
MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 1 -

MYD-Y6ULX Linux System

Development Guide

File Status：

[] Draft

[√] Release

FILE ID： MYIR-MYD-Y6ULX-SW-DG-ZH-L5.4.3

VERSION： V2.0.1

AUTHOR： Alex

CREATED： 2020-08-04

UPDATED： 2021-01-18

Copyright © MYIR Electronics Limited 2011-2020 all rights reserved.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 2 -

Revision History

VERSION AUTHOR PARTICIPANT DATE DESCRIPTION

V2.0.1 Alex 20210118 Initial Version: u-boot2019.03,

Linux Kernel 5.4.3，Yocto 3.0.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 3 -

CONTENT

MYD-Y6ULX Linux System Development Guide......................................- 1 -

Revision History...- 2 -

CONTENT...- 3 -

1. Overview..- 5 -

1.1. Software Resources...- 6 -

1.2. Document Resources... - 6 -

2. Development Environment..- 7 -

2.1. Hardware environment..- 7 -

2.2. Software environment..- 8 -

2.1.1. Get information...- 8 -

2.1.2. Setting up a compilation environment...- 8 -

2.1.3. Install the SDK Customized by MYIR.. - 10 -

3. Build the File System with Yocto... - 13 -

3.1. Introduction..- 13 -

3.2. Get the Source Code..- 14 -

3.2.1. Get Compressed Source Code from CD Image............................. - 14 -

3.2.2. Get Source Code from GitHub..- 14 -

3.3. Build Development Board Image... - 16 -

3.4. Build SDK (optional)... - 19 -

4. How to Burn System Image.. - 20 -

4.1. How to Flash with UUU... - 20 -

4.2. How to Flash with SDcard...- 23 -

5. How to Modify Board Level Support Package.................................. - 28 -

5.1. Introduction to meta-myir Layer.. - 28 -

5.2. Introduction to Board Level Support Package... - 31 -

5.3. U-Boot Compilation... - 32 -

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 4 -

5.4. Kernel Compilation...- 35 -

6. How to Fit Your Hardware Platform... - 38 -

6.1. How to Create Your Device Tree.. - 38 -

6.1.1. Board Level Device Tree... - 38 -

6.1.2. Add your board level device tree...- 39 -

6.2. How to configure function pins according to your hardware................- 42 -

6.2.1. GPIO pin configuration...- 42 -

6.3. How to use your own configured pins..- 46 -

6.3.1. How to use GPIO in uboot...- 46 -

6.3.2. How to use GPIO in Kernel driver..- 48 -

6.3.3. How to control a GPIO in Userspace.. - 55 -

7. How to add an application..- 61 -

7.1. Makefile-based project... - 61 -

7.2. Application based on QT.. - 65 -

7.3. Automatic application startup at boot time..- 66 -

7.4. QT Application... - 73 -

8. Reference.. - 81 -

 Linux kernel open source community.. - 81 -

 Yocto Development Guide...- 81 -

 Yocto Project BSP Development Guide..- 81 -

 Yocto Project Linux Kernel Development Guide................................- 81 -

Appendix A... - 82 -

Warranty & Technical Support Services...- 82 -

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 5 -

1. Overview
There are many open source system build frameworks on the Linux system

platform,these frameworks make it easy for developers to build and customize

embedded systems,at present common similar software has Buildroot, Yocto,

OpenEmbedded and so on. The Yocto project uses a more powerful and

customized approach to build Linux systems that suitable for embedded products.

Yocto is not only a file system manufacturing tool, but also provides a complete

set of Linux-based development and maintenance workflow, so that the

embedded developers of the Underlying Software and the High-Level Application

can develop under a unified framework, which solves the fragmented and

unmanaged development mode in the traditional development mode.

This document mainly introduces the complete process of customizing a

complete embedded Linux system based on Yocto project, including the

configuration of development environment, how to get the source code, how to

port bootloader and kernel, and how to customize rootfs suitable for their own

application requirements. First of all, we will introduce how to build a system

image for MYD-Y6ULX development board based on the source code provided by

us, and how to burn the prebuilt image to the development board. Then, we focus

on the methods and key points of porting the system to the user's hardware

platform. In addition, if you are developing a project based on MYC-Y6ULX CPU

module ,we will also take some actual BSP porting cases and rootfs customization

cases as examples to guide users to quickly customize the system image suitable

for their own base-board hardware.

This document does not include the introduction of Yocto project and the basic

knowledge of Linux system, and the user guide is suitable for embedded Linux

development engineers with some development experience. For some specific

functions that users may use in the process of secondary development, we also

provide detailed application notes for reference,please refer to Table 2-4 of

“MYD-Y6ULX SDK2.0.0 Release Notes” for the detailed list of documents.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 6 -

1.1. Software Resources

MYD-Y6ULX series development board runs an operating system based on the

Linux 5.4.3 kernel,which also provided a wealth of system resources and other

software resources. The resource packages provided with the development board

are as follows:

 A software development kit (SDK) for cross-development on an host PC.

 Distribution in source code:U-Boot,Linux Kernel and drivers of each

module .

 Various debugging tools for Windows desktop and Linux desktop

environments.

 Various peripherals application development samples, etc.

For specific software information, ,please refer to Table 2-4 of “MYD-Y6ULX

SDK2.0.0 Release Notes” for the detailed list of documents.

1.2. Document Resources

According to the different stages of using the development board, the SDK

contains different types of documents and manuals, such as release notes,

introduction guide, evaluation guide, development guide, application notes,

frequently asked questions and answers, etc.For detailed document list, please

refer to table 2-4 of “MYD-Y6ULX_SDK2.0.1 Release Notes”.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 7 -

2. Development Environment
This chapter mainly introduces some software and hardware environment

required in the development process, including the necessary development host

environment, necessary software tools, code and resource acquisition, etc. the

specific preparatory work will be described in detail below.

2.1. Hardware environment

 Necessary Accessories

 12V power adapter

 No less than 4GB SD card

 USB to TTL debugging cable (used for debugging serial port), pay

attention to use 3.3V level, etc. 2).

 Startup Settings

This section mainly introduces the startup method of the development board so

that users can better choose the startup method.

Table 2-1. Boot Mode Selector Switch

BOOT MODE SWITCH(B1/B2/B3/B4)

Boot form eMMC OFF/OFF/ON/OFF

Boot form NAND Flash OFF/ON/ON/OFF

Boot form SD Card(eMMC board) ON/ON/ON/OFF

Boot form SD Card(NAND board) ON/OFF/ON/OFF

USB Download X/X/OFF/ON

 Serial port configuration

Connect the USB to TTL cable to the debugging serial port JP1 correctly, connect

the USB end to the PC, and use the debugging software to set the baud rate of

the PC serial port to 115200, the data bit to 8, the stop bit to 1, and no parity.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 8 -

Table 2-2. debug port

Baud rate Data Bit Stop Check other

115200 8 1 No No

Use a 12V power adapter to connect to the J22 interface of the development

board, and it can start normally after power on. The startup information will be

printed out under serial debugging on the PC side.

Note: The default system user name is root and the password is blank.

2.2. Software environment

This section describes how to deploy the i.MX6UL development environment.By

reading this section, you will learn about the installation and use of hardware and

software tools.And you can quickly deploy the relevant development environment

and prepare for subsequent development and debugging.

2.1.1. Get information

Download the development board materials before setting up the environment.

For detailed information about the development materials, please refer to "MYD-

Y6ULX_SDK2.0.1 Release Notes".

The download address of the development board data is as follows (the data will

be updated from time to time, please download the latest version):

http://d.myirtech.com/MYD-Y6ULX/

2.1.2. Setting up a compilation environment

 Host Hardware

To get the Yocto Project expected behavior in a Linux Host Machine, the packages

and utilities described below must be installed. An important consideration is the

http://d.myirtech.com/MYD-Y6ULX/
http://d.myirtech.com/MYD-Y6ULX/
http://d.myirtech.com/MYD-Y6ULX/
http://d.myirtech.com/MYD-Y6ULX/
http://d.myirtech.com/MYD-Y6ULX/
http://d.myirtech.com/MYD-Y6ULX/
http://d.myirtech.com/MYD-Y6ULX/

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 9 -

hard disk space required in the host machine. It is recommended that at least

160 GB is provided, which is enough to compile all backends together.In addition,

the processor with more than dual core CPU, 8GB memory or higher configuration

will better meet the operation requirements. It can be the host with Linux system

installed, virtual machine running Linux system, etc.

 Host Operating System

There are many options for the host operating system used to build the yocto

project. Please refer to the official Yocto instructions for details:
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html#dev-
preparing-the-build-host . Generally, we choose to build it on the local host with

Fedora, openSUSE, Debian, Ubuntu, RHEL or Cent OS Linux distributions. Here, we

recommend the Ubuntu 16.04 64bit desktop system, the subsequent

development is also based on this system.

 Prerequisite Package Installation

myir$ sudo apt-get update

myir$sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multili

b

build-essential chrpath socat cpio python python3 python3-pip python3-pexp

ect

xz-utils debianutils iputils-ping python3-git python3-jinja2 libegl1-mesa libsdl1.

2-dev pylint3 xterm

 Create a working directory

Create a working directory to facilitate the creation of an unified environment

variable path. Copy the product CD-ROM source code to the working directory,

while setting the DEV_ROOT variable to enable the follow-up step path accessed.

https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html
https://www.yoctoproject.org/docs/current/mega-manual/mega-manual.html

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 10 -

myir$ mkdir -p ~/MYD-Y6ULX-devel

myir$ export DEV_ROOT=~/MYD-Y6ULX-devel

myir$ cp -r <DVDROM>/02_Images $DEV_ROOT

myir$ cp -r <DVDROM>/03_Tools $DEV_ROOT

myir$ cp -r <DVDROM>/04_Sources $DEV_ROOT

2.1.3. Install the SDK Customized by MYIR

After using Yocto to build the system image, we can also use Yocto to build a set

of extensible SDK.The CD image provided by MYIR contains a compiled SDK

package, which is located in the 03_tools/Tools_chain/ directory.This SDK not only

contains an independent cross development tool chain, but also provides qmake,

sysroot of the target platform, libraries and header files that QT application

development depends on,etc.Users can directly use this SDK to establish an

independent development environment, compile bootloader, kernel or their own

applications. The specific process will be described in detail in the following

chapters.Here we will first introduce the installation steps of the SDK,the steps are

as follows:

 View script file

Go to the SDK directory,you can find the installation script:

Figure 2-1. toolchain

Table 2-3. toolchain

Toolschain file name Description

fsl-imx-fb-glibc-x86_64-meta-toolchain-

cortexa7t2hf-neon-myd-y6ull14x14-toolchain- meta-toolchain

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 11 -

5.4-zeus.sh

fsl-imx-fb-glibc-x86_64-myir-image-core-

cortexa7t2hf-neon-myd-y6ull14x14-toolchain-

5.4-zeus.sh
myir-image-full

fsl-imx-fb-glibc-x86_64-myir-image-core-

cortexa7t2hf-neon-myd-y6ull14x14-toolchain-

5.4-zeus.sh
myir-image-core

 Run the SDK installation script

The SDK is installed in the /opt/ directory by default. Users can also choose the

appropriate directory according to the prompts:

myir$./fsl-imx-fb-glibc-x86_64-myir-image-full-cortexa7t2hf-neon-myd-y6ull14x

14-toolchain-5.4-zeus.sh

NXP i.MX Release Distro SDK installer version 5.4-zeus

===

=

Enter target directory for SDK (default: /opt/fsl-imx-fb/5.4-zeus): /home/alex/w

orkspace/meta_toolschain_imx6ul

You are about to install the SDK to "/home/alex/workspace/tools_qt5_imx6". P

roceed [Y/n]? y

Extracting SDK...done

Setting it up...done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to sour

ce the environment setup script e.g.

$. /home/alex/workspace/meta_toolschain_imx6ul/environment-setup-cortexa7

t2hf-neon-poky-linux-gnueabi

 Test SDK

Initialize cross-compilation via SDK and ensure that the environment is correctly

setup:

myir$source /home/alex/workspace/meta_toolschain_imx6ul/environment-setup-

cortexa7t2hf-neon-poky-linux-gnueabi

myir$ $CC --version

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 12 -

arm-poky-linux-gnueabi-gcc (GCC) 9.2.0

Copyright (C) 2019 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PU

RPOSE.

The SDK provided by MYIR includes not only cross tool chain, but also Qt library,

qmake and other resources needed to develop QT applications. These are the

basis for the subsequent application development and debugging with QT creator.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 13 -

3. Build the File System with Yocto
3.1. Introduction

The Yocto Project is an open-source "umbrella" project, meaning it has many sub-

projects under it. Yocto just puts all the projects together and provides a

reference build project Poky to guide developers on how to apply these projects

to build an embedded Linux system,Yocto also Contains Bitbake tool,

OpenEmbedded-Core, board level support packages, configuration files of various

software,so you can build systems with different requirements.For more

information about the Yocto project, please refer to the site: www.yoctoproject.org .

MYIR's CD image 04_Sources directory contains Yocto metafile data for MYD-

Y6ULX development board,which helps developers build different types of Linux

system images that can run on MYD-Y6ULX development board,such as the myir-

image-full system image with qt5.13 graphics library, the myir-image-core system

image without GUI interface, the st official Weston demonstration system image.

Next, we will take the implementation of myir image full image as an example to

introduce the specific development process, so as to lay a foundation for

subsequent customization of system image suitable for ourselves.

Note: the SDK toolchain environment variables in Section 2.2.3 do not need to be loaded
to build the yocto system. Please create a new shell or open a new terminal window.

https://www.yoctoproject.org

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 14 -

3.2. Get the Source Code

We provide two ways to obtain the source code. One is to obtain the compressed

package directly from the 04_sources directory of the MYIR CD image, and the

other is to use repo to obtain the source code updated in real time on GitHub for

construction. Users can choose one of them.

Note:before building the Yocto system, all software packages in the file system need to
be downloaded to the local. In order to build quickly, MYD-Y6ULX has packaged the
relevant software, and users can directly unzip and copy it to the build directory, so as to
reduce the repeated download time.

3.2.1. Get Compressed Source Code from CD Image

You can find the Yocto compressed source package in the development kit

package 04_Sources/MYiR-i.MX6UL-Yocto.tar.gz.

myir$ cd $DEV_ROOT/04_Sources

myir$ tar -xzf MYiR-i.MX6UL-Yocto.tar.gz

myir$ ls

downloads myir-setup-release.sh README README-IMXBSP setup-environ

ment sources

3.2.2. Get Source Code from GitHub

At present, the BSP source code and yocto source code of MYD-Y6ULX

development board are managed by GitHub and will be updated for a long time.

Please refer to Section 2.2 of “MYD-Y6ULX_SDK2.0.1 Release Notes”. Users can

use repo to get and synchronize the code on GitHub. The specific operation

methods are as follows.

Put the 03_tools/Repo/repo file in the server /usr/bin directory and add

executable permissions. Then use repo to pull the Yocto source code:

myir$: export REPO_URL='https://mirrors.tuna.tsinghua.edu.cn/git/git-repo/'

myir$: repo init -u https://github.com/MYiR-Dev/myir-imx-manifest.git --no-clo

ne-bundle --depth=1 -m myir-i.mx6ul-5.4.3-2.0.0.xml -b i.MX6UL-5.4-zeus

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 15 -

myir$:repo sync

Executing repo sync will download the code. It takes a certain amount of time.

Please be patient. The code download in the following figure is being downloaded:

Figure 3-1. repo sync

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 16 -

3.3. Build Development Board Image

This section provides the detailed information along with the process for building

an image.Before using yocto project to build the system, we need to set the

corresponding environment variables.MYIR provides a script, envsetup.sh, that

simplifies the setup for MYIR machines. To use the script, the name of the specific

machine to be built for needs to be specified as well as the desired graphical

backend. The script sets up a directory and the configuration files for the specified

machine and backend.The Yocto Project build uses the bitbake command. For

example, bitbake <component> builds the named component.Each component

build has multiple tasks, such as fetching, configuration, compilation, packaging,

and deploying to the target rootfs. The bitbake image build gathers all the

components required by the image and build in order of the dependency per task.

The first build is the toolchain along with the tools required for the components

to build.After the build is complete, this directory will contain all the output files.

 Prepare download file

In order to reduce the Yocto build time, please unzip downloads to this direc

tory to reduce the time to download the software package.

myir$ cd $DEV_ROOT/Yocto-5.4

myir$ tar -xzf downloads.tar.gz -C ./

 Execute script to set environment variables

Use the script provided by NXP to create a build directory, and Yocto will build all

under it. There are two options for setting the machine variable, "myd-y6ull14x14"

and "myd-y6ul14x14".

myir$: $ DISTRO=fsl-imx-fb MACHINE=myd-y6ull14x14 source myir-setup-relea

se.sh -b build_imx6ul

myir@myir-server1:~/imx6ul/yocto-5.4$ tree -L 1

.

├── build_imx6ul

├── downloads

├── myir-setup-release.sh -> sources/meta-myir/tools/myir-setup-release.sh

├── README -> sources/base/README

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 17 -

├── README-IMXBSP -> sources/meta-imx/README

├── setup-environment -> sources/base/setup-environment

└── sources

3 directories, 4 files

After the script runs, the working directory is the one just created by the script,

specified with the DISTRO and MACHINE option,eg:build-openstlinuxeglfs-myir,

and automatically jump to this directory.In this directory,bitbake <component>

builds the named component.

 Building myir-image-full image

myir$: bitbake myir-image-full

 Building myir-image-core image

myir$: bitbake myir-image-core

Figure3-2. build info

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 18 -

Figure3-3. build success

If you choose to build different system images, you need to use different bitbake

commands. For specific commands, refer to the table below. We choose myir

image full as an example to illustrate.

Table 3-1.System image optional list

System Name Command

myir-image-core bitbake myir-image-full

myir-image-full bitbake myir-image-core

Table 3-2. Common Commands

Bitbake Parameter Description

-k Continue building when there are errors

-c cleanall Clear the entire build directory

-c fetch From the address defined in recipe, pull the

software source code to the local

-c deploy Deploy the image or software package to the

target rootfs

-c compile Recompile image or package

Note: It is recommended to decompress yocto qt-downloads.tar.xz Package to the build-
openstlinuxeglfs-myir directory so that users can save a lot of time.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 19 -

3.4. Build SDK (optional)

MYIR has provided a relatively complete SDK installation package, which can be

directly used by users. However, when users need to introduce new libraries into

the SDK, they need to reuse yocto to build new SDK tools.

This section simply describes how to build the SDK .The following command is an

example on how to build the SDK package:

myir$ bitbake -c populate_sdk meta-toolchain

After building, the SDK installation package will be generated in the path of

"build_imx6ul/tmp/deploy/sdk/".

Figure3-4. build SDK

Other commands to build SDK are as follows.

Table 3-1. build sdk list

System Name Command

myir-image-core bitbake -c populate_sdk myir-image-full

myir-image-full bitbake -c populate_sdk myir-image-core

meta-toolchain bitbake -c populate_sdk meta-toolchain

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 20 -

4. How to Burn System Image
The i.MX6UL series products have various startup methods, so different update

system tools and methods are needed. Users can choose different ways to update

according to their needs. Since the startup mode needs to be adjusted during

programming, the user selects and configures the DIP switch according to the

following table.

4.1. How to Flash with UUU

Note: UUU tool is not compatible with win7, please use win10 or linux
system.

1) Tools Requirements

 A development board

 Type-A to Micro-B

 Adapter of 12V/2A

2) Flashing

Let's take the MYD-Y6UL-Y2 4E512D development board as an example to explan

how to flash the myir-image-full system image.The other configuration methods

are the same, just replace different scripts. The update steps are as follows:

Switch the third position of the switch to start the DIP switch (SW1) is OFF,

and the fourth position is ON

Use a USB adapter cable (Type-A to Micro-B) to connect the PC USB port

and the development board Micro USB OTG port (J26)

Use the DC 12V power adapter to connect to the power socket of the

development board (J22)

Open the cmd window with administrator privileges, enter the MYD-

i.MX6ULX_UUU_1.0.0_Down directory, enter: uuu.exe myd-y6ulx-y2-

4e512d-qt5.13.auto to start programming the system, as shown below:

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 21 -

Figure 4-1. USB Flash

Figure 4-2. USB Flash Success

When the programming is completed, the green Done is displayed, and the

Success is 1, as shown in the figure above.

After the programming is completed, power off, set the DIP switch to NAND or

eMMC startup mode, and then power on to start from the flash of the board.

MYD-Y6ULX supports two Flash storage methods, NAND and eMMC. When using

UUU to program, select different scripts to program.

Table 4-1. MYD-Y6ULX Flash Script List

Script name Description

myd-y6ulx-y2-4e512d-qt5.13.auto Flash the full file system to the board

configured with MYD-Y6ULX-Y2-4D512D

myd-y6ulx-y2-4e512d-core-base.auto Flash the core file system to the board

configured with MYD-Y6ULX-Y2-4D512D

myd-y6ulx-y2-256n256d-qt5.13.auto Flash the core file system to the board

configured with MYD-Y6ULX-Y2-256NADN

256DDR

myd-y6ulx-y2-256n256d-core-base.auto Flash the core file system to the board

configured with MYD-Y6ULX-Y2-256NADN

256DDR

myd-y6ulx-g2-4e512d-qt5.13.auto Flash the full file system to the board

configured with MYD-Y6ULX-G2-4D512D

myd-y6ulx-g2-4e512d-core-base.auto Flash the core file system to the board

configured with MYD-Y6ULX-G2-4D512D

myd-y6ulx-g2-256n256d-qt5.13.auto Flash the full file system to the board

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 22 -

configured with MYD-Y6ULX-G2-256NADN

256DDR

myd-y6ulx-g2-256n256d-core-base.auto Flash the core file system to the board

configured with MYD-Y6ULX-G2-256NADN

256DDR

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 23 -

4.2. How to Flash with SDcard

In order to meet the needs of production programming, MYiR provides a method

suitable for mass production. Please follow the steps below to complete the

specific production process.

MYD-Y6ULX development board provides a tool for making SD card update

system image, the structure is as follows:

Figure 4-3. Sdcrad tools

The build-sdcard-5.4.sh script is used to make an image to update the system

from the SD card. The firmware in the firmware folder is only used to boot from

the SD card. Generally, no modification is required. mfgimages-myd-y6ulg2,

mfgimages-myd-y6ulg2 The firmware stored in the roofs and roofs folders will

eventually be burned to the flash of the board; the Manifest text in the

mfgimages-myd-* folder specifies the burned file name, the red font in the

following structure.

alex@myir:~/imx6ul-5.4/MYiR-iMX-mkupdate-sdcard-5.4$ cat mfgimages-myd-y

6uly2/Manifest

i.MX6UL

ubootfile="u-boot.imx"

envfile="boot.scr"

kernelfile="zImage"

dtbfileemmc="myd-y6ull-emmc.dtb"

dtbfilenand="myd-y6ull-gpmi-weim.dtb"

rootfsfile="myir-rootfs.tar.bz2"

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 24 -

ledname="cpu"

#---

user update

i.MX6UL-Y2 -- emmc

UBOOT_EMMC256DDR="u-boot-dtb-y2-ddr256-emmc.imx"

UBOOT_EMMC512DDR="u-boot-dtb-y2-ddr512-emmc.imx"

DTBFILE_EMMC="myd-y6ull-emmc.dtb"

i.MX6UL-Y2 -- nand

UBOOT_NAND256DDR="u-boot-dtb-y2-ddr256-nand.imx"

UBOOT_NAND512DDR="u-boot-dtb-y2-ddr512-nand.imx"

DTBFILE_NAND="myd-y6ull-gpmi-weim.dtb"

KERNELFILE="zImage"

#ROOTFSFILE="rootfs-update.tar.bz2"

If you modify the kernel or uboot, replace it in the mfgimages-myd-y6uy2 folder,

and note that the file name is consistent with the one defined in the Manifest, or

replace it directly and keep the original file name.

The build-sdcard.sh script provides four parameters:

'-p' represents the platform, the available parameter is "myd-y6uly2"

representing MYD-Y6ULL (MYC-Y6ULY2)

'-n' means the memory chip on the board is NAND

 '-e' means the on-board memory chip is eMMC

'-d' indicates the directory of the update file '-s' indicates the size of ddr

memory

'-f' indicates the type of roofs, supports qt and core parameters

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 25 -

1) Make image file for SD card upgrade

$ cd MYiR-iMX-mkupdate-sdcard-5.4

$ sudo ./build-sdcard-5.4.sh -p myd-y6uly2 -n -d mfgimages-myd-y6uly2 -s

256 -f qt

$ sudo ./build-sdcard-5.4.sh -p myd-y6uly2 -n -d mfgimages-myd-y6uly2 -s 2

56 -f core

Figure 4-4. Completed SD card upgrade image

As shown in the above figure, myd-y6uly2-update-nand-qt-

20201214211252.rootfs.sdcard.img.gz is the generated image file compression

package.

2) Make SD Card that can update the system

In the previous step, an updated image of the SD card was made, and then it was

written to the SD card.

 Windows

Windows users can use Win32DiskImager tool to write xxxx.rootfs.sdcard.img

image into Micro SD. The tool is in the "03_Tools" directory. After decompression,

double-click the "Win32DskImager.exe" application. In the interface after startup,

the "Device" on the right is to select the drive letter of the device to be written.

The "image file" on the left is to select the image file to be written, click the folder

icon next to it, and select the file to be written (Note: The default in the file

selection dialog box is to filter the ".img" file, which can be switched to ".*").

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 26 -

Figure 4-5. Win32disk flashes the image to SD card

 Linux system

Generally, linux use "sd[x][n]" format to naming a storage device.The x means

which storage device, represent use a ~ z character.The n means partition that

storage device, use digit start from 1. You can use "dmesg | tail" command to

view device name when you plugin Card Reader.In this case, we use "/dev/sdb" as

example.

Attention: the "/dev/sdb" do not append any digit

Write sdcard file into USB storage:

$ gzip -dc myd-y6uly2-update-nand-qt-20201214211252.rootfs.sdcard.img.gz

| sudo dd of=/dev/sdb conv=fsync

Insert the prepared SD card into the card slot (J8) of the development board,

configure the DIP switch (SW1) of the development board as SDCARD boot mode,

connect the USB to TTL serial cable to the debug serial port (JP1), and configure

the serial terminal on the computer side software. Use a DC 12V power adapter to

connect to the power interface (J22) of the development board. Through the serial

port, you can see that the system boots from the Micro SD card, execute the

update script, and write the Linux system image file into the NAND memory chip.

The current update status can also be judged by the user LED light (D30). The

update status is flashing. After the update is successful, it will always be on, and it

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 27 -

will be off if it fails. After the update is completed, power off and configure the

start position dial switch to be the onboard NAND or eMMC start mode.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 28 -

5. How to Modify Board Level Support

Package
The previous chapter has described how to build a system image that can run on

MYD-Y6ULX development board based on Yocto project. In addition, it also

describes in detail the process of burning the image to the development

board.Because many pins of MYC-Y6ULX CPU module have the characteristics of

multi-function reuse, there will always be some differences between the base-

board based on CPU module and MYB-Y6ULX module in the actual project.These

differences are mainly reflected in two aspects, one is due to the hardware

differences,such as the removal of display function, the addition of more GPIO,

the addition of more serial ports, or the expansion of some peripherals through

SPI, I2C, USB, etc; the other is reflected in the differences of system components,

for example, those focusing on HMI applications may need a relatively complete

graphics system and Qt library, while those focusing on background management

applications may need more complete network applications and python running

environment.Because of these differences, it is necessary for system developers to

do some deletion and migration based on the code we provide.Therefore, this

chapter will describe the specific process of developing and customizing your own

system from the perspective of a system developer, so as to lay a foundation for

the later adaptation of their own hardware.

5.1. Introduction to meta-myir Layer

The "layer model" of Yocto project is a development model created for embedded

and Internet of things Linux, which distinguishes Yocto project from other simple

build systems. The layer model supports both collaboration and customization. A

layer is a repository of related instruction sets that tell openembedded what to do

with the build system.

The Yocto Project makes it easy to create and share a BSP for a new nxp based

board.For example,the meta-myir layer is based on the NXP official meta-imx

layer ,which is suitable for MYD-Y6ULX development board,and the layer contains

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 29 -

BSP, GUI, release configuration, middleware or application metadata and

recipes.Therefore, users can add or remove packages from the BSP provided for

NXP Linux distributions by creating a custom Yocto project layer.The contents of

meta-myir layer are as follows:

meta-myir/

├── EULA.txt

├── meta-bsp

│ ├── classes

│ ├── conf

│ ├── recipes-bsp

│ ├── recipes-connectivity

│ ├── recipes-core

│ ├── recipes-devtools

│ ├── recipes-graphics

│ ├── recipes-kernel

│ ├── recipes-multimedia

│ ├── recipes-security

│ ├── recipes-support

│ └── recipes-utils

├── meta-ml

│ ├── conf

│ ├── recipes-devtools

│ └── recipes-libraries

├── meta-sdk

│ ├── conf

│ ├── dynamic-layers

│ ├── recipes-benchmark

│ ├── recipes-connectivity

│ ├── recipes-devtools

│ ├── recipes-extended

│ ├── recipes-fsl

│ ├── recipes-graphics

│ ├── recipes-multimedia

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 30 -

│ ├── recipes-myir

│ ├── recipes-sato

│ └── recipes-support

├── README

└── tools

├── myir-setup-release.sh

├── readme-bluez.txt

└── setup-utils.sh

31 directories, 5 files

Table 5-1. meta-myir layer content description

Source Code and Data Description

conf Including development board software configuration resource

information

recipes-app Applications , such as measy-hmi2.0

recipes-bsp contains TF-A and uboot configuration resources,etc

recipes-kernel Contains Linux kernel resources and third-party firmware

resources

recipes-myir Contains configuration information for the file system

scripts Yocto environment configuration

In the process of system transplantation, we should focus on the recipes-bsp part

which is responsible for hardware initialization and system boot, the recipes-

kernel part responsible for Linux kernel and driver implementation, and the

recipes-app part responsible for application customization.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 31 -

5.2. Introduction to Board Level Support Package

Board level support package (BSP) is a collection of information that defines how

to support a specific hardware device, device set or hardware platform.The BSP

includes information about the hardware features on the device and kernel

configuration information, as well as any other hardware drivers required.

In some cases, BSP contains separately licensed intellectual property (IP) for one

or more components, so the terms of commercial or other types of licenses that

require some explicit end user license agreement (EULA) must be accepted.Once

you accept the license, MYIR's development board uses BSP to comply with the

open source agreement license, and the source code of BSP will be fully open

source.

Table 5-2. meta-myir

IP Project Description

conf includes development board software configuration resource

information

meta-bsp/recipes-bsp contains configuration resources such as uboot

meta-bsp/recipes-kernel contains linux kernel resources and third-party firmware

resources

meta-sdk/recipes-myir contains file system configuration information and

applications, such as hmi v2.0.

Generally, according to different stages of startup, we divide BSP into bootloader

and kernel. Users can refer to the contents of recipes-bsp and recipes-kernel in

meta-myir.

The recipes BSP only contains the u-boot of bootloader, which mainly implements

the initialization of core hardware, such as DDR, clock and kernel boot.

The recipes kernel contains two parts: Linux kernel and Linux firmware, which

mainly realizes kernel configuration and peripheral firmware addition.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 32 -

5.3. U-Boot Compilation

U-Boot ("the Universal Boot Loader" or U-Boot) is an open-source bootloader that

can be used on NXP boards to initialize the platform and load the Linux kernel. it

is widely used in embedded system,do go further, please refer to the official site:

http://www.denx.de/wiki/U-Boot/WebHome .

This chapter describes how to download, build, and load the i.MX U-Boot in a

standalone environment and through the Yocto Project.

1) Get U-boot source code

Use myir-imx-uboot.tar.gz directly under the working directory or use the

following command to download the latest source code:

git clone https://github.com/MYiR-Dev/myir-imx-uboot.git -b develop

2) Configuration and Compilation

On the host machine, set the environment with the following command before

building for i.MX6UL SoC:

myir$ source /home/alex/workspace/meta_toolschain_imx6ul/environment-setu

p-cortexa7hf-neon-poky-linux-gnueabi

 Compile source code

myir$ cd myir-imx-uboot

myir$ make distclean

myir$ make <config>

myir$ make -j16

<config> is the name of the configuration option. Different startup modes need

to use the following different configuration options. MYD-Y6ULX development

board has multiple options.

http://www.denx.de/wiki/U-Boot/WebHome

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 33 -

Table 5-3. uboot configuration list

Compilation List Description

myd_imx6ull_nand_ddr256_defconfig MYD-Y6ULX-Y2 256N256

myd_imx6ull_emmc_defconfig MYD-Y6ULX-Y2 4E512D

myd_imx6ul_nand_ddr256_defconfig MYD-Y6ULX-G2 256N256

myd_imx6ul_emmc_defconfig MYD-Y6ULX-G2 4E512D

3) Use Yocto to Compilation uboot

The bb file that specifies the location of the uboot source code in Yocto:

sources/meta-myir/meta-bsp/recipes-bsp/u-boot/u-boot-common.inc

UBOOT_SRC ?= "git://github.com/MYiR-Dev/myir-imx-uboot.git;protocol=https"

SRCBRANCH = "develop"

SRC_URI = "${UBOOT_SRC};branch=${SRCBRANCH} \

"

#SRCREV = "${AUTOREV}"

SRCREV = "2e966da26f1edd6122e4567247a2338de6aa29e0"

 UBOOT_SRC: uboot code

 SRCBRANCH: branch name

 SRCREV: Corresponding value of commit, set to ${AUTOREV}, the latest commit will be

used automatically

If you modify the source code of uboot, you need to submit the modification record,

generate a new commit and write it into the u-boot-common.inc configuration file,

update the value of SRCREV, and then compile the firmware using your modified

code.

 Set the environment

After Yocto exits or is interrupted halfway, you can reopen a new shell termi

nal and reload the build directory. The command is as follows

myir$: source myir-setup-release.sh -b build_imx6ul

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 34 -

 Compiling

myir$ bitbake u-boot -c clean

myir$ bitbake u-boot -c cleansstate

myir$ bitbake u-boot

Use Ycoto to compile the generated uboot in the Yocto compilation directory:

myir$ build_imx6ul/tmp/deploy/images/myd-y6ull14x14/

4) Configure Yocto to use local uboot source code

By default, u-boot-common.inc specifies the source code address of github. When

compiling for the first time, it will be pulled from github and then compiled. Later,

if users debug and modify the source code and build their own source code

library, it will be more convenient to store locally.

#UBOOT_SRC ?= "git://github.com/MYiR-Dev/myir-imx-uboot.git;protocol=https

"

UBOOT_SRC = "git:////${HOME}/MYD-Y6ULX-devel/04_Sources/myir-imx-uboot;

protocol=file"

SRCBRANCH = "develop"

SRC_URI = "${UBOOT_SRC};branch=${SRCBRANCH} \

"

#SRCREV = "${AUTOREV}"

SRCREV = "2e966da26f1edd6122e4567247a2338de6aa29e0"

Modify the UBOOT_SRC to specify the location of the uboot source code

extracted from the working directory created in the previous chapter. After

modification, the local source code will be used for subsequent compilation with

yocto.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 35 -

5.4. Kernel Compilation

Linux is a clone of the operating system Unix, written from scratch by Linus

Torvalds with assistance from a loosely-knit team of hackers across the Net. It

aims towards POSIX and Single UNIX Specification compliance.

It has all the features you would expect in a modern fully-fledged Unix, including

true multitasking, virtual memory, shared libraries, demand loading, shared copy-

on-write executables, proper memory management, and multistack networking

including IPv4 and IPv6.

It is distributed under the GNU General Public License v2 - see the accompanying

COPYING file for more details.

Linux kernel is also a very large open source kernel, which is applied to various

distribution operating systems. Linux kernel is widely used in embedded system

with its portability, network protocol support, independent module mechanism,

MMU and other rich characteristics.Linux kernel.

At the same time, i.MX6UL also supports the Linux kernel and has been added to

the kernel mainline. It will be updated stably for a long time. Please check the

kernel mainline for the latest version: https://www.kernel.org/，MYD-Y6ULX adapts

to ST open source community version kernel version, and currently supports the

latest version of Linux kernel 5.4.31.

1) Get Kernel source code

Use myir-imx-linux.tar.gz directly under the working directory or use the following

command to download the latest source code:

git clone https://github.com/MYiR-Dev/myir-imx-linux.git -b develop

2) Configuration and Compilation

On the host machine, set the environment with the following command before

building for i.MX6UL SoC:

https://www.kernel.org/

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 36 -

myir$ source /home/alex/workspace/meta_toolschain_imx6ul/environment-setu

p-cortexa7hf-neon-poky-linux-gnueabi

 Compile source code

myir$ tar -xvf myir-imx-linux.tar.gz

myir$ cd myir-imx-linux

myir$ make distclean

myir$ make myd_y6ulx_defconfig

myir$ make zImage dtbs -j16

After compiling, the kernel image file zImage will be generated in the

"arch/arm/boot" directory, and the DTB file will be generated in the

"arch/arm/boot/dts" directory.

Table 5-4. DTB List

DTB File Description

myd-y6ull-emmc.dtb MYD-Y6ULX-Y2 4E512D

myd-y6ull-gpmi-weim.dtb MYD-Y6ULX-Y2 256N256

myd-y6ul-emmc.dtb MYD-Y6ULX-G2 4E512D

myd-y6ul-gpmi-weim.dtb MYD-Y6ULX-G2 256N256

3) Use Yocto to Compilation kernel

The bb file that specifies the location of the kernel source code in Yocto:

sources/meta-myir/meta-bsp/recipes-kernel/linux/linux-imx_5.4.bb

KERNEL_BRANCH ?= "develop"

LOCALVERSION = "-2.0.0"

KERNEL_SRC ?= "git://github.com/MYiR-Dev/myir-imx-linux.git;protocol=https"

SRC_URI = "${KERNEL_SRC};branch=${KERNEL_BRANCH}"

#SRCREV = "${AUTOREV}"

SRCREV = "7c0cb551c77eaa18f4b0333fd5f55c147dad7557"

 KERNEL_SRC : kernel code

 KERNEL_BRANCH: branch nane

https://github.com/MYiR-Dev/myir-imx-linux
https://github.com/MYiR-Dev/myir-imx-linux

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 37 -

 SRCREV: Corresponding value of commit, set to ${AUTOREV}, the latest

commit will be used automatically

 Set the environment

After Yocto exits or is interrupted halfway, you can reopen a new shell terminal

and reload the build directory. The command is as follows

myir$: source myir-setup-release.sh -b build_imx6ul

 Compiling

myir$ bitbake linux-imx -c clean

myir$ bitbake linux-imx -c cleansstate

myir$ bitbake linux-imx

Use Ycoto to compile the generated zImage in the Yocto compilation directory:

build_imx6ul/tmp/deploy/images/myd-y6ull14x14/

4) Configure Yocto to use local kernel source code

linux-imx_5.4.bb specifies the source code address of github by default. When

compiling it for the first time, it will be pulled from github and then compiled.

Subsequent users will debug and modify the source code and build their own

source code library. It will be convenient to store it locally. The reference

modification is as follows:

KERNEL_BRANCH ?= "develop"

LOCALVERSION = "-2.0.0"

#KERNEL_SRC ?= "git://github.com/MYiR-Dev/myir-imx-linux.git;protocol=https"

KERNEL_SRC = "git:////${HOME}/MYD-Y6ULX-devel/04_Sources/myir-imx-linux;p

rotocol=file"

SRC_URI = "${KERNEL_SRC};branch=${KERNEL_BRANCH}"

#SRCREV = "${AUTOREV}"

SRCREV = "7c0cb551c77eaa18f4b0333fd5f55c147dad7557"

In KERNEL_SRC, modify the location of the kernel source code that is

decompressed to the working directory created in the previous chapter. After

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 38 -

modification, the local source code will be used for subsequent compilation with

yocto.

6. How to Fit Your Hardware Platform
In order to adapt to the new hardware platform of users, it is necessary to know

what resources are provided by MYD-Y6ULX development board of MYIR. For

specific information, please refer to “MYD-Y6ULX_SDK2.0.1 Release Notes”.In

addition, users also need to refer to the CPU chip manual and the product manual

of MYC-Y6ULX module, so as to have a more detailed understanding of the CPU

pin definition and CPU performance, and finally be able to correctly configure and

use these pins according to the actual functions.

6.1. How to Create Your Device Tree

Follow the sequences described in the below chapters to create the device-tree

on your board.

6.1.1. Board Level Device Tree

Users can create their own device tree in BSP source code. Generally, users do not

need to modify u-boot in bootloader and you just need to adjust the Linux kernel

device tree according to the actual hardware resources.The following table lists

various key device trees of MYD-Y6ULX board,which is very helpful for the

development reference of users.

Table 6-1.MYD-Y6ULX Device-tree List

Project Device Tree Description

U-Boot imx6ull.dtsi Peripheral resource device tree

myb-imx6ul-14x14-base.dts The basic dts of MYC-Y6ULX-G2

myb-imx6ull-14x14-base.dts The basic dts of MYC-Y6ULX-Y2

myb-imx6ul-14x14-gpmi-weim.dts MYC-Y6ULX-G2 nand board dts

myb-imx6ul-14x14-emmc.dts MYC-Y6ULX-G2 emmc board dts

myb-imx6ull-14x14-gpmi-weim.dts MYC-Y6ULX-Y2 nand board dts

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 39 -

myb-imx6ull-14x14-emmc.dts MYC-Y6ULX-Y2 emmc board dts

kernel myd_y6ulx_defconfig Kernel configure

myb-imx6ul-14x14.dtsi MYC-Y6ULX public part of dtsi

myb-imx6ul-14x14-base.dts MYC-Y6ULX-G2 basic dts

myb-imx6ull-14x14-base.dts MYC-Y6ULX-Y2 basic dts

myd-y6ul-emmc.dts MYC-Y6ULX-G2 emmc board dts

myd-y6ul-gpmi-weim.dts MYC-Y6ULX-G2 nand board dts

myd-y6ull-emmc.dts MYC-Y6ULX-Y2 emmc board dts

myd-y6ull-gpmi-weim.dts MYC-Y6ULX-Y2 nand board dts

6.1.2. Add your board level device tree

A device tree is a tree data structure with nodes that describe the devices in a

system. Each node has property/value pairs that describe the characteristics of the

device being represented. Each node has exactly one parent except for the root

node, which has no parent. ... Rather than hard coding every detail of a device into

an operating system, many aspect of the hardware can be described in a data

structure that is passed to the operating system at boot time.In other words, a

device tree describes the hardware that can not be located by probing.Then

perform the following steps to add your device tree.

 Add board level device tree

Go to the arch/arm/boot/dts kernel device tree directory, you will find the device

tree files that are suitable for various platforms, and then add your own board

level device tree files, eg: myb-imx6ul-14x14-base-xxx.dts.

// Path: arch/arm/boot/dts

myir$cd myir-imx-linux/arch/arm/boot/dts

myir$ ls -l myb-imx6ul*dts -l

-rw-rw-r-- 1 myir myir 274 9 月 18 19:39 myb-imx6ul-14x14-base.dts

-rw-rw-r-- 1 myir myir 4460 9 月 18 19:39 myb-imx6ull-14x14-base.dts

myir$ ls -l myd*dts -l

-rw-rw-r-- 1 myir myir 485 9 月 18 19:39 myd-y6ul-emmc.dts

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 40 -

-rw-rw-r-- 1 myir myir 1822 9 月 18 19:39 myd-y6ul-gpmi-weim.dts

-rw-rw-r-- 1 myir myir 512 9 月 18 19:39 myd-y6ull-emmc.dts

-rw-rw-r-- 1 myir myir 1756 9 月 18 19:39 myd-y6ull-gpmi-weim.dts

Next, you need to include some device tree header files files into your newly

created board level device tree,as follows:

// SPDX-License-Identifier: GPL-2.0

//

// Copyright (C) 2015 Freescale Semiconductor, Inc.

/ {

chosen {

stdout-path = &uart1;

};

memory@80000000 {

device_type = "memory";

reg = <0x80000000 0x20000000>;

};

reserved-memory {

#address-cells = <1>;

#size-cells = <1>;

ranges;

linux,cma {

compatible = "shared-dma-pool";

reusable;

size = <0x8000000>;

linux,cma-default;

};

};

......

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 41 -

For more detailed header file inclusion, please refer to our device tree file:myb-

imx6ull-14x14-base.dts.

 Add your device tree file to makefile

After adding a new device tree source file, users need to add device tree

compilation information in makefile under the same directory, so that the

corresponding device tree binary file can be generated when compiling the device

tree.

// File: arch/arm/boot/dts/Makefile

dtb-$(CONFIG_SOC_IMX6UL) += \

......

myb-imx6ul-14x14-base.dtb \

myd-y6ul-gpmi-weim.dtb \

myd-y6ul-emmc.dtb \

myb-imx6ul-14x14-base-xxx.dtb

......

After adding the device tree, you can continue to fill the device tree according to

your hardware resources,then compile the DTB file myd-y6ulx-xxx.dtb, please

refer to section 5.4 for compilation.The above process is the process of creating a

new device tree file. However, after adding a new device tree, it is necessary to

modify the name of the loading file in the u-boot and modify the yocto

configuration file and metadata. Therefore, it is recommended that users modify

the MYIR device tree directly.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 42 -

6.2. How to configure function pins according to your

hardware

Realizing the control of a function pin is one of the more complex system

development processes, including pin configuration, driver development,

application realization and other steps. This section does not specifically analyze

the development process of each part, but explains the control implementation of

function pin with examples.

6.2.1. GPIO pin configuration

GPIO refers to the general input and output port, which is a very important

resource in embedded devices. It can output high and low level or read the status

of pins - high level or low level.

The i.MX6UL devices encapsulates a large number of peripheral controllers. These

peripheral controllers and external devices are generally implemented by

controlling GPIO. The use of GPIO by peripheral controllers is called multiplexing,

which gives them more complex functions.The operation of the functional pin,

which can be subdivided into either major function or one alternate function, is

controlled by a specific hardware module. If it is configured as a GPIO pin, the pin

is controlled by the user through software with further configuration through the

GPIO module. For example, If this pin is connected to an external UART

transceiver, it should be configured as the primary function or if this pin is

connected to an external Ethernet controller for interrupting the core, then it

should be configured as GPIO input pin with interrupt enabled.

The GPIO pin configuration of i.MX6UL device is generally configured by MX6 Pins

Tool software or manually by referring to datasheet.

1) How to configure peripherals using MX6 Pins Tool

The i.MX application processor of the i.MX6 Pins Tool is the successor to the

processor expert® software i.MX processor. The new Pins Tool makes pin

configuration easier and faster through an intuitive and easy-to-use user interface,

and then generates ordinary C code, which can then be used in any C and C++

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 43 -

applications. The pin tool can configure the pin signal (from multiplexing

(multiplexing) to the electrical characteristics of the pin). It can also create a

device tree summary include (.dtsi) file and report it in CSV format. This section

does not focus on explaining its usage, but introduces important parameters. You

can obtain detailed development instructions through the official website.

NXP official:

https://www.nxp.com/design/designs/pins-tool-for-i-mx-application-processors:PINS-

TOOL-IMX

Figure 6-2. dts code

Select a PIN as shown in the figure above, and check a function to generate the

corresponding dts code in the right area.

2) Configure GPIO in the device tree

This example uses J14's PIN5 (MX6UL_PAD_UART3_TX_DATA__GPIO1_IO24) as the

test GPIO. Introduce how to configure the device node in the device tree, and

provide the kernel driver for the following chapters.

// myir-imx-linux/arch/arm/boot/dts/myb-imx6ul-14x14.dtsi

https://www.nxp.com/design/designs/pins-tool-for-i-mx-application-processors:PINS-TOOL-IMX
https://www.nxp.com/design/designs/pins-tool-for-i-mx-application-processors:PINS-TOOL-IMX

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 44 -

gpioctr_device {

compatible = "myir,gpioctr";

status = "okay";

gpioctr-gpios = <&gpio1 24 0>;

};

reg_can_3v3: regulator@0 {

compatible = "regulator-fixed";

reg = <0>;

regulator-name = "can-3v3";

regulator-min-microvolt = <3300000>;

regulator-max-microvolt = <3300000>;

};

&iomuxc {

pinctrl-names = "default";

pinctrl-0 = <&BOARD_InitPins>;

imx6ul-board {

BOARD_InitPins: BOARD_InitPinsGrp { /*!< Function assi

gned for the core: Cortex-A7[ca7] */

fsl,pins = <

MX6UL_PAD_CSI_DATA03__GPIO4_IO24 0x000010B0

MX6UL_PAD_JTAG_TDO__GPIO1_IO12 0x000030B1

MX6UL_PAD_LCD_DATA16__GPIO3_IO21 0x000010B0

MX6UL_PAD_LCD_DATA17__GPIO3_IO22 0x000010B0

MX6UL_PAD_UART1_RTS_B__GPIO1_IO19 0x000010B0

MX6UL_PAD_UART3_CTS_B__GPIO1_IO26 0x000010B0

MX6UL_PAD_UART3_RTS_B__GPIO1_IO27 0x000010B0

MX6UL_PAD_UART3_RX_DATA__UART3_DCE_RX 0x000010B

0

MX6UL_PAD_UART3_TX_DATA__GPIO1_IO24 0x000030B0

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 45 -

>;

};

};

};

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 46 -

6.3. How to use your own configured pins

The pin we configured in the u-boot or kernel device tree can be used in u-boot

or kernel, so as to realize the control of the pins.

6.3.1. How to use GPIO in uboot

1) GPIO control through uboot command

In the uboot shell, you can directly use the command to control GPIO. For

example, to set up gpio1_24, use the following command in uboot shell.

Cmd:

=> gpio set 24 1

gpio: pin 24 (gpio 24) value is 1

=> gpio clear 24 1

gpio: pin 24 (gpio 24) value is 0

=>

Code examle:

//myir-imx-uboot/board/myir/myd_imx6ull_14x14/myd_imx6ull14x14.c

int board_init(void)

{

/* LCD Power */

imx_iomux_v3_setup_multiple_pads(lcd_pwr_pads, ARRAY_SIZE(lcd_pwr_p

ads));

gpio_request(IMX_GPIO_NR(3, 4), "power");

gpio_direction_output(IMX_GPIO_NR(3, 4) , 1);

2) GPIO control through device tree

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 47 -

You can also use the device tree to define the node of IO resources, and then

implement the IO function in the code, such as the power reset control of WiFi &

BT.

// File: arch/arm/dts/myb-imx6ul-14x14-base.dts

&fec2 {

pinctrl-names = "default";

pinctrl-0 = <&pinctrl_enet2>;

phy-mode = "rmii";

phy-handle = <ðphy1>;

phy-reset-gpios = <&gpio5 6 GPIO_ACTIVE_LOW>;

phy-reset-duration = <26>;

phy-reset-post-delay=<20>;

status = "okay";

mdio {

#address-cells = <1>;

#size-cells = <0>;

ethphy0: ethernet-phy@0 {

compatible = "ethernet-phy-ieee802.3-c22";

reg = <0>;

};

// file: uboot/drivers/net/fec_mxc.c

/* FEC GPIO reset */

static void fec_gpio_reset(struct fec_priv *priv)

{

debug("fec_gpio_reset: fec_gpio_reset(dev)\n");

if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {

dm_gpio_set_value(&priv->phy_reset_gpio, 1);

mdelay(priv->reset_delay);

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 48 -

dm_gpio_set_value(&priv->phy_reset_gpio, 0);

if (priv->reset_post_delay)

mdelay(priv->reset_post_delay);

}

}

#endif

6.3.2. How to use GPIO in Kernel driver

1) How to use independent GPIO driver

In section 6.2.1, the GPIO device node information has been defined in the GPIO

sample device tree. Next, we will use the kernel driver to realize the control of

GPIO (set the J14-PIN5 pin to 1or 0, and use a multimeter to test the change of

pin level if necessary).

//gpioctr.c

#include <linux/module.h>

#include <linux/of_device.h>

#include <linux/fs.h>

#include <linux/errno.h>

#include <linux/miscdevice.h>

#include <linux/kernel.h>

#include <linux/major.h>

#include <linux/mutex.h>

#include <linux/proc_fs.h>

#include <linux/seq_file.h>

#include <linux/stat.h>

#include <linux/init.h>

#include <linux/device.h>

#include <linux/tty.h>

#include <linux/kmod.h>

#include <linux/gfp.h>

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 49 -

#include <linux/gpio/consumer.h>

#include <linux/platform_device.h>

/* 1. Define master device number */

static int major = 0;

static struct class *gpioctr_class;

static struct gpio_desc *gpioctr_gpio;

/* 2. Implement the corresponding open/read/write functions and fill in the fi

le_ operations structure*/

static ssize_t gpio_drv_read (struct file *file, char __user *buf, size_t size, loff_t

*offset)

{

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

return 0;

}

static ssize_t gpio_drv_write (struct file *file, const char __user *buf, size_t size,

loff_t *offset)

{

int err;

char status;

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

err = copy_from_user(&status, buf, 1);

gpiod_set_value(gpioctr_gpio, status);

return 1;

}

static int gpio_drv_open (struct inode *node, struct file *file)

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 50 -

{

gpiod_direction_output(gpioctr_gpio, 0);

return 0;

}

static int gpio_drv_close (struct inode *node, struct file *file)

{

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

return 0;

}

/*Define your own file_ operations structure*/

static struct file_operations gpioctr_drv = {

.owner = THIS_MODULE,

.open = gpio_drv_open,

.read = gpio_drv_read,

.write = gpio_drv_write,

.release = gpio_drv_close,

};

/*get GPIO resources from platform_ Device

* Register driver */

static int chip_demo_gpio_probe(struct platform_device *pdev)

{

/* Defined in device tree: gpioctr-gpios=<...>; */

gpioctr_gpio = gpiod_get(&pdev->dev, "gpioctr", 0);

if (IS_ERR(gpioctr_gpio)) {

dev_err(&pdev->dev, "Failed to get GPIO for led\n");

return PTR_ERR(gpioctr_gpio);

}

/* Register file_operations */

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 51 -

major = register_chrdev(0, "myir_gpioctr", &gpioctr_drv); /* /dev/gpioct

r */

gpioctr_class = class_create(THIS_MODULE, "myir_gpioctr_class");

if (IS_ERR(gpioctr_class)) {

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

unregister_chrdev(major, "gpioctr");

gpiod_put(gpioctr_gpio);

return PTR_ERR(gpioctr_class);

}

device_create(gpioctr_class, NULL, MKDEV(major, 0), NULL, "myir_gpioct

r%d", 0);

return 0;

}

static int chip_demo_gpio_remove(struct platform_device *pdev)

{

device_destroy(gpioctr_class, MKDEV(major, 0));

class_destroy(gpioctr_class);

unregister_chrdev(major, "myir_gpioctr");

gpiod_put(gpioctr_gpio);

return 0;

}

static const struct of_device_id myir_gpioctr[] = {

{ .compatible = "myir,gpioctr" },

{ },

};

/* define platform_driver */

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 52 -

static struct platform_driver chip_demo_gpio_driver = {

.probe = chip_demo_gpio_probe,

.remove = chip_demo_gpio_remove,

.driver = {

.name = "myir_gpioctr",

.of_match_table = myir_gpioctr,

},

};

/* Register platform_ driver in entry function */

static int __init gpio_init(void)

{

int err;

err = platform_driver_register(&chip_demo_gpio_driver);

return err;

}

/* If there is an entry function, there should be an exit function: when the dr

iver is unregister, the exit function will be called

unregister platform_driver

*/

static void __exit gpio_exit(void)

{

platform_driver_unregister(&chip_demo_gpio_driver);

}

/* Other improvements: provide equipment information and automatically cre

ate device nodes */

module_init(gpio_init);

module_exit(gpio_exit);

MODULE_LICENSE("GPL");

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 53 -

The driver code can be compiled into a module using a separate Makefile, or it

can be directly configured into the kernel.

2) Driver samples are compiled directly into the kernel

Create a new gpioctr.c file in the drivers/char/ folder of the kernel source code,

copy the above driver code into it, and modify Kconfig, Makefile, and

myd_y6ulx_defconfig.

Add configuration in kconfig file：

// drivers/char/Kconfig

config SAMPLE_GPIO

tristate "this is a gpio test driver"

depends on CONFIG_GPIOLIB

Edit makefile：

// drivers/char/Makefile

...

obj-$(CONFIG_SAMPLE_GPIO) += gpioctr.o

Add the configuration item in myd_y6ulx_defconfig file:

//linux/arch/arm/configs/myd_y6ulx_defconfig

CONFIG_SAMPLE_GPIO=y

Then compile and update the kernel according to section 5.3.

3) Compiling drivers outside the kernel source tree

Add the gpioctr.c file in the working directory and copy the above driver code to

the file, and write the independent Makefile program in the same directory.As

shown below:

Modify KERN_DIR

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 54 -

#KERN_DIR = # The directory of the kernel source code used by the board

KERN_DIR = KERN_DIR = /home/myir/myir-imx-linux/

obj-m += gpioctr.o

all:

make -C $(KERN_DIR) M=`pwd` modules

clean:

make -C $(KERN_DIR) M=`pwd` modules clean

rm -rf modules.order

If you want to compile a.c, b.c into ab.ko,To specify:

ab-y := a.o b.o

obj-m += ab.o

Then set up the host terminal window toolchain environment:

myir$ source /home/alex/workspace/meta_toolschain_imx6ul/environment-setu

p-cortexa7hf-neon-poky-linux-gnueabi

Next, execute the make command to generate gpioctr.ko driver module file:

myir$:/home/myir/demo_gpioctr$ make

make -C /home/myir/myir-imx-linux/ M=`pwd` modules

make[1]: Entering directory '/home/myir/myir-imx-linux'

CC [M] /home/myir/demo_gpioctr/gpioctr.o

Building modules, stage 2.

MODPOST 1 modules

CC [M] /home/myir/demo_gpioctr/gpioctr.mod.o

LD [M] /home/myir/demo_gpioctr/gpioctr.ko

make[1]: Leaving directory '/home/myir/myir-imx-linux'

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 55 -

Finally, copy gpioctr.ko file to the /lib/modules directory of the development

board, and then use the insmod command to load the driver.

6.3.3. How to control a GPIO in Userspace

The architecture of Linux operating system is divided into user mode and kernel

mode (or user space and kernel). User mode is the active space of the upper

application. The execution of the application must rely on the resources provided

by the kernel, including CPU resources, storage resources, I/O resources, etc. In

order to enable the upper application to access these resources, the kernel must

provide the access interface for the upper application: system call.

However, shell is a special application program, commonly known as the

command line. It is a command interpreter in essence. It passes through system

calls and various applications. With shell scripts, a very large function can be

realized in a few short shell scripts, because these shell statements usually

encapsulate the system calls. In order to facilitate the interaction between users

and the system.

This article shows three ways to control a GPIO in userspace:

 Shell command

 System call

 Library function

1) Realize pin control through shell command

Shell control pins are essentially implemented by calling the file operation

interface provided by Linux. This section does not give a detailed description.

Please refer to “MYD-Y6ULX_Linux_Software_Evaluation_Guide”, Section 3.1.

2) GPIO control through libgpiod

From Linux version 4.8, Linux introduces a new GPIO operation mode, GPIO

character device. Each GPIO group has a corresponding gpiochip device node file

under “/dev" directory, such as "/dev/gpiochip0 corresponds to GPIOA, /dev/

gpiochip1 corresponds to GPIOB", etc.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 56 -

libgpiod provides a C library and tools for interacting with the linux GPIO

character device (gpiod stands for GPIO device).

For more descriptions, please refer to the following website:

Libgpiod source code: https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/.

This application toggles GPIO PA14 (GPIO bank A, line 14):

//example-gpio.c

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/ioctl.h>

#include <unistd.h>

#include <linux/gpio.h>

int main(int argc, char **argv)

{

struct gpiohandle_request req;

struct gpiohandle_data data;

char chrdev_name[20];

int fd, ret;

strcpy(chrdev_name, "/dev/gpiochip5");

/* Open device: gpiochip5 for GPIO bank F */

fd = open(chrdev_name, 0);

if (fd == -1) {

ret = -errno;

fprintf(stderr, "Failed to open %s\n", chrdev_name);

return ret;

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 57 -

}

/* request GPIO line: GPIO_F_14 */

req.lineoffsets[0] = 14;

req.flags = GPIOHANDLE_REQUEST_OUTPUT;

memcpy(req.default_values, &data, sizeof(req.default_values));

strcpy(req.consumer_label, "gpio_f_14");

req.lines = 1;

ret = ioctl(fd, GPIO_GET_LINEHANDLE_IOCTL, &req);

if (ret == -1) {

ret = -errno;

fprintf(stderr,"Failed to issue GET LINEHANDLE IOCTL (%d)\n",ret);

}

if (close(fd) == -1)

perror("Failed to close GPIO character device file");

/* Start GPIO ctr*/

while(1) {

data.values[0] = !data.values[0];

ret = ioctl(req.fd, GPIOHANDLE_SET_LINE_VALUES_IOCTL, &data);

if (ret == -1) {

ret = -errno;

fprintf(stderr,"Failed to issue %s (%d)\n", ret);

}

sleep(1);

}

/* release line */

ret = close(req.fd);

if (ret == -1) {

perror("Failed to close GPIO LINEHANDLE device file");

ret = -errno;

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 58 -

}

return ret;

}

Copy the above code to an example-gpio.c file and Initialize cross-compilation via

SDK:

myir$ source /home/alex/workspace/fsl_toolschain_imx6ul/environment-setup-c

ortexa7hf-neon-poky-linux-gnueabi

Use the compile command $CC to generate the executable file example-gpio:

$CC example-gpio.c -o example-gpio

Finally,copy the executable file to the board directory(/usr/bin/),the following

command is an example on how to run directly:

root@myd-y6ull14x14:~# example-gpio

3) System call to realize pin control

A set of "special" interfaces provided by an operating system to a user program.

The user program can obtain the services provided by the operating system

kernel through this group of "special" interfaces, such as applying to open files,

closing files or reading and writing files, and obtaining system time or setting

timers through clock related system call.

At the same time, the pin is also a resource and can be controlled by system call.

In section 6.3.2, we have completed the implementation of the pin driver. Now we

can call and control the pin controlled by the driver.

//gpiotest.c

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 59 -

#include <stdio.h>

#include <string.h>

/*

* ./gpiotest /dev/myir_gpioctr0 on

* ./gpiotest /dev/myir_gpioctr0 off

*/

int main(int argc, char **argv)

{

int fd;

char status;

/* 1. Parameter judgment */

if (argc != 3)

{

printf("Usage: %s <dev> <on | off>\n", argv[0]);

return -1;

}

/* 2. Open file */

fd = open(argv[1], O_RDWR);

if (fd == -1)

{

printf("can not open file %s\n", argv[1]);

return -1;

}

/* 3. write file */

if (0 == strcmp(argv[2], "on"))

{

status = 1;

write(fd, &status, 1);

}

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 60 -

else

{

status = 0;

write(fd, &status, 1);

}

close(fd);

return 0;

}

Copy the above code to an example-gpio.c file and Initialize cross-compilation via

SDK:

myir$ source /home/alex/workspace/fsl_toolschain_imx6ul/environment-setup-c

ortexa7hf-neon-poky-linux-gnueabi

Use the compile command $CC to generate the executable file gpiotest:

$CC gpiotest.c -o gpiotest

Finally,copy the executable file to the board directory(/usr/bin/),the following

command is an example on how to run directly(“on” means set high, “off”

means set low):

root@myir:~# gpiotest /dev/myir_gpioctr0 on

root@myir:~# gpiotest /dev/myir_gpioctr0 off

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 61 -

7. How to add an application
The porting of Linux applications is usually divided into two stages: development

debugging and production deployment.In the development and debugging

stage,thanks to the SDK Customized by MYIR(Please refer to Section 2.3 for

details), it is easy to develop and debug a application in standalone

environment.However, in the production deployment stage, thanks to the Yocto

project, users only need to write the recipe file for the tested application and put

the source code in the corresponding directory. Then you can use bitbake

command to rebuild the image and automatically package the application into

the system.

7.1. Makefile-based project

Makefile is actually a file, which defines a series of Compilation Rules to guide the

compilation of source code. After defining the Compilation Rules in Makefile,

users only need one make command, and the whole project will be compiled

automatically, which greatly improves the efficiency of software development. In

the development of Linux programs, no matter the kernel, driver, application,

makefile has been widely used.

However, make is a command tool to explain the rules of makefile file. When the

make command is executed, the make command will search for makefile (or

makefile) in the current directory, and then execute the operations defined in

makefile. It can not only simplify the command line of the compiler terminal, but

also automatically judge whether the original file has been changed, so as to

automatically recompile the changed source code.

The following will take an example (to realize the key control LED light on and off)

to describe the preparation of makfile and the execution process of make.The

makefile rules are as follows:

target ... : prerequisites ...

command

 target:"target" can be an object file, an execution file, or a label.

https://wiki.st.com/stm32mpu/wiki/How_to_cross-compile_with_the_Developer_Package

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 62 -

 prerequisites:It is the file needed to generate target.

 command:This is the command that make needs to execute.

TARGET = $(notdir $(CURDIR))

objs := $(patsubst %c, %o, $(shell ls *.c))

$(TARGET)_test:$(objs)

$(CC) -o $@ $^

%.o:%.c

$(CC) -c -o $@ $<

clean:

rm -f $(TARGET)_test *.all *.o

 CC：Name of C compiler

 CXX: Name of C++ compiler

 clean: It's an agreed goal

The detailed codes are as follows:

// File: main.c

#include "module.h"

void sample_func();

int main()

{

sample_func();

return 0;

}

// File: module.h

#include <stdio.h>

void sample_func();

// File: module.c

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 63 -

#include "module.h"

void sample_func()

{

printf("Hello World!");

printf("\n");

}

Then execute the make command to compile and generate the executable file

target on the target machine.

Set up the host terminal window toolchain environment:

myir$ source /home/alex/workspace/fsl_toolschain_imx6ul/environment-setup-c

ortexa7hf-neon-poky-linux-gnueabi

Create makefile:

CC="gcc"

all: main.o module.o

${CC} main.o module.o -o target_bin

main.o: main.c module.h

${CC} -I . -c main.c

module.o: module.c module.h

${CC} -I . -c module.c

clean:

rm -rf *.o

rm target_bin

Execute make command to generate executable file:

myir$ make

Finally,copy the executable file(target_bin) to the board directory(/usr/bin/),the

following command is an example on how to run directly:

./target_bin

Hello World!

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 64 -

Note: if you use the cross tool chain compiler to build target_ Bin, and the architecture of
the building host is different from that of the target machine, so you need to run the
project on the target device.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 65 -

7.2. Application based on QT

Qt is a cross-platform graphics application development framework that is used

on different sizes of devices and platforms and offers different copyright versions

for users to choose from. MYD-Y6ULX uses Qt version 5.13 for application

development.In Qt application development, it is recommended to use QtCreator

integrated development environment. Qt application can be developed under

Linux PC, which can be automatically cross-compiled into the ARM architecture of

development board.

1) Qtcreator installation and configuration

Get the qtcreator installation package from the QT website or the MYIR official

package: http://download.qt.io/development_releases/qtcreator/4.1/4.1.0-rc1/ .

The QtCreator installation package is a binary program that can be installed by

executing it directly: ./qt-creator-opensource-linux-x86_64-4.1.0-rc1.run,for details

of installation and configuration, please refer to “myd-y6ulx QT application

development notes” or get more development guidance from qtcreator official

website: https://www.qt.io/product/development-tools .

2) Compiling and running of MEasy HMI2.0

MEasy HMI 2.0 is a set of QT5 based human-machine interface framework

developed by Shenzhen Myir Technology Co., Ltd. The project uses QML and C

++ mixed programming, uses QML to efficiently and conveniently build the UI,

and C ++ is used to implement business logic and complex algorithms.

Go to the “04-Sources/”directory and you can find the MEasy HMI2.0 project

source code(mxapp2.tar.gz).Then it can be compiled and debugged remotely

through qtcreator.For more details, please refer to “MYD-Y6ULX QT Application

Development Notes”and MEasy+HMI2.0+Development+Guide.pdf”.

http://download.qt.io/development_releases/qtcreator/4.1/4.1.0-rc1/
https://www.qt.io/product/development-tools

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 66 -

7.3. Automatic application startup at boot time

1) Application configuration in Yocto

Usually, our application also needs to realize self running after startup, which can

also be realized in the recipes. Take a slightly more complex FTP service

application as an example to illustrate how to use Yocto to build a production

image containing specific applications.The FTP service program described in this

section adopts open source proftpd, and the source codes of each version are

located in ftp://ftp.proftpd.org/distrib/source/.

Before we start to write a recipe, we can find out whether the application, or a

similar application's recipe, already exists in the current source code repository.

The search method is as follows:

PC $ bitbake -s | grep proftpd

Note: before executing the bitmake command, make sure you have executed the
environment variable settings script that builds the yocto project.Please refer to Chapter
3 for details.

You can also find recipes for the same or similar applications in openembedded's

official website layer index:

http://layers.openembedded.org/layerindex/branch/master/layers/ .

For the method of writing new recipes, please refer to the new recipes section of

yocto project complete manual:

https://www.yoctoproject.org/docs/3.1.1/mega-manual/mega-manual.html#new-recipe-
writing-a-new-recipe .

This section focuses on how to port FTP services to the target machine. By

searching the current source code repository, it is found that the recipe of proftpd

already exists in the yocto project, but it is not added to the system image. The

specific porting process is described in detail below.

 Find proftpd recipe of yocto project

PC $ ~/Yocto/build-openstlinuxeglfs-myir$ bitbake -s | grep proftpd

ftp://ftp.proftpd.org/distrib/source/
http://layers.openembedded.org/layerindex/branch/master/layers/
https://www.yoctoproject.org/docs/3.1.1/mega-manual/mega-manual.html#new-recipe-writing-a-new-recipe
https://www.yoctoproject.org/docs/3.1.1/mega-manual/mega-manual.html#new-recipe-writing-a-new-recipe

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 67 -

proftpd :1.3.6-r0

Note: it can be seen that the proftpd recipe, version 1.3.6-r0, already exists in yocto
project.

 Compiling proftpd with the bitmake command

PC $ bitbake proftpd

 Package proftpd into the file system

Add a line in conf/local.conf ,As follows:

IMAGE_INSTALL_append = "proftpd"

 Rebuild file system

PC $ bitbake myir-image-full

 View services

Check whether the service is running after burning the new image,the following

command is an example on how to check the proftpd service:

ps -axu | grep proftpd

nobody 584 0.0 0.3 3032 1344 ? Ss 01:51 0:00 proftpd: (a

ccepting connections)

root 1713 0.0 0.0 1776 336 pts/0 S+ 01:59 0:00 grep proftp

d

Here is a supplementary explanation of FTP account settings. FTP client has three

types of login accounts, which are anonymous account, normal account and root

account.

 Anonymous account settings

The user name is FTP, and there is no need to set a password. After logging in, the

user can view the contents in the system /var/lib/ ftp directory, and has no write

permission by default. Since the /var/lib/ftp directory does not exist by default,

users need to create a directory /var/lib/ftp on the target machine.To avoid

modifying the meta openembedded layer,this can be done by using a bbappend

recipe. For example, Folder creation and permission changes provided in a

proftpd_1%.append with these lines.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 68 -

do_install_append() {

install -m 755 -d ${D}/var/lib/${FTPUSER}

chown ftp:ftp ${D}/var/lib/${FTPUSER}

}

After editing proftpd_1%. append, place it in the recipes-daemons/proftpd/

directory under the meta-myir-st layer. Then rebuild the image file for testing.

 Ordinary account settings

Using the commands of useradd and passwd on the target machine, you can

create an ordinary user, and after setting the user password, the client can also

log in to the user's home directory with the common account. If you need to

include ordinary users when packaging images, you can refer to the site(
https://www.yoctoproject.org/docs/3.1.1/mega-manual/mega-manual.html#ref-classes-
useradd) ,then rebuild the image. The specific method will not be discussed here.

 Root account settings

If you need to log in to the FTP server with root account, you need to modify

“/etc/proftpd.conf” file, adding a row of configuration "RootLogin on" to the

file. At the same time, you need to set the password for the root account. After

the proftpd service is restarted, the client can log in to the target machine using

the root account.

systemctl restart proftpd

Note: in order to enable the root account to log in, the user generally needs to modify the
"/etc/proftpd.conf ”file configuration, which is only used for testing. For more
configuration of this file, please refer to the
site:http://www.proftpd.org/docs/example-conf.html.

2) Application service starts automatically at boot time

This section will take proftpd recipe as an example to introduce how to add the

application recipe and realize the startup of the program. Proftpd recipes are

located in the source code repository layers(/meta-openembedded /meta-

networking/recipes-daemons/proftpd). The directory structure is as follows:

https://www.yoctoproject.org/docs/3.1.1/mega-manual/mega-manual.html#ref-classes-useradd
https://www.yoctoproject.org/docs/3.1.1/mega-manual/mega-manual.html#ref-classes-useradd
http://www.proftpd.org/docs/example-conf.html

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 69 -

├── files

│ ├── basic.conf.patch

│ ├── build_fixup.patch

│ ├── close-RequireValidShell-check.patch

│ ├── contrib.patch

│ ├── default

│ ├── proftpd-basic.init

│ └── proftpd.service

└── proftpd_1.3.6.bb

1 directory, 8 files

 proftpd_1.3.6.bb: Recipe for building proftpd service

 proftpd.service: Auto start service at boot time

 proftpd-basic.init: Start script for proftpd

The “proftpd_ 1.3.6.bb” recipe file specifies the source code path to obtain

proftpd service program and some patch files for this version of source code:

SRC_URI = "ftp://ftp.proftpd.org/distrib/source/${BPN}-${PV}.tar.gz \

file://basic.conf.patch \

file://proftpd-basic.init \

file://default \

file://close-RequireValidShell-check.patch \

file://contrib.patch \

file://build_fixup.patch \

file://proftpd.service \

”

In addition, the configuration(do_configure) and installation process(do_install) of

proftpd are also specified in the recipe:

FTPUSER = "ftp"

FTPGROUP = "ftp"

do_install () {

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 70 -

oe_runmake DESTDIR=${D} install

rmdir ${D}${libdir}/proftpd ${D}${datadir}/locale

[-d ${D}${libexecdir}] && rmdir ${D}${libexecdir}

sed -i '/ *User[\t]*/s/ftp/${FTPUSER}/' ${D}${sysconfdir}/proftpd.conf

sed -i '/ *Group[\t]*/s/ftp/${FTPGROUP}/' ${D}${sysconfdir}/proftpd.conf

install -d ${D}${sysconfdir}/init.d

install -m 0755 ${WORKDIR}/proftpd-basic.init ${D}${sysconfdir}/init.d/proft

pd

sed -i 's!/usr/sbin/!${sbindir}/!g' ${D}${sysconfdir}/init.d/proftpd

sed -i 's!/etc/!${sysconfdir}/!g' ${D}${sysconfdir}/init.d/proftpd

sed -i 's!/var/!${localstatedir}/!g' ${D}${sysconfdir}/init.d/proftpd

sed -i 's!^PATH=.*!PATH=${base_sbindir}:${base_bindir}:${sbindir}:${bindir}!'

${D}${sysconfdir}/init.d/proftpd

install -d ${D}${sysconfdir}/default

install -m 0755 ${WORKDIR}/default ${D}${sysconfdir}/default/proftpd

create the pub directory

mkdir -p ${D}/home/${FTPUSER}/pub/

chown -R ${FTPUSER}:${FTPGROUP} ${D}/home/${FTPUSER}/pub

if ${@bb.utils.contains('DISTRO_FEATURES', 'pam', 'true', 'false', d)}; then

install proftpd pam configuration

install -d ${D}${sysconfdir}/pam.d

install -m 644 ${S}/contrib/dist/rpm/ftp.pamd ${D}${sysconfdir}/pam.d/

proftpd

sed -i '/ftpusers/d' ${D}${sysconfdir}/pam.d/proftpd

specify the user Authentication config

sed -i '/^MaxInstances/a\AuthPAM on\nAuthP

AMConfig proftpd' \

${D}${sysconfdir}/proftpd.conf

fi

install -d ${D}/${systemd_unitdir}/system

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 71 -

install -m 644 ${WORKDIR}/proftpd.service ${D}/${systemd_unitdir}/system

sed -e 's,@BASE_SBINDIR@,${base_sbindir},g' \

-e 's,@SYSCONFDIR@,${sysconfdir},g' \

-e 's,@SBINDIR@,${sbindir},g' \

-i ${D}${systemd_unitdir}/system/*.service

sed -e 's|--sysroot=${STAGING_DIR_HOST}||g' \

-e 's|${STAGING_DIR_NATIVE}||g' \

-e 's|-fdebug-prefix-map=[^]*||g' \

-e 's|-fmacro-prefix-map=[^]*||g' \

-i ${D}/${bindir}/prxs

ftpmail perl script, which reads the proftpd log file and sends

automatic email notifications once an upload finishs,

depends on an old perl Mail::Sendmail

The Mail::Sendmail has not been maintained for almost 10 years

Other distribution not ship with ftpmail, so do the same to

avoid confusion about having it fails to run

rm -rf ${D}${bindir}/ftpmail

rm -rf ${D}${mandir}/man1/ftpmail.1

}

For more information about how to install tasks, refer to：

https://www.yoctoproject.org/docs/3.1.1/mega-manual/mega-manual.html#ref-tasks.

proftpd_ 1.3.6.bb recipe inheritance systemd.class class(Please refer to：

layers/openembedded-core/meta/classes/systemd.bbclass). If you want to run the

application service in the boot phase, you need to use the default enable

variable(SYSTEMD_AUTO_ENABLE). For example, the user can set the

variable(SYSTEMD_AUTO_ENABLE) to start the application service. The example is

as follows:

SYSTEMD_AUTO_ENABLE_${PN} = "enable"

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 72 -

At present, the target machine uses systemd tool as the initialization management

subsystem. Systemd tool is a collection of basic components of Linux system,

which provides a system and service manager. The running process number is PID

1 and is responsible for starting other programs. For an example of how to

configure systemd under yocto project, please refer

to:https://www.yoctoproject.org/docs/3.1.1/mega-manual/mega-manual.html#selecting-

an-initialization-manager .

The contents of the proftpd service file are as follows:

[Unit]

Description=proftpd Daemon

After=network.target

[Service]

Type=forking

ExecStart=@SBINDIR@/proftpd -c @SYSCONFDIR@/proftpd.conf

StandardError=syslog

[Install]

WantedBy=default.target

 After:Indicates that the service will run after the network service is started.

 Type:systemd considers the service started up once the process forks and

the parent has exited. For classic daemons use this type unless you know that

it is not necessary. You should specify PIDFile= as well so systemd can keep

track of the main process.

 ExecStart:Indicates the program to be started and its parameters.

For more information about systemd, please check this

website:https://wiki.archlinux.org/index.php/systemd .

If you are adding your own application, you can also refer to the above example

to create a recipe,enable a unit to start automatically at boot, and package it into

the system image.It is generally recommended to place your own recipes in the

layers/meta-myir-st/recipes-app/ directory.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 73 -

7.4. QT Application

Qt is a cross-platform graphics application development framework, which is

applied on different size devices and platforms, and provides different copyright

versions for users to choose from. MYD-Y6ULX uses Qt 5.13 version for

application development. In Qt application development, it is recommended to

use the QtCreator integrated development environment, which can develop Qt

applications under Linux PC and automatically cross-compile to the ARM

architecture of the development board. This chapter uses the SDK tool built by

Yocto as a cross-compilation system and cooperates with QtCreator to quickly

develop graphical applications. Before starting this chapter, please complete the

Yocto build process in Chapter 3, or use the pre-compiled SDK toolkit provided

on the CD. Before starting this chapter, please install the application SDK

development tools.

7.4.1.1. Install QtCreator

The QtCreator installation package is a binary program that can be installed

directly by executing it.

$ cd $DEV_ROOT

$ chmod a+x 03_Tools/qt-opensource-linux-x64-5.9.4.run

$ sudo 03_Tools/Qt/qt-opensource-linux-x64-5.9.4.run

After executing the installation program, keep clicking Next to complete. The

default installation directory is "/opt/".

After installation, in order for QtCreator to use Yocto's SDK tools, environment

variables need to be added to QtCreator. Modify the "/opt/qtcreator-

5.9.4/Tools/QtCreator/bin/qtcreator.sh" file and add the Yocto environment

configuration before "#! /bin/sh", refer to the following:

myir$ source /opt/myir-image-full/environment-setup-cortexa7t2hf-neon-poky-l

inux-gnueabi

#! /bin/sh

Use this script if you add paths to LD_LIBRARY_PATH

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 74 -

that contain libraries that conflict with the

libraries that Qt Creator depends on.

When using QtCreator, please execute "qtcreator.sh" from the terminal to start

QtCreator. Refer to the following

myir$ /opt/qtcreator-5.9.4/Tools/QtCreator/bin/qtcreator.sh &

7.4.1.2. Configure QtCreator

Using qtcreator to compile programs available for the target board requires

configuration of the compilation chain. The following configuration items need to

be reset:

 Configure GCC and G++ compilation chain

 Configure QTversion

 Configure QTdebug

 Configure device

 Create kit

1) Configure GCC and G++ compilation chain

After running QtCreator, click "Tool"->"Options" in turn, an option dialog box

appears, click "Build & Run" on the left, and select the "Compilers" tab on the

right. Click the "Add" button on the right, after the drop-down list pops up, select

"C" in "GCC", fill in the "Name" below as "MYDY6ULx-GCC", and click the

"Browse.." button next to "Compiler path" to select Go to /opt/myir-image-full-

5.4/sysroots/x86_64-pokysdk-linux/usr/bin/arm-poky-linux/arm-poky-linux-gcc

and click "Apply".

Click the "Add" button on the right again, after the drop-down list pops up, select

"C++" in "GCC", fill in "Name" as "MYDY6ULx-GCC++" below, and click the

"Browse.." button next to "Compiler path" Select /opt/myir-image-full-

5.4/sysroots/x86_64-pokysdk-linux/usr/bin/arm-poky-linux/arm-poky-linux-g++

and click "Apply".

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 75 -

Figure 7-1. Configure GCC

Figure 7-2. Configure G++

2) Configure QTversion

Select the "Qt Version" tab, click "Add..." on the right side, and the qmake path

selection dialog box will pop up, where it is named "/opt/myir-image-full-

5.4/sysroots/x86_64-pokysdklinux/usr/bin/ "qmake" is an example. After selecting

the "qmake" file, click the "Open" button. "Version name" is changed to "Qt

%{Qt:Version} (System)". Then click the "Apply" button.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 76 -

Figure 7-3. Configure Qtversion

3) Configure Debug

Select "Debuggers" on the right side, click the "Add..." button on the right, and fill

in the content "Name" as "MYD-Y6ULX-DEBUG" in the pop-up dialog box. The

path path is:

/opt/myir-image-full-5.4/sysroots/x86_64-pokysdk-linux/usr/bin/arm-poky-linux/

arm-poky-linux-gdb

Figure 7-4. Configure Debug

4) Configure Device

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 77 -

Select "Device" on the left, click the "Add..." button on the right, select Generic

Linux Device in the pop-up dialog box, and fill in the content "Name" as

"MYDY6ULx Board" and "Host name" as the IP of the development board Address

(you can fill in any address temporarily), "Username" is "root", and then click

"Apply".

Figure 7-5. Configure DEVICE

5) Create kit

Click "Build & Run" on the left to return to the "Kits" tab, "Name" is "MYD-Y6ULX",

and "Device" selects the "MYDY6ULx Board" option. "Sysroot" selects the system

directory of the target device, here "/opt/myir-image-full-5.4/sysroots" is taken as

an example. "Compiler" selects the previously configured names "MYDY6ULx-

GCC" and "MYDY6ULx-GCC++", "Qt version" selects the previously configured

name "Qt 5.13.2 (System)", and "Qt mkspec" fills in "linux-oe-" g++". Other

defaults are fine, and finally click the "Apply" and "OK" buttons.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 78 -

Figure 7-6. Create Kit

7.4.1.3. Test Qt Application

Create a new qt project to run the test.

The first step is to select "File"->"New File or Project" in the menu bar, the project

name is: Y6ULX_TESET.

Figure 7-7. Create Project

In the second step, after the project is opened, select the "MYD-Y6ULX" kit to

complete the creation.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 79 -

Figure 7-8. Select Kit

The third step is to click the "Build"->"Build Project Y6ULX_TESET" button in the

menu bar to complete the compilation of the project, and the compilation process

will be output at the bottom.

Figure 7-9. Build Qt Application

After QtCreator builds the Y6ULX_TEST item, the compiled binary file is stored in

the "build-Y6ULX_TEST-MYD_Y6ULX-Debug" directory. You can use the file

command to check whether it is compiled to the ARM architecture.

file Y6ULX_TEST

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 80 -

Y6ULX_TEST: ELF 32-bit LSB shared object, ARM, EABI5 version 1 (SYSV), dyna

mically linked, interpreter /lib/ld-, BuildID[sha1]=76a3b0c7d335dd49f6613aee3a

2b32e5a537d97b, for GNU/Linux 3.2.0, not stripped

Then copy the Y6ULX_TEST file to the development board and run it.

./Y6ULX_TEST --platform linuxfb

After running, you will see the Qt window interface on the LCD screen as follows:

Figure 7-10. Qt Application

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 81 -

8. Reference
 Linux kernel open source community

https://www.kernel.org/

 Yocto Development Guide

https://www.yoctoproject.org/

 Yocto Project BSP Development Guide

https://www.yoctoproject.org/docs/3.1.1/bsp-guide/bsp-guide.html

 Yocto Project Linux Kernel Development Guide

https://www.yoctoproject.org/docs/3.1.1/kernel-dev/kernel-dev.html

https://www.kernel.org/
https://www.yoctoproject.org/

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 82 -

Appendix A

Warranty & Technical Support Services

MYIR Electronics Limited is a global provider of ARM hardware and software tools, design

solutions for embedded applications. We support our customers in a wide range of services

to accelerate your time to market.

MYIR is an ARM Connected Community Member and work closely with ARM and many

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

prototype, and system integration or creating your own applications. Our products are used

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has an

experienced team and provides custom design services based on ARM processors to help

customers make your idea a reality.

The contents below introduce to customers the warranty and technical support services

provided by MYIR as well as the matters needing attention in using MYIR’s products.

Service Guarantee

MYIR regards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

packaging, shipping and other aspects and strive to provide products with best quality to

customers. We believe that only quality products and excellent services can ensure the long-

term cooperation and mutual benefit.

Price

MYIR insists on providing customers with the most valuable products. We do not pursue

excess profits which we think only for short-time cooperation. Instead, we hope to establish

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 83 -

long-term cooperation and win-win business with customers. So we will offer reasonable

prices in the hope of making the business greater with the customers together hand in hand.

Delivery Time

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

quantity is greater than the number of inventory, the delivery time would be always four to six

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

in advance.

Technical Support

MYIR has a professional technical support team. Customer can contact us by email

(support@myirtech.com), we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

production.

After-sale Service

MYIR offers one year free technical support and after-sales maintenance service from the

purchase date. The service covers:

Technical support service

MYIR offers technical support for the hardware and software materials which have provided

to customers:

 To help customers compile and run the source code we offer;

 To help customers solve problems occurred during operations if users follow the user

manual documents;

 To judge whether the failure exists;

 To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical support

service:

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 84 -

 Hardware or software problems occurred during customers’ own development;

 Problems occurred when customers compile or run the OS which is tailored by themselves;

 Problems occurred during customers’ own applications development;

 Problems occurred during the modification of MYIR’s software source code.

After-sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free

maintenance service since the purchase date. But following situations are not included in the

scope of our free maintenance service:

 The warranty period is expired;

 The customer cannot provide proof-of-purchase or the product has no serial number;

 The customer has not followed the instruction of the manual which has caused the damage

the product;

 Due to the natural disasters (unexpected matters), or natural attrition of the components, or

unexpected matters leads the defects of appearance/function;

 Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards,

all those reasons which have caused the damage of the products or defects of appearance;

 Due to unauthorized weld or dismantle parts or repair the products which has caused the

damage of the products or defects of appearance;

 Due to unauthorized installation of the software, system or incorrect configuration or

computer virus which has caused the damage of products.

Warm tips

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the

LCD when receiving the goods. In case the LCD cannot run or no display, customer should

contact MYIR within 7 business days from the moment get the goods.

2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 85 -

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

please avoid clean the surface with fingers or hands to leave fingerprint.

4. Do not clean the surface of the screen with chemicals.

5. Please read through the product user manual before you using MYIR’s products.

6. For any maintenance service, customers should communicate with MYIR to confirm the

issue first. MYIR’s support team will judge the failure to see if the goods need to be returned

for repair service, we will issue you RMA number for return maintenance service after

confirmation.

Maintenance period and charges

 MYIR will test the products within three days after receipt of the returned goods and inform

customer the testing result. Then we will arrange shipment within one week for the repaired

goods to the customer. For any special failure, we will negotiate with customers to confirm

the maintenance period.

 For products within warranty period and caused by quality problem, MYIR offers free

maintenance service; for products within warranty period but out of free maintenance

service scope, MYIR provides maintenance service but shall charge some basic material cost;

for products out of warranty period, MYIR provides maintenance service but shall charge

some basic material cost and handling fee.

Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be responsible

by user; MYIR will pay for the return shipping cost to users when the product is repaired. If

the warranty period is expired, all the shipping cost will be responsible by users.

Products Life Cycle

MYIR will always select mainstream chips for our design, thus to ensure at least ten years

continuous supply; if meeting some main chip stopping production, we will inform customers

in time and assist customers with products updating and upgrading.

MYIR-MYD-Y6ULX-SW-DG-EN-L5.4.3_V2.0.1

- 86 -

Value-added Services

1. MYIR provides services of driver development base on MYIR’s products, like serial port,

USB, Ethernet, LCD, etc.

2. MYIR provides the services of OS porting, BSP drivers’ development, API software

development, etc.

3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

4. ODM/OEM services.

MYIR Electronics Limited

Room 04, 6th Floor, Building No.2, Fada Road,

Yunli Inteiligent Park, Bantian, Longgang District.

Support Email: support@myirtech.com

Sales Email: sales@myirtech.com

Phone: +86-755-22984836

Fax: +86-755-25532724

Website: www.myirtech.com

	MYD-Y6ULX Linux System Development Guide
	Revision History
	CONTENT

	1.Overview
	1.1.Software Resources
	1.2.Document Resources

	2.Development Environment
	2.1. Hardware environment
	Necessary Accessories
	Startup Settings
	Serial port configuration

	2.2. Software environment
	2.1.1.Get information
	2.1.2.Setting up a compilation environment
	Host Hardware
	Host Operating System
	Prerequisite Package Installation
	Create a working directory

	2.1.3.Install the SDK Customized by MYIR
	View script file
	Run the SDK installation script
	Test SDK

	3.Build the File System with Yocto
	3.1.Introduction
	3.2.Get the Source Code
	3.2.1.Get Compressed Source Code from CD Image
	3.2.2.Get Source Code from GitHub

	3.3.Build Development Board Image
	Prepare download file
	Execute script to set environment variables
	Building myir-image-full image
	Building myir-image-core image

	3.4.Build SDK (optional)

	4.How to Burn System Image
	4.1.How to Flash with UUU
	1)Tools Requirements
	2)Flashing

	4.2.How to Flash with SDcard
	Windows
	Linux system

	5.How to Modify Board Level Support Package
	5.1.Introduction to meta-myir Layer
	5.2.Introduction to Board Level Support Package
	5.3.U-Boot Compilation
	1)Get U-boot source code
	2)Configuration and Compilation
	Compile source code

	3)Use Yocto to Compilation uboot
	Set the environment
	Compiling

	4)Configure Yocto to use local uboot source code

	5.4.Kernel Compilation
	1)Get Kernel source code
	2)Configuration and Compilation
	Compile source code

	3)Use Yocto to Compilation kernel
	Set the environment
	Compiling

	4)Configure Yocto to use local kernel source code

	6.How to Fit Your Hardware Platform
	6.1.How to Create Your Device Tree
	6.1.1.Board Level Device Tree
	6.1.2.Add your board level device tree
	Add board level device tree
	Add your device tree file to makefile

	6.2.How to configure function pins according to your h
	6.2.1.GPIO pin configuration
	1)How to configure peripherals using MX6 Pins Tool
	2)Configure GPIO in the device tree

	6.3.How to use your own configured pins
	6.3.1.How to use GPIO in uboot
	1)GPIO control through uboot command
	2)GPIO control through device tree

	6.3.2.How to use GPIO in Kernel driver
	1)How to use independent GPIO driver
	2)Driver samples are compiled directly into the kern
	3)Compiling drivers outside the kernel source tree

	6.3.3.How to control a GPIO in Userspace
	1)Realize pin control through shell command
	2)GPIO control through libgpiod
	3)System call to realize pin control

	7.How to add an application
	7.1.Makefile-based project
	7.2.Application based on QT
	1)Qtcreator installation and configuration
	2)Compiling and running of MEasy HMI2.0

	7.3.Automatic application startup at boot time
	1)Application configuration in Yocto
	Find proftpd recipe of yocto project
	Compiling proftpd with the bitmake command
	Package proftpd into the file system
	Rebuild file system
	View services
	Anonymous account settings
	Ordinary account settings
	Root account settings

	2)Application service starts automatically at boot t

	7.4.QT Application
	7.4.1.1.Install QtCreator
	7.4.1.2.Configure QtCreator
	1)Configure GCC and G++ compilation chain
	2)Configure QTversion
	3)Configure Debug
	4)Configure Device
	5)Create kit

	7.4.1.3.Test Qt Application

	8.Reference
	Linux kernel open source community
	Yocto Development Guide
	Yocto Project BSP Development Guide
	Yocto Project Linux Kernel Development Guide

	Appendix A
	Warranty & Technical Support Services

