USB-HOST	Test

Insert	the	USB	disk	into	the	USB	HOST	J6	or	J7	interface,	the	debug	serial	port	will	output	information.	And	then	mount	the
device	for	writing	or	reading	test.

Hardware	connection

Insert	the	USB	disk	into	the	development	board,which	stored	the	example	in	the	4	chapters.

Software	test

When	the	USB	disk	insert	into	the	board,	it	appears	some	information	as	follows:

#		usb	1-1.3:	new	high-speed	USB	device	number	5	using	xhci-hcd

	usb-storage	1-1.3:1.0:	USB	Mass	Storage	device	detected

	scsi	host0:	usb-storage	1-1.3:1.0

	scsi	0:0:0:0:	Direct-Access					Generic		Flash	Disk							8.07	PQ:	0	ANSI:	4

	sd	0:0:0:0:	[sda]	31129600	512-byte	logical	blocks:	(15.9	GB/14.8	GiB)

	sd	0:0:0:0:	[sda]	Write	Protect	is	off

	sd	0:0:0:0:	[sda]	Write	cache:	disabled,	read	cache:	enabled,	doesn't	support	DPO	or	FUA

		sda:

	sd	0:0:0:0:	[sda]	Attached	SCSI	removable	disk

	FAT-fs	(sda):	Volume	was	not	properly	unmounted.	Some	data	may	be	corrupt.	Please	run	fsck.

The	system	mount	the	devices	automaticly,	view	the	/proc/mounts	contents	can	find	the	mount	point.

	#	cat	/proc/mounts		|	grep	sda

/dev/sda	/run/media/sda	vfat	rw,relatime,gid=6,fmask=0007,dmask=0007,allow_utime=0020,codepage=437,iocharset=is

o8859-1,shortname=mixed,errors=remount-ro	0	0

We	can	write	and	read	a	file	in	the	mount	point	and	view	the	result.

cd	/run/media/sda/

echo	"Hello"	>	Hello.txt	

cat	Hello.txt	

Hello

4.3	USB-HOST	Test

18

4.4	USB-DEVICE	Test

This	example	demonstrates	how	to	use	TypeC	J8	interface	as	device	module	on	the	development	baord,	it	uses	file	or	memory	as
device	and	connect	to	othear	USB	HOST	interface.	The	sample	use	file	as	storage	device	for	USB	HOST	interface.

Hardware	connection

Use	a	usb-typec	line，one	end	with	USB	connected	to	PC，	the	othor	one	with	type-c	connected	to	J8	interface	on	board.

Software	test

1.First	step	to	create	a	file	that	size	of	6M,	perform	step	below:

#	dd	if=/dev/zero	of=/home/root/typec_device	bs=1M	count=6;

2.Secondly	,format	it	using	vfat	format,perform	step	below:

#	mkfs.vfat	/home/root/typec_device;

mkfs.fat	4.1	(2017-01-24)

3.Finally	simulate	the	file	as	a	storage	device,	perform	step	below:

#	modprobe	g_mass_storage	file=/home/root/typec_device	removable=1	iSerialNumber="1234";

The	development	board	output	these	information.

	Mass	Storage	Function,	version:	2009/09/11

	LUN:	removable	file:	(no	medium)

	LUN:	removable	file:	/home/root/typec_device

	Number	of	LUNs=1

	g_mass_storage	gadget:	Mass	Storage	Gadget,	version:	2009/09/11

	g_mass_storage	gadget:	g_mass_storage	ready

	g_mass_storage	gadget:	super-speed	config	#1:	Linux	File-Backed	Storage

4.The	linux	PC	detect	USB	disk	inserted	,the	SerialNumber	is	"1234"	and	the	capacity	is	6M:

[6892.908437]	usb	3-2:	SerialNumber:	1234

[6893.178564]	usb-storage	3-2:1.0:	USB	Mass	Storage	device	detected

[6893.178771]	usb-storage	3-2:1.0:	Quirks	match	for	vid	0525	pid	a4a5:	10000

[6893.178832]	scsi	host4:	usb-storage	3-2:1.0

[6893.179045]	usbcore:	registered	new	interface	driver	usb-storage

[6893.202270]	usbcore:	registered	new	interface	driver	uas

[6894.178633]	scsi	4:0:0:0:	Direct-Access					Linux				File-Stor	Gadget	0409	PQ:	0	ANSI:	2

[6894.179747]	sd	4:0:0:0:	Attached	scsi	generic	sg2	type	0

[6894.184176]	sd	4:0:0:0:	[sdb]	12288	512-byte	logical	blocks:	(6.29	MB/6.00	MiB)

[6894.292769]	sd	4:0:0:0:	[sdb]	Write	Protect	is	off

[6894.292786]	sd	4:0:0:0:	[sdb]	Mode	Sense:	0f	00	00	00

[6894.400842]	sd	4:0:0:0:	[sdb]	Write	cache:	enabled,	read	cache:	enabled,	doesn't	support	DPO	or	FUA

[6894.621878]		sdb:

[6894.848615]	sd	4:0:0:0:	[sdb]	Attached	SCSI	removable	disk

4.4	USB-DEVICE	Test

19

4.5	Ethernet	Test

This	sample	uses	Linux	socket	API	to	implement	simple	C/S	structure.	Two	programs	communicate	via	the	TCP/IP	stack.	The	pc
endpoint	uses	pc_server	as	service	and	the	development	board	uses	arm_client	as	clinet	to	communicate.

Hardware	connection

Insert	the	USB	disk	into	the	development	board,which	stored	the	example	in	the	4	chapters.Connect	the	linux	pc	and	development
board	with	net	cable.

Software	test

Place	the	program	in	the	linux	computer`s	home	directory,which	completed	in	example/network/pc_server	directory.	Set	a	static
IP	as	192.168.30.3	and	start	the	service，perform	below	step：

ifconfig	eth0	192.168.30.3

./pc_server

As	a	client，	the	development	board	also	need	to	set	a	static	IP	as	192.168.30.133，	then	start	the	arm_client	program，perform
below	step：

ifconfig	eth0	192.168.30.133

./arm_client	192.168.30.3

form	server:	Make	Your	idea	Real!

The	linux	computer	will	output	below:

REC	FROM：	192.168.30.133

4.5	Ethernet	Test

20

4.6	Audio	Test

This	example	demonstrates	how	to	use	arecord	command	to	record	audio	by	line	in	interface	and	use	aplay	to	play	audio	through
headphones.

Hardware	connection

Need	to	connect	the	computer`s	headphones	and	development	board	LINE-IN(J10)	interface	with	3.5mm	audio	AUX	cable.	The
HEADERPHONE	of	J9	interface	connect	to	a	earphone	.

Software	test

Before	excuting	arecord	command	to	record	audio,	the	computer	should	play	a	audio	file	first.	Press	ctrl	+c	to	exit	after	record
about	one	minute.

#	arecord	-f	cd	test.wav

To	excute	aplay	command	to	play	the	recorded	audio	file.

#	aplay	test.wav

4.6	Audio	Test

21

4.7	Serial	port	Test

This	example	demonstrates	how	to	test	the	serial	port	with	different	baund	rates.	There	are	three	serial	ports	can	be	used:

Serial	port Associate	device

J18 ttymxc0	(default	serial	port)

J19 ttymxc1

J21 ttymxc3

Hardware	connection

Insert	the	USB	disk	into	the	development	board,which	stored	the	example	in	the	4	chapters.	Connect	the	J19	interface	with	a	serial
cable.

Software	test

Set	the	device	of	ttymxc1	baund	rate	to	115200	and	send	"hello"	words.

cd	/run/media/sda/example/uart_test

./uart_test	-d	/dev/ttymxc0	-b	115200	-s	hello

Use	the	serial	tool	to	configure	,detail	parameter	as	follows	:

baund	rate：115200
data	bits:	8bit
parity：None
stop	bits：1bit
flow	control：Disable

The	serial	port	output:

hellohellohello

4.7	Serial	port	Test

22

4.8	SPI	Test

This	example	demonstrates	how	to	use	J17	interface	to	test	SPI	feature.

Hardware	connection

Insert	the	USB	disk	into	the	development	board,which	stored	the	example	in	the	4	chapters.Connect	the	linux	pc	and	development
board	with	net	cable.

The	SI	and	SO	pins	should	be	connected.

Software	test

Excute	the	spi_test	program	to	test	,which	located	in	example/spi.	Perform	below	step:

cd	/run/media/sda/example/spi

./spi_test

The	result	as	follows:

spi	mode:	0x0

bits	per	word:	8

max	speed:	500000	Hz	(500	KHz)

r_buf[0]	=	0		

r_buf[1]	=	1		

r_buf[2]	=	2		

r_buf[3]	=	3		

r_buf[4]	=	4		

r_buf[5]	=	5		

r_buf[6]	=	6		

r_buf[7]	=	7		

r_buf[8]	=	8		

r_buf[9]	=	9

4.8	SPI	Test

23

4.9	WIFI	Test

The	MYD-JX8MX	development	carries	two	WiFi/BT	module	,	one	is	82748-PR,	the	othear	one	is	6222B-PRB.

The	wifi	module	of	6222B-PRB	is	RTL8822B,	the	module	name	of	8274B-PR	is	QCA6714.

This	charpter	use	Client	mode	to	connenct	wifi,and	then	to	ping	the	website.

Hardware	connection

It	is	necessary	to	connect	an	antenna	to	U6	.

Software	test

The	WiFi	module	is	treated	as	a	clinet	device	in	Client	mode.It	can	connect	othear	routers.

View	the	wifi	status

The	kernel	had	been	loaded	the	wifi	module	drivers	automaticly	when	the	system	power-on.	If	the	driver	loaded	successfuly,	it
will	rename	wlan0	to	wlp1s0,	use	ifconfig	command	to	confirm.

ifconfig	wlp1s0

wlp1s0				Link	encap:Ethernet		HWaddr	80:5e:4f:b3:a5:20		

										BROADCAST	MULTICAST	DYNAMIC		MTU:1500		Metric:1

										RX	packets:0	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:0	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:1000	

										RX	bytes:0	(0.0	B)		TX	bytes:0	(0.0	B)

rfkill	command	can	view	the	wlan`s	status	，if	it	was	blocked，turn	on	（unblock	）	it.	perform	as	follows:

rfkill	list

0:	phy0:	wlan

								Soft	blocked:	yes

								Hard	blocked:	no

Turn	on	the	wlan

The	rfkill	unblock	0	or	rfkill	unblock	wlan	command	can	unblock	the	wlan.

rfkill	unblock	wlan

rfkill	list

0:	phy0:	wlan

								Soft	blocked:	no

								Hard	blocked:	no

Set	wifi	SSID	name	and	passwd

The	wifi	SSID	name	and	passwd	should	write	to	the	/etc/wpa_supplicant.conf	file	.	The	rootfs	system	provides	a	wpa_passphrase
command	to	do	it	.	Now	we	demonstrate	a	sample	to	connect	a	wifi	name	MYIR_TECH	and	passwd	is	myir@2016	as	below:

head	-n	4	/etc/wpa_supplicant.conf	>	/etc/wpa_supplicant.conf.tmp

wpa_passphrase	MYIR_TECH	myir@2016	>>	/etc/wpa_supplicant.conf.tmp

mv	/etc/wpa_supplicant.conf	/etc/wpa_supplicant.conf.bak

mv	/etc/wpa_supplicant.conf.tmp	/etc/wpa_supplicant.conf

Kill	wpa_supplicant	process

killall	wpa_supplicant

4.9	WIFI	Test

24

Connect	wifi

After	setting	SSID	name	and	passwd,it	is	time	to	connect	wifi	and	obtain	the	ip	address.	Perform	below	step:

wpa_supplicant	-B	-i	wlp1s0	-c	/etc/wpa_supplicant.conf	-D	nl80211

Obtain	the	ip	address:

udhcpc	-i	wlp1s0

Above	two	commands	excute	like	this：

#wpa_supplicant	-B	-i	wlp1s0	-c	/etc/wpa_supplicant.conf	-D	nl80211

Successfully	initialized	wpa_supplicant

#	udhcpc	-i	wlp1s0

udhcpc	(v1.24.1)	started

\wlp1s0:	authenticate	with	30:fc:68:9a:e8:99

Sending	discover...

wlp1s0:	send	auth	to	30:fc:68:9a:e8:99	(try	1/3)

wlp1s0:	authenticated

wlp1s0:	associate	with	30:fc:68:9a:e8:99	(try	1/3)

wlp1s0:	RX	AssocResp	from	30:fc:68:9a:e8:99	(capab=0x431	status=0	aid=2)

wlp1s0:	associated

IPv6:	ADDRCONF(NETDEV_CHANGE):	wlp1s0:	link	becomes	ready

Sending	discover...

Sending	select	for	192.168.40.107...

Lease	of	192.168.40.107	obtained,	lease	time	7200

/etc/udhcpc.d/50default:	Adding	DNS	223.5.5.5

/etc/udhcpc.d/50default:	Adding	DNS	201.104.111.114

Test	the	network

Checking	the	network	whether	connected	by	ping	the	baidu.

#	ping	www.baidu.com

PING	www.baidu.com	(61.135.169.121)	56(84)	bytes	of	data.

64	bytes	from	61.135.169.121:	icmp_seq=1	ttl=55	time=22.6	ms

64	bytes	from	61.135.169.121:	icmp_seq=2	ttl=55	time=27.9	ms

4.9	WIFI	Test

25

4.10	BT	Test

The	MYD-JX8MX	development	carries	a	WiFi/BT	module	of	82748-PR(U7)，	the	part	number	of	wifi	module	is	QCA6714.	The
BT	is	a	serial	module	that	connect	to	ttymxc2,this	charpter	will	connect	the	pc	endpoint	BT	device	with	development	board.

Hardware	connection

It	is	necessary	to	connect	an	antenna	to	U5	avoid	the	poor	signal.

Software	test

Attach	the	serial	port

Use	hciattach	command	to	attach	ttymxc2	serial	port,	perform	below	step:

#hciattach	/dev/ttymxc2	any	115200	-t120	flow

Setting	TTY	to	N_HCI	line	discipline

Device	setup	complete

Please	note:	if	the	wifi	module	on	the	baseboard	is	Fn-link	6222B,	the	command	should	be	replaced	as	follow:

rtk_hciattach	-n	-s	115200	ttymxc2	rtk_h5	&

Turn	on	wlan

The	rfkill	unblock	0	or	rfkill	unblock	wlan	command	can	unblock	the	wlan.	Before	unblock	you	should	block	it	first.

#rfkill	list

0:	phy0:	wlan

								Soft	blocked:	no

								Hard	blocked:	no

1:	hci0:	bluetooth

								Soft	blocked:	yes

								Hard	blocked:	no

#rfkill	block	wlan

#rfkill	unblock	wlan

#	rfkill	list

0:	phy0:	wlan

								Soft	blocked:	no

								Hard	blocked:	no

1:	hci0:	bluetooth

								Soft	blocked:	no

								Hard	blocked:	no

Connect	BT

bluetoothctl	command	can	control	the	BT	device	to	scan	or	connect.

Function Command

scan scan	on

view	the	scan	devices devices

pair pair	target_mac

connenct connect	target_mac

The	below	step	demostrate	how	to	connect	BT:

4.10	BT	Test

26

#	bluetoothctl

Agent	registered

[bluetooth]#	scan	on

Discovery	started

[CHG]	Controller	80:5E:4F:B3:CC:47	Discovering:	yes

[CHG]	Device	B0:FC:36:3B:CF:0E	RSSI:	-100

[CHG]	Device	B0:FC:36:3B:CF:0E	TxPower:	0

[bluetooth]#	devices

Device	B0:FC:36:3B:CF:0E	DESKTOP-5SG2HL8

[bluetooth]#	pair	B0:FC:36:3B:CF:0E

Attempting	to	pair	with	B0:FC:36:3B:CF:0E

[CHG]	Device	B0:FC:36:3B:CF:0E	Connected:	yes

Request	confirmation

[agent]	Confirm	passkey	903031	(yes/no):	yes

[DESKTOP-5SG2HL8]#

4.10	BT	Test

27

4.11	4G	Test

The	MYD-JX8MX	development	board	provides	a	MINI	PCI-E	slot	for	4G	module，this	slot	uses	USB	data	pin	to	communicate
with	4G	module.	We	support	EC20	driver	as	reference.

Hardware	connection

Insert	the	EC20	module	into	the	PCI-E	U29	slot
Connect	an	antenna	to	EC20	module
Insert	the	SIM	card	into	J25	slot
Insert	usb	disk	stored	the	04-source/ppp.tar.gz	on	the	root

Software	test

Check	the	4G	module

The	kernel	has	added	the	4G	protocol,	when	the	system	power	on	,	under	the	/dev	directory	you	can	see	the	ttyUSB*	nodes.

#	ls	-l	/dev/ttyUSB*

crw-rw----	1	root	dialout	188,	0	Apr		3	12:07	/dev/ttyUSB0

crw-rw----	1	root	dialout	188,	1	Apr		3	12:07	/dev/ttyUSB1

crw-rw----	1	root	dialout	188,	2	Apr		3	12:07	/dev/ttyUSB2

crw-rw----	1	root	dialout	188,	3	Apr		3	12:07	/dev/ttyUSB3

Copy	the	scripts	of	4G	to	the	rootfs

Firstly,	decompress	the	ppp.tar.gz	and	then	copy	the	ppp	directory	to	the	rootfs	root	path.

cd	/run/media/sda/

tar	-zxvf	ppp.tar.gz	

cd	ppp

tree

.

├──	etc

│			└──	ppp

│							├──	ip-up

│							└──	peers

│											├──	quectel-chat-connect

│											├──	quectel-chat-disconnect

│											└──	quectel-ppp

└──	sbin

				├──	chat

				└──	pppd

4	directories,	6	files

cp	*	/	-rf

Dial

Perform	this	command	：pppd	call	quectel-ppp	&

#	pppd	call	quectel-ppp	&

Debug	info	as	below	：

[1]	3325

root@imx8mqevk:~#	pppd	options	in	effect:

debug											#	(from	/etc/ppp/peers/quectel-ppp)

nodetach																#	(from	/etc/ppp/peers/quectel-ppp)

4.11	4G	Test

28

dump												#	(from	/etc/ppp/peers/quectel-ppp)

noauth										#	(from	/etc/ppp/peers/quectel-ppp)

user	test															#	(from	/etc/ppp/peers/quectel-ppp)

password	??????									#	(from	/etc/ppp/peers/quectel-ppp)

remotename	3gppp																#	(from	/etc/ppp/peers/quectel-ppp)

/dev/ttyUSB3												#	(from	/etc/ppp/peers/quectel-ppp)

115200										#	(from	/etc/ppp/peers/quectel-ppp)

lock												#	(from	/etc/ppp/peers/quectel-ppp)

connect	chat	-s	-v	-f	/etc/ppp/peers/quectel-chat-connect															#	(from	/etc/ppp/peers/quectel-ppp)

disconnect	chat	-s	-v	-f	/etc/ppp/peers/quectel-chat-disconnect									#	(from	/etc/ppp/peers/quectel-ppp)

nocrtscts															#	(from	/etc/ppp/peers/quectel-ppp)

modem											#	(from	/etc/ppp/peers/quectel-ppp)

hide-password											#	(from	/etc/ppp/peers/quectel-ppp)

novj												#	(from	/etc/ppp/peers/quectel-ppp)

novjccomp															#	(from	/etc/ppp/peers/quectel-ppp)

ipcp-accept-local															#	(from	/etc/ppp/peers/quectel-ppp)

ipcp-accept-remote														#	(from	/etc/ppp/peers/quectel-ppp)

ipparam	3gppp											#	(from	/etc/ppp/peers/quectel-ppp)

noipdefault													#	(from	/etc/ppp/peers/quectel-ppp)

ipcp-max-failure	30													#	(from	/etc/ppp/peers/quectel-ppp)

defaultroute												#	(from	/etc/ppp/peers/quectel-ppp)

usepeerdns														#	(from	/etc/ppp/peers/quectel-ppp)

noccp											#	(from	/etc/ppp/peers/quectel-ppp)

abort	on	(BUSY)

abort	on	(NO	CARRIER)

abort	on	(NO	DIALTONE)

abort	on	(ERROR)

abort	on	(NO	ANSWER)

timeout	set	to	30	seconds

send	(AT^M)

expect	(OK)

AT^M^M

OK

	--	got	it

send	(ATE0^M)

expect	(OK)

^M

ATE0^M^M

OK

	--	got	it

send	(ATI;+CSUB;+CSQ;+CPIN?;+COPS?;+CGREG?;&D2^M)

expect	(OK)

^M

^M

Quectel^M

EC20F^M

Revision:	EC20CEFDKGR06A04M2G^M

^M

SubEdition:	V09^M

^M

+CSQ:	29,99^M

^M

+CPIN:	READY^M

^M

+COPS:	0,0,"CHINA	MOBILE",7^M

^M

+CGREG:	0,1^M

^M

OK

	--	got	it

send	(AT+CGDCONT=1,"IP","3gnet",,0,0^M)

expect	(OK)

^M

^M

OK

	--	got	it

4.11	4G	Test

29

send	(ATD*99#^M)

expect	(CONNECT)

^M

^M

CONNECT

	--	got	it

Script	chat	-s	-v	-f	/etc/ppp/peers/quectel-chat-connect	finished	(pid	3334),	status	=	0x0

Serial	connection	established.

using	channel	1

Using	interface	ppp0

Connect:	ppp0	<-->	/dev/ttyUSB3

sent	[LCP	ConfReq	id=0x1	<asyncmap	0x0>	<magic	0x700123c2>	<pcomp>	<accomp>]

rcvd	[LCP	ConfReq	id=0x0	<asyncmap	0x0>	<auth	chap	MD5>	<magic	0x360a419a>	<pcomp>	<accomp>]

sent	[LCP	ConfAck	id=0x0	<asyncmap	0x0>	<auth	chap	MD5>	<magic	0x360a419a>	<pcomp>	<accomp>]

rcvd	[LCP	ConfAck	id=0x1	<asyncmap	0x0>	<magic	0x700123c2>	<pcomp>	<accomp>]

rcvd	[LCP	DiscReq	id=0x1	magic=0x360a419a]

rcvd	[CHAP	Challenge	id=0x1	<4162163c6dc48a1c2b2e7cd5b23aaa32>,	name	=	"UMTS_CHAP_SRVR"]

sent	[CHAP	Response	id=0x1	<8e39e62928ffd0b59b8fdbd4a2d2fb97>,	name	=	"test"]

rcvd	[CHAP	Success	id=0x1	""]

CHAP	authentication	succeeded

CHAP	authentication	succeeded

sent	[IPCP	ConfReq	id=0x1	<addr	0.0.0.0>	<ms-dns1	0.0.0.0>	<ms-dns2	0.0.0.0>]

rcvd	[IPCP	ConfReq	id=0x0]

sent	[IPCP	ConfNak	id=0x0	<addr	0.0.0.0>]

rcvd	[IPCP	ConfNak	id=0x1	<addr	100.72.97.144>	<ms-dns1	211.137.58.20>	<ms-dns2	211.137.64.163>]

sent	[IPCP	ConfReq	id=0x2	<addr	100.72.97.144>	<ms-dns1	211.137.58.20>	<ms-dns2	211.137.64.163>]

rcvd	[IPCP	ConfReq	id=0x1]

sent	[IPCP	ConfAck	id=0x1]

rcvd	[IPCP	ConfAck	id=0x2	<addr	100.72.97.144>	<ms-dns1	211.137.58.20>	<ms-dns2	211.137.64.163>]

Could	not	determine	remote	IP	address:	defaulting	to	10.64.64.64

local		IP	address	100.72.97.144

remote	IP	address	10.64.64.64

primary			DNS	address	211.137.58.20

secondary	DNS	address	211.137.64.163

Script	/etc/ppp/ip-up	started	(pid	3346)

Script	/etc/ppp/ip-up	finished	(pid	3346),	status	=	0x0

Test	the	network

Checking	the	network	whether	connected	by	ping	the	baidu.

#ping	www.baiud.com

PING	www.a.shifen.com	(111.13.100.92)	56(84)	bytes	of	data.

64	bytes	from	111.13.100.92:	icmp_seq=1	ttl=53	time=78.5	ms

64	bytes	from	111.13.100.92:	icmp_seq=2	ttl=53	time=63.9	ms

The	D23	led	will	be	on	if	dailed	successful,	and	check	the	ppp0	status.

#	ifconfig	ppp0

ppp0						Link	encap:Point-to-Point	Protocol		

										inet	addr:100.72.97.144		P-t-P:10.64.64.64		Mask:255.255.255.255

										UP	POINTOPOINT	RUNNING	NOARP	MULTICAST		MTU:1500		Metric:1

										RX	packets:17	errors:0	dropped:0	overruns:0	frame:0

										TX	packets:23	errors:0	dropped:0	overruns:0	carrier:0

										collisions:0	txqueuelen:3	

										RX	bytes:1106	(1.0	KiB)		TX	bytes:1413	(1.3	KiB)

4.11	4G	Test

30

4.11	4G	Test

31

4.12	RTC	Test

This	sample	demostrates	how	to	write	and	read	the	RTC	time	,as	well	as	when	the	system	power	off	for	a	while	,	the	system	time
whether	synchronize	to	the	RTC.

Hardware	connection

Install	RTC	battery	into	J16.

Software	test

RTC	write	and	read	test

1.View	the	system	time

#	date				

Wed	Apr		3	12:09:40	UTC	2019

2.Update	the	system	time	to	RTC

hwclock	-w

3.View	the	time	of	RTC

#	hwclock	

Wed	Apr		3	12:11:09	2019		0.000000	seconds

4.Set	a	system	time

#date	-s	20170402

Sun	Apr		2	00:00:00	UTC	201

5.Update	the	RTC`s	time	to	system

#hwclock	-s

#date

Wed	Apr		3	12:13:10	UTC	2019

Perform	RTC	synchronization	system	time	test

The	above	process	has	set	the	time	for	the	RTC.	Now	power	off	first	for	a	minute,	then	power	on	,	the	system	time	will	be	update
by	RTC	.

#	date

Wed	Apr		3	12:14:20	UTC	2019

4.12	RTC	Test

32

4.13	M.2	Test

M.2	interface	work	on	the	NVME	agreement，this	sample	use	nvme2280	SSD	hard	disk	of	TOSHIBA	RC100	for	validation
purpose.

Hardware	connection

Insert	the	SSD	into	J13	interface.

Software	test

The	Kernel	has	added	the	NVME	protocol	by	default,so	we	can	use	SSD	without	configure	any	more.

Check	the	ssd	is	mounted	By	below	command	to	check	whether	it	mounted	or	not.

#df	-h

Filesystem						Size		Used	Avail	Use%	Mounted	on

/dev/root							6.4G		1.9G		4.2G		31%	/

devtmpfs								237M		4.0K		237M			1%	/dev

tmpfs											494M					0		494M			0%	/dev/shm

tmpfs											494M		8.6M		485M			2%	/run

tmpfs											494M					0		494M			0%	/sys/fs/cgroup

tmpfs											494M		4.0K		494M			1%	/tmp

tmpfs											494M		144K		494M			1%	/var/volatile

/dev/nvme0n1p1		110G		560M		104G			1%	/run/media/nvme0n1p1			

/dev/mmcblk0p1		500M			21M		480M			5%	/run/media/mmcblk0p1

tmpfs												99M			88K			99M			1%	/run/user/0

#	cat	/proc/mounts		|	grep	nvme

/dev/nvme0n1p1	/run/media/nvme0n1p1	ext4	rw,relatime,data=ordered	0	0

Write	and	read	SSD

Write	a	hello	strings	to	the	test.txt	on	the	SSD	mount	point,	and	then	read	it,compare	with	what	bas	been	written.

cd	/run/media/nvme0n1p1

echo	hello	>	test.txt

cat	test.txt

hello

4.13	M.2	Test

33

4.14	HDMI	Test

This	charpter	will	use	gst-play	command	to	play	video	file	on	the	display	of	HDMI.

Hardware	connection

Connect	the	HDMI	port	and	display	with	HDMI	cable
Insert	usb	disk	with	a	video	file

Software	test

The	gst-play	command	can	use	to	play	video	,	below	step	will	play	a	4K	file	on	the	display.

gst-launch-1.0			playbin	uri=file:///run/media/sda/LG.SUPER.UHDTV_4K.HDR.DEMO_New.York.ts	audio-sink="alsasink	

	device=hw:2,0		sync=false	async=false"

Additionally:

The	resolution	of	HDMI	can	be	set	at	the	uboot	stage	by	the	mmcargs	parameter,	perform	below	step:

1.	 Press	any	key	during	the	power	on	and	enter	the	uboot	cmdline
2.	 add	video	parameter	to	mmcargs	and	save
3.	 re-power	the	baord

Set	the	HDMI	resolution	to	1080P	as	below:

printenv	mmcargs

mmcargs=setenv	bootargs	console=${console}	root=${mmcroot}

setenv	mmcargs	'mmcargs=setenv	bootargs	console=${console}	root=${mmcroot}	video=HDMI-A-1:1920x1080-32@60'

save

4.14	HDMI	Test

34

4.15	MIPI-DSI(LVDS)	Test

The	U37	conponent	on	the	development	board	is	used	to	transform	MIPI-DSI	to	LVDS	signal.	the	system	supports	DCSS	or
LCDIF	to	output	.This	sample	will	use	10.1	inch	screen	to	test	DCSS	and	LCDIF	output,the	interface	is	J20.

Hardware	connection

Connect	the	10.1	inch	screen	to	the	J20	FPC	interface.

Software	test

About	configure	file

There	are	some	configuration	files	ending	with	.dtb	in	/run/media/mmcblk0p1/	dirctory.If	the	files	are	not	existing,	you	can	find
them	in	02-Images/imx8mqevk-xddr	and	copy	them	into	the	/run/emdia/mmcblk0p1	directory.

File	name Fearture

myb-fsl-imx8mq-evk.dtb HDMI	use	DCSS

myb-fsl-imx8mq-evk-dcss-tc358775-10.dtb 10.1	inch	screen	with	DCSS

myb-fsl-imx8mq-evk-lcdif-tc358775-10.dtb 10.1	inch	screen	with	LCDIF

myb-fsl-imx8mq-evk-tc358775-dual-display-10.dtb HDMI	with	DCSS，lvds	screen	with	LCDIF

At	uboot	stage	the	value	of	fdt_file	will	decide	to	use	which	dtb	file	for	the	kernel.	In	yhis	sample	,we	set	the	fdt_file	value	to
myb-fsl-imx8mq-evk-lcdif-tc358775-10.dtb	for	testing.

Enter	the	uboot	and	set	the	fdt_file	value	as	below:

1.Press	any	key

2.Power	on	the	board	and	enter	the	cmdline

3.Set	fdt_file	value	and	save

4.Re-power	the	board

Set	and	save	the	fdt_file	value	during	uboot	stage	as	below：

setenv	fdt_file	myb-fsl-imx8mq-evk-lcdif-tc358775.dtb

save

Now	you	will	see	the	10.1	inch	screen	display	the	weston.

4.15	MIPI-DSI	Test

35

4.16	MIPI-CSI	Test

The	J26	and	J2	on	the	development	board	are	equipped	with	two	MIPI-CSI	interfaces,	and	the	camera	module(MY-CAM003)	is
used	for	preview	and	taking	photos	to	verify	the	MIPI-CSI	function.

Hardware	connection

Connect	the	camera	module	to	J26	interface.
Insert	the	USB	disk	into	the	development	board,which	stored	the	example	in	the	4	chapters.

Software	test

The	gst-play	can	use	to	preview	and	the	v4l2grab	can	use	to	take	phote	test.

There	are	two	CSI	interfaces	on	the	development	board,	J26	is	connected	to	the	/dev/video0	node	,	J2	is	connected	to	the
/dev/video1	node.

Preview

By	using	J26	to	preview,	perform	as	below:

gst-launch-1.0	v4l2src	device=/dev/video0	!	'video/x-raw,width=640,height=480,framerate=30/1'	!	glimagesink

Taking	photos

The	v4l2grab	is	located	in	the	example/csi	directory	on	the	usb	disk.It	can	be	used	to	take	photo	and	save	the	file	on	the	CSI
directory,perform	as	below:

cd	/run/media/sda/example/csi

./v4l2grab	-d	/dev/video0	-W	640	-H	480	-I	30	-o	picture.jpg

Supported	palettes:	

0:	YUYV	(YUYV	4:2:2)	

1:	RGB3	(RGB3)	

2:	BGR3	(BGR3)	

3:	YU12	(YU12)	

4:	YV12	(YV12)	

Supported	framesize:	

0:	witdth	=	640	height	=	480	

1:	witdth	=	720	height	=	480	

2:	witdth	=	1280	height	=	720	

3:	witdth	=	1920	height	=	1080	

4:	witdth	=	2592	height	=	1944	

5:	witdth	=	0	height	=	0	

[189.228012]	alloc_contig_range:	[68c00,	68c96)	PFNs	busy

[189.239325]	alloc_contig_range:	[68c00,	68c96)	PFNs	busy

[189.282109]	ov5640_mipi	0-003c:	s_stream:	1

[189.486510]	ov5640_mipi	0-003c:	s_stream:	0

Dual	preview

When	the	J26	and	J2	all	connencted	with	the	camera	modules,	the	gst-play	can	dual	camera	preview	,perform	as	below:

gst-launch-1.0	v4l2src	device=/dev/video0	!	'video/x-raw,width=640,height=480,framerate=30/1'	!	glimagesink	&	g

st-launch-1.0	v4l2src	device=/dev/video1	!	'video/x-raw,width=640,height=480,framerate=30/1'	!	glimagesink

4.16	MIPI-CSI	Test

36

4.16	MIPI-CSI	Test

37

5.	QT	application	development

Qt	is	a	cross-platform	graphical	application	development	framework	that	is	applied	to	devices	and	platforms	of	different	sizes,	and
is	available	in	different	copyright	versions	for	users	to	choose	from.	MYD-JX8MX	uses	Qt	5.9.4	for	application	development.	In
Qt	application	development,	it	is	recommended	to	use	the	QtCreator	integrated	development	environment,	you	can	develop	Qt
applications	under	Linux	PC,	and	automatically	cross-compile	into	the	ARM	architecture	of	the	development	board.

This	chapter	uses	the	SDK	tool	built	by	Yocto	as	a	cross-compilation	system	to	quickly	develop	graphics	applications	with
QtCreator.	Before	starting	this	chapter,	please	complete	the	Yocto	build	process	in	Chapter	3.	Or	use	the	precompilation	provided
on	the	CD	SDK	toolkit.	Before	starting	this	chapter,	please	install	the	application	SDK	development	tool.

5.	QT	application	development

38

5.1	Install	Qt	toolchain	and	QtCreator

Install	qt	toolchain

The	QT	toolchain	locates	in	03-Tools/Toolchain/fsl-imx-xwayland-glibc-x86_64-meta-toolchain-qt5-aarch64-toolchain-4.9.88-
2.0.0.sh

Install	the	toolchain	as	below：

./fsl-imx-xwayland-glibc-x86_64-meta-toolchain-qt5-aarch64-toolchain-4.9.88-2.0.0.sh

Result：

NXP	i.MX	Release	Distro	SDK	installer	version	4.9.88-2.0.0

==

Enter	target	directory	for	SDK	(default:	/opt/fsl-imx-xwayland/4.9.88-2.0.0):	/home/duxy/opt_qt

You	are	about	to	install	the	SDK	to	"/home/duxy/opt_qt".	Proceed[Y/n]?	y

Extracting	SDK...

...

.......done

Setting	it	up...done

SDK	has	been	successfully	set	up	and	is	ready	to	be	used.

Each	time	you	wish	to	use	the	SDK	in	a	new	shell	session,	you	need	to	source	the	environment	setup	script	e.g.

	$.	/home/duxy/opt_qt/environment-setup-aarch64-poky-linux

Install	QtCreator

The	QtCreator	installation	package	is	a	binary	program	that	can	be	installed	directly.

The	toolchain	can	download	through	the	yocto	and	also	can	find	in	the	03-Tools/Qt/qt-opensource-linux-x64-5.9.4.run

cd	03-Tools/Qt/

chmod	a+x	qt-opensource-linux-x64-5.9.4.run		

	./qt-opensource-linux-x64-5.9.4.run

Keep	clicking	the	next	step,	install	by	default,	or	choose	another	directory	to	install.	In	this	example,	select	the	installation	and
then	the	user	directory.

Start	the	program	with	following	command.

~/Qt5.9.4/Tools/QtCreator/bin/qtcreator.sh

5.1	Install	Qt	toolchain	and	QtCreator

39

5.2	Configure	QtCreator

It	is	necessary	to	configure	the	toolchain	in	QtCreator	if	your	want	the	program	can	run	on	the	development	baord.

perform	below	command	to	start	the	qtcreate.

~/opt/Qt5.9.4/Tools/QtCreator/bin/qtcreator.sh

Make	a	new	configure：

Configure	a	gcc	and	g++	compile
Configure	a	QTversion
Configure	a	QTdebug
Add	a	new	device
Create	a	kit	and	add	the	above	4	items	together	to	compile	the	QT	configuration

1.Configure	GCC	and	G++

After	started	Qtcreator,	first	open	a	sample,	make	the	"project"	become	configurable,	and	then	click	"Project"	->	Manage	kits,	as
shown	below.

Figure	5-2-1	qtcreate	interface

Then	go	to	"Options"	->	Compiler	->	"Add"	->	GCC->C/C++.	The	process	is	as	follows:

Figure	5-2-2	option	interface

Then	configure	C	and	C++,	you	need	to	fill	in	the	"name",	"compiler	path",	"abi"	select	arm	architecture

5.2	Configure	QtCreate

40

Figure	5-2-3	C++	configure

The	C++	compiler	path	is:

/home/duxy/opt_qt/sysroots/x86_64-pokysdk-linux/usr/bin/aarch64-poky-linux-musl/aarch64-poky-linux-musl-g++

The	C	compiler	path	is:

/home/duxy/opt_qt/sysroots/x86_64-pokysdk-linux/usr/bin/aarch64-poky-linux-musl/aarch64-poky-linux-musl-gcc

2.Configure	QT	versions

"Option"->	Qt	Versions	->	"Add"，select	the	following	file.

/home/duxy/opt_qt/sysroots/x86_64-pokysdk-linux/usr/bin/qt5/qmake

Figure	5-2-4	QTversion	configure

5.2	Configure	QtCreate

41

3.Configure	QT	debug	"Option"->"Debuggers"->"add"	，fill	name	and	path.

path	：

/home/duxy/opt_qt/sysroots/x86_64-pokysdk-linux/usr/bin/aarch64-poky-linux-musl/aarch64-poky-linux-musl-gdb

Figure	5-2-5	QTdebug	configure

4.Add	new	device	"device"->"add"->"general	Linux	device"	Then	configure	the	name,	IP	address,	login	user	name,	account
number	and	password.

Figure	5-2-6	device	configure01

5.2	Configure	QtCreate

42

Figure	5-2-7	device	configure01

5.Create	kit

"Build	and	run"	->	build	kit	(kit)	->	"add".

Here	you	need	to	combine	the	four-step	configuration	files	of	the	appeal	and	fill	in	the	sysroot:

/home/duxy/opt_qt/sysroots

Figure	5-2-8	kit	configure

Finally	configure	as	follows:

5.2	Configure	QtCreate

43

Figure	5-2-9	kit	configure	complete

5.2	Configure	QtCreate

44

5.3	Test	qt	application

This	example	compiles	a	QT	demo	and	runs	on	the	development	board.

The	QT	example	source	code	is	located	in	04-Source/borderlayout.tar.gz.

1.Decompress	file

cd	04-Source

tar	-zxvf	borderlayout.tar.gz

2.Qtcreator	compile	demo

Start	Qtcreator

~/opt/Qt5.9.4/Tools/QtCreator/bin/qtcreator.sh

"Welcome"->open	project	->select	the	borderlayout.pro	project->"Project"->select	mx8m-kit->compile

Then	go	to	"Options"	->	Compiler	->	"Add"	->	GCC->C/C++.	The	process	is	as	follows:

Figure	5-3-1	compile	qt

After	the	sample	is	completed,	the	build-borderlayout-mx8m_kit-Debug	directory	exists	in	the	same	directory.

The	borderlayout	in	the	directory	is	an	executable	file.	After	copying	this	file	to	the	root	directory	of	the	USB	disk,	insert	it	into
the	development	board	and	power	it	on.

3.Start	the	qt	demo

5.3	Test	qt	application

45

Power	on	and	excute	the	follow	file:

./run/media/sda/borderlayout

We	can	see	this	on	the	display

Figure	5-3-2	excute	qt

5.3	Test	qt	application

46

6.	Update	system

The	MYD-JX8MX	series	development	board	provides	two	ways	to	update	Linux	systems,	UUU	updates	and	SD	card	updates.

UUU	update:

Switch	the	Download	mode	and	use	the	UUU	tool	to	program	the	file	into	the	EMMC	of	the	development	board.	Need	to	connect
the	PC	to	the	development	board.

SD	card	update:

Set	the	board	to	boot	form	SD	card	.	After	booting	up,	program	the	file	from	the	SD	card	to	the	EMMC	of	the	development	board.
It	it	the	way	to	be	used	for	mass	production	.

6.	Update	system

47

6.1	UUU	update	system

The	Universal	Update	Utility	(UUU)	runs	on	a	Windows	or	Linux	OS	host	and	is	used	to	download	images	to	different	devices	on
an	i.MX	board.

Programing	process：

1.	 Set	the	development	board	to	download	mode.

2.	 Type	the	command	of	program.

3.	 Set	the	internal	mode	after	programing	successful.

1.PC	preparation

Programing	the	image	requires	the	following	file,	which	can	be	generated	after	yocto	is	compiled.

about	"imx-uboot	bootstrap，	entirely	image	suffix	sdcard.bz2"

File Compile	name

imx-uboot imx-boot-imx8mqevk-sd.bin-flash_evk

sdcard fsl-image-qt5-validation-imx-imx8mqevk.sdcard.bz2

The	fsl-image-qt5-validation-imx-imx8mqevk.sdcard.bz2	needs	to	be	decompressed	first.

Put	03-Tools/UUU/UUU_MYD-JX8MQ6-8E2D-130-E	in	the	root	directory	of	the	D	disk	in	the	window,	and	replace	imx-boot-
imx8mqevk-sd.bin-flash_evk	and	fsl-image-qt5-validation-imx-imx8mqevk.sdcard	image.

2.Development	board	preparation

Set	the	SW1	to	EMMC	startup	and	SW2	to	download	mode	when	the	board	power	off.

SW1	boot	dev（1~4） Boot	device

0010 EMMC	startup

1100 SD	card	startup

SW2	boot	mode	（1~2） Boot	mode

00 fuse	mode（internal	start	priority）

10 download	mode

01 internal	mode

11 reserve

If	you	want	to	program	the	image	to	emmc，set	SW1	to	0010	and	set	SW2	to	10	.

6.1	UUU	update	system

48

Figure	6-1	set	EMMC	download	mode

Connect	one	end	of	the	Type-C	to	the	PC,	the	other	end	to	the	typeC	interface	of	the	board,	one	end	of	the	serial	cable	connect	to
the	PC,	and	the	other	end	connect	to	the	J18	serial	port	(the	serial	port	only	plays	the	role	of	viewing	the	log)

3.Start	programing

Before	powering	up,	execute	the	following	command	in	the	window	cmd	command	line.

Figure	6-2	run	the	UUU	command

After	power	on

Figure	6-3	begin	to	program

Finally	program	successfully.

Figure	6-4	program	successfully

When	the	programming	is	completed.	Set	the	boot	mode	change	to	internal	mode	(01)	.	Now	the	board	is	ready	for	normal	start
up.

6.1	UUU	update	system

49

6.2	SD	card	update	system

To	program	images	with	the	mfg	tool,	you	must	have	a	computer	with	one	board,	which	is	not	suitable	for	mass	production.	Here
is	how	to	use	the	SD	card	for	programing.	The	SD	card	programing	steps	are:

1.Program	the	image	to	the	SD	card

2.Insert	the	sd	card	into	the	development	board	and	set	the	boot	mode	to	SD	boot	first.

3.Power	on	and	program	the	image	,	the	simple	progress	of	qt	display	on	the	screen.

Introduce	how	to	create	SD	card	update	image

Preparing	files：

The	imx-boot,	kernel,	dtb	and	rootfs	which	want	to	be	programed	into	EMMC.

According	to	the	EMMC	size,	decompress	03-Tools/MksdcardTool/Mksdcard_MYD-JX8MQ6-8E1D-130-E.tar.gz	or
Mksdcard_MYD-JX8MQ6-8E2D-130-E.tar.gz.

tar	-zxf	Mksdcard_MYD-JX8MQ6-8E2D-130-E.tar.gz

Contents	as	follows:

.

├──	factory							

├──	firmware

├──	lib

├──	mfgimages			#stored	image	prepare	to	pgrgram	into	emmc

├──	mkfs.ext3

├──	mkfs.ext4

├──	mkfs.ext4.real

├──	myir_mkscard.sh						#the	scripts	to	create	the	image

├──	ppp

├──	README.txt

└──	rootfs

After	replacing	the	image	you	need	to	program	into	mfgimages,	you	can	execute	below	command.

sudo	./myir_mkscard.sh

After	the	scripts	completed	the	image	will	generated	JX8MX-Update-20190602144250-2gddr.rootfs.scard.

Program	to	the	SD	card	with	dd	if	command	,	or	program	it	to	the	SD	card	with	03-Tools/MksdcardTool/Win32DiskImager-1.0.0-
binary.zip.

Insert	the	SD	card	into	the	board,	set	the	SD	card	to	boot.	It	will	run	the	burn_emmc.sh	script	to	program	the	image	under
mfgimages	to	EMMC	automaticly.

6.2	SD	card	update	sytem

50

Appendix	1	Warranty	&	Technical	Support	Services
MYIR	Tech	Limited	is	a	global	provider	of	ARM	hardware	and	software	tools,	design	solutions	for	embedded	applications.	We
support	our	customers	in	a	wide	range	of	services	to	accelerate	your	time	to	market.

MYIR	is	an	ARM	Connected	Community	Member	and	work	closely	with	ARM	and	many	semiconductor	vendors.	We	sell
products	ranging	from	board	level	products	such	as	development	boards,	single	board	computers	and	CPU	modules	to	help	with
your	evaluation,	prototype,	and	system	integration	or	creating	your	own	applications.	Our	products	are	used	widely	in	industrial
control,	medical	devices,	consumer	electronic,	telecommunication	systems,	Human	Machine	Interface	(HMI)	and	more	other
embedded	applications.	MYIR	has	an	experienced	team	and	provides	custom	design	services	based	on	ARM	processors	to	help
customers	make	your	idea	a	reality.

The	contents	below	introduce	to	customers	the	warranty	and	technical	support	services	provided	by	MYIR	as	well	as	the	matters
needing	attention	in	using	MYIR’s	products.

Service	Guarantee

MYIR	regards	the	product	quality	as	the	life	of	an	enterprise.	We	strictly	check	and	control	the	core	board	design,	the	procurement
of	components,	production	control,	product	testing,	packaging,	shipping	and	other	aspects	and	strive	to	provide	products	with	best
quality	to	customers.	We	believe	that	only	quality	products	and	excellent	services	can	ensure	the	long-term	cooperation	and
mutual	benefit.

Price

MYIR	insists	on	providing	customers	with	the	most	valuable	products.	We	do	not	pursue	excess	profits	which	we	think	only	for
short-time	cooperation.	Instead,	we	hope	to	establish	long-term	cooperation	and	win-win	business	with	customers.	So	we	will
offer	reasonable	prices	in	the	hope	of	making	the	business	greater	with	the	customers	together	hand	in	hand.

Delivery	Time

MYIR	will	always	keep	a	certain	stock	for	its	regular	products.	If	your	order	quantity	is	less	than	the	amount	of	inventory,	the
delivery	time	would	be	within	three	days;	if	your	order	quantity	is	greater	than	the	number	of	inventory,	the	delivery	time	would
be	always	four	to	six	weeks.	If	for	any	urgent	delivery,	we	can	negotiate	with	customer	and	try	to	supply	the	goods	in	advance.

Technical	Support

MYIR	has	a	professional	technical	support	team.	Customer	can	contact	us	by	email	(support@myirtech.com),	we	will	try	to	reply
you	within	48	hours.	For	mass	production	and	customized	products,	we	will	specify	person	to	follow	the	case	and	ensure	the
smooth	production.

After-sale	Service

MYIR	offers	one	year	free	technical	support	and	after-sales	maintenance	service	from	the	purchase	date.	The	service	covers:

1.	 Technical	support	service

	*	MYIR	offers	technical	support	for	the	hardware	and	software	materials	which	have	provided	to	customers;

	*	To	help	customers	compile	and	run	the	source	code	we	offer;

	*	To	help	customers	solve	problems	occurred	during	operations	if	users	follow	the	user	manual	documents;

	*	To	judge	whether	the	failure	exists;

	*	To	provide	free	software	upgrading	service.

However,	the	following	situations	are	not	included	in	the	scope	of	our	free	technical	support	service:

				*	Hardware	or	software	problems	occurred	during	customers’	own	development;

				*	Problems	occurred	when	customers	compile	or	run	the	OS	which	is	tailored	by	themselves;

				*	Problems	occurred	during	customers’	own	applications	development;

Appendix	Warranty	&	Technical	Support	Services

51

				*	Problems	occurred	during	the	modification	of	MYIR’s	software	source	code.

1.	 After-sales	maintenance	service

The	products	except	LCD,	which	are	not	used	properly,	will	take	the	twelve	months	free	maintenance	service	since	the	purchase
date.	But	following	situations	are	not	included	in	the	scope	of	our	free	maintenance	service:

*	The	warranty	period	is	expired;

*	The	customer	cannot	provide	proof-of-purchase	or	the	product	has	no	serial	number;

*	The	customer	has	not	followed	the	instruction	of	the	manual	which	has	caused	the	damage	the	product;

*	Due	to	the	natural	disasters	(unexpected	matters),	or	natural	attrition	of	the	components,

or	unexpected	matters	leads	the	defects	of	appearance/function;

*	Due	to	the	power	supply,	bump,	leaking	of	the	roof,	pets,	moist,	impurities	into	the	boards,

all	those	reasons	which	have	caused	the	damage	of	the	products	or	defects	of	appearance;

*	Due	to	unauthorized	weld	or	dismantle	parts	or	repair	the	products	which	has	caused	

the	damage	of	the	products	or	defects	of	appearance;

*	Due	to	unauthorized	installation	of	the	software,	

system	or	incorrect	configuration	or	computer	virus	which	has	caused	the	damage	of	products.

Warm	tips:

1.	 MYIR	does	not	supply	maintenance	service	to	LCD.	We	suggest	the	customer	first	check	the	LCD	when	receiving	the	goods.
In	case	the	LCD	cannot	run	or	no	display,	customer	should	contact	MYIR	within	7	business	days	from	the	moment	get	the
goods.

2.	 Please	do	not	use	finger	nails	or	hard	sharp	object	to	touch	the	surface	of	the	LCD.

3.	 MYIR	suggests	user	purchasing	a	piece	of	special	wiper	to	wipe	the	LCD	after	long	time	use,	please	avoid	clean	the	surface
with	fingers	or	hands	to	leave	fingerprint.

4.	 Do	not	clean	the	surface	of	the	screen	with	chemicals.

5.	 Please	read	through	the	product	user	manual	before	you	using	MYIR’s	products.

6.	 For	any	maintenance	service,	customers	should	communicate	with	MYIR	to	confirm	the	issue	first.	MYIR’s	support	team
will	judge	the	failure	to	see	if	the	goods	need	to	be	returned	for	repair	service,	we	will	issue	you	RMA	number	for	return
maintenance	service	after	confirmation.

1.	 Maintenance	period	and	charges

MYIR	will	test	the	products	within	three	days	after	receipt	of	the	returned	goods	and	inform	customer	the	testing	result.
Then	we	will	arrange	shipment	within	one	week	for	the	repaired	goods	to	the	customer.	For	any	special	failure,	we	will
negotiate	with	customers	to	confirm	the	maintenance	period.
For	products	within	warranty	period	and	caused	by	quality	problem,	MYIR	offers	free	maintenance	service;	for	products
within	warranty	period	but	out	of	free	maintenance	service	scope,	MYIR	provides	maintenance	service	but	shall	charge
some	basic	material	cost;	for	products	out	of	warranty	period,	MYIR	provides	maintenance	service	but	shall	charge
some	basic	material	cost	and	handling	fee.

2.	 Shipping	cost

During	the	warranty	period,	the	shipping	cost	which	delivered	to	MYIR	should	be	responsible	by	user;	MYIR	will	pay	for	the
return	shipping	cost	to	users	when	the	product	is	repaired.	If	the	warranty	period	is	expired,	all	the	shipping	cost	will	be
responsible	by	users.

1.	 Products	Life	Cycle

MYIR	will	always	select	mainstream	chips	for	our	design,	thus	to	ensure	at	least	ten	years	continuous	supply;	if	meeting	some
main	chip	stopping	production,	we	will	inform	customers	in	time	and	assist	customers	with	products	updating	and	upgrading.

Value-added	Services

Appendix	Warranty	&	Technical	Support	Services

52

1.	 MYIR	provides	services	of	driver	development	base	on	MYIR’s	products,	like	serial	port,	USB,	Ethernet,	LCD,	etc.
2.	 MYIR	provides	the	services	of	OS	porting,	BSP	drivers’	development,	API	software	development,	etc.
3.	 MYIR	provides	other	products	supporting	services	like	power	adapter,	LCD	panel,	etc.
4.	 ODM/OEM	services.

MYIR	Tech	Limited

Room	1306,	Wensheng	Center,	Wenjin	Plaza,

North	Wenjin	Road,	Luohu	District,	Shenzhen,	China	518020

Support	Email:	support@myirtech.com

Sales	Email:	sales@myirtech.com

Phone:	+86-755-22984836

Fax:	+86-755-25532724

Website:	www.myirtech.com

Appendix	Warranty	&	Technical	Support	Services

53

mailto:support@myirtech.com
mailto:sales@myirtech.com
http://www.myirtech.com/

	Introduction
	1. Software resources
	2. Deploy development environment
	3. Yocto system
	3.1 Yocto compile complete image
	3.2 Yocto compile U-Boot
	3.3 Yocto compile Kernel
	3.4 Yocto generate SDK tools

	4. Linux application development
	4.1 GPIO-KEY Test
	4.2 GPIO-LED Test
	4.3 USB-HOST Test
	4.4 USB-DEVICE Test
	4.5 Ethernet Test
	4.6 Audio Test
	4.7 Serial port Test
	4.8 SPI Test
	4.9 WIFI Test
	4.10 BT Test
	4.11 4G Test
	4.12 RTC Test
	4.13 M.2 Test
	4.14 HDMI Test
	4.15 MIPI-DSI Test
	4.16 MIPI-CSI Test

	5. QT application development
	5.1 Install Qt toolchain and QtCreator
	5.2 Configure QtCreate
	5.3 Test qt application

	6. Update system
	6.1 UUU update system
	6.2 SD card update sytem

	Appendix Warranty & Technical Support Services

