

File Status：

[] Draft

[√] Release

FILE ID： MYIR-MYD-YT113X-SW-DG-EN-L5.4.61

VERSION： V1.1[doc]

AUTHOR： Nico

CREATED： 2023-05-01

UPDATED： 2023-09-05

Copyright © MYIR Electronics Limited 2011-2023 all rights reserved.

MYD-YT113X_Linux

System Development Guide Notes

- 2 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

Revision History

VERSION AUTHOR PARTICIPANT DATE DESCRIPTION

V1.0 Nico Licy 20230501 Initial Version, applicable to

MYD-YT113X

V1.1 Nico Licy 20230905 Added "MYD-YT113-I" model

mailto:sales.cn@myirtech.com

- 3 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

CONTENT

Revision History ... - 2 -

CONTENT... - 3 -

1. Overview ... - 5 -

1.1. Software Resources ... - 6 -

1.2. Document Resources .. - 6 -

2. Development Environment .. - 7 -

2.1. Developing Host Environment ... - 7 -

2.2. Software Environment .. - 8 -

2.2.1. Information Acquisition ... - 8 -

2.2.2. Install cross compilation tool chain .. - 8 -

3. Build development board image using SDK .. - 11 -

3.1. Introduction ... - 11 -

3.2. Get the source code ... - 12 -

3.2.1. Use the SDK source code provided by MYIR (recommended)......... - 12 -

3.2.2. Get the source code via github ... - 13 -

3.3. Understanding the linux SDK structure .. - 13 -

3.3.1. buildroot Introduction .. - 14 -

3.3.2. kernel .. - 16 -

3.3.3. brandy ... - 16 -

3.3.4. platform .. - 16 -

3.3.5. tools... - 17 -

3.3.6. Allwinner test system .. - 17 -

3.3.7. device ... - 17 -

3.4. Linux SDK configuration and build .. - 21 -

3.5. Onboard u-boot compilation ... - 28 -

3.5.1. Compile u-boot separately ... - 28 -

3.5.2. Compile u-boot under linux SDK (recommended) - 32 -

3.6. Onboard Kernel Compilation and Update ... - 32 -

mailto:sales.cn@myirtech.com

- 4 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes 4. Burning the system image .. - 38 -

4.1. Create SD card image ... - 38 -

4.1.1. Making an SD card bootloader (using the myir-image-yt113s3-emmc-full

system as an example) .. - 38 -

4.1.2. Making an SD card burner ... - 42 -

5. Adapt to your own hardware platform ... - 45 -

5.1. Configure sys_config.fex ... - 45 -

5.2. Creating a device tree .. - 47 -

5.2.1. Onboard Device Tree ... - 47 -

5.2.2. Adding device trees ... - 49 -

5.3. Configuring CPU Function Pins ... - 51 -

5.3.1. GPIO pin multiplexing ... - 51 -

5.3.2. Configure the function pin as GPIO function ... - 54 -

5.3.3. LCD resource pin reallocation .. - 54 -

5.4. Use your own configured pins .. - 57 -

5.4.1. Use of GPIO pins in the kernel driver ... - 57 -

5.4.2. User space using GPIO pins ... - 64 -

6. How to add your application .. - 71 -

6.1. Makefile based applications ... - 71 -

6.2. Qt based applications .. - 75 -

6.2.1. QtCreator installation and configuration ... - 75 -

6.2.2. MEasy HMI2.x Compile and run .. - 76 -

7. References .. - 77 -

Appendix A ... - 78 -

Warranty & Technical Support Services .. - 78 -

mailto:sales.cn@myirtech.com

- 5 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

1. Overview

For system building and customization development, the more common ones are

Buildroot, Yocto, OpenEmbedded and so on. Among them, the buildroot project

uses a lighter and more customized approach to build Linux systems for

embedded products. It is not only a tool to create a file system, but also provides

a complete set of Linux-based development and maintenance work, so that the

bottom of the embedded developers and application developers in the upper

layers of the development of a unified framework, to solve the traditional

development approach to the fragmented and unmanaged development pattern .

This article mainly introduces the SDK project based on Allwinner T113 processor

and the complete process of customizing a complete embedded Linux system on

the MYIR core board, including the preparation of the development environment,

the acquisition of code, and how to carry out Bootloader, Kernel porting,

customizing the root filesystem rootfs to fit the needs of their own applications.

Firstly, we introduce how to build the system image for "MYD-YT113X"

development board based on the source code provided by MYIR, and how to

download the built image to the development platform. Secondly, for those users

who customize their projects based on the "MYC-YT113X" core board, we will

focus on how to use this set of SDK to port to the user's hardware platform and

the analysis of the key points. Finally, we will pass some actual cases of driver

porting and Rootfs customization, so that users can quickly develop their own

hardware to meet the system image.

This document does not contain the buildroot project and the introduction of

Linux system-related basics, and is suitable for embedded Linux system

developers and embedded Linux BSP developers who have some development

experience. For some specific functions that users may use in the process of

secondary development, we also provide detailed application notes for

developers to refer to, see the document list in Table 2-4 of the “MYD-YT113X

SDK Release Notes” for specific information.

This article applies to the list of development boards and core boards：

mailto:sales.cn@myirtech.com

- 6 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Table 1-1.List of Core Boards and Development Boards

Core Board Development Board

MYC-YT113-S3 MYD-YT113-S3

MYC-YT113-i MYD-YT113-i

1.1. Software Resources

MYD-YT113X is equipped with an operating system based on Linux kernel version

5.4.61, which provides rich system resources and other software resources. The

development board is shipped with cross-compilation tool chain, U-boot source

code, source code of Linux kernel and driver modules, as well as various

development and debugging tools and application development routines for

Windows desktop environment and PC Linux system. Please refer to Chapter 2

Software Information in the “MYD-YT113X SDK Release Notes” for detailed

information on the included software.

1.2. Document Resources

Depending on the user's use of the development board for each different purpose.

A complete SDK package (Software Development Kit) will be provided to

customers. The SDK contains different types of documents and manuals such as

Release Notes, Getting Started Guide, Evaluation Guide, Development Guide,

Application Notes, and Frequently Asked Questions. The specific list of

documentation is described in Table 2-4 of the “MYD-YT113X SDK Release

Notes”.

mailto:sales.cn@myirtech.com

- 7 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

2. Development Environment

This chapter introduces some of the hardware and software environments

required for the development process based on the MYD-YT113X development

board, including the necessary development host environment, essential software

tools, code and data acquisition, etc. Specific preparations will be described in

detail below.

2.1. Developing Host Environment

How to build the development environment for Allwinner T1 series processor

platform. By reading this chapter, you will understand the installation and use of

related hardware tools, software development and debugging tools. And you can

quickly build the relevant development environment to prepare for the later

development and debugging. Allwinner T1 series processors are SMP multi-core

architecture processors with 2 ARM Cortex A7, which can run embedded Linux

system and use the common development tools for embedded Linux system.

⚫ Host Hardware

The entire SDK package project is built on a development host with high

requirements, requiring a processor with a dual-core CPU or higher, 4GB or more

memory, and a 100GB hard drive or higher configuration. It can be a PC or server

with Linux system installed, or a virtual machine running Linux system, WSL2

under Windows system, etc.

⚫ Host Operating System

There are many options for the host operating system to build the buildroot

project, generally you can choose to build on the local host with Fedora,

openSUSE, Debian, Ubuntu, RHEL or CentOS Linux distributions installed, here the

recommended system is Ubuntu 18.04 64bit desktop version (Ubuntu20.04 64bit

can also be used), the subsequent development is also introduced as an example

of this system.

⚫ Prerequisite Package Installation

Install the necessary development dependencies on the host side first

PC$: sudo apt-get update

mailto:sales.cn@myirtech.com

- 8 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes PC$: sudo apt install -y git gnupg flex bison gperf build-essential zip curl

libc6-dev libncurses5-dev:i386 x11proto-core-dev libx11-dev:i386

libreadline6-dev:i386 libgl1-mesa-glx:i386 libgl1-mesa-dev g++-multilib

tofrodos python markdown libxml2-utils xsltproc zlib1g-dev:i386 gawk texinfo

gettext build-essential gcc libncurses5-dev bison flex zlib1g-dev gettext libssl-dev

autoconf libtool linux-libc-dev:i386 wget patch dos2unix tree u-boot-tools

Other non-required configuration packages

PC$: sudo dpkg-reconfigure dash # Select no

PC$: sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/lib

GL.so

PC$: sudo apt-get install zlib1g-dev # Install if libz.so is missing

PC$: sudo apt-get install uboot-mkimage # Install or install u-boot-tools when mk

imge is missing

2.2. Software Environment

2.2.1. Information Acquisition

Please refer to the "MYD-YT113X SDK Release Notes" for more information on

the development board before building the environment.

http://d.myirtech.com/MYD-YT113

2.2.2. Install cross compilation tool chain

In the process of using the SDK to build this system image, you also need to

install the cross tool chain, MYIR provides this SDK contains a variety of source

code in addition to provide the necessary cross tool chain, can be used directly to

compile applications and so on. Users can use the cross-compilation toolchain

directly to build an independent development environment that can compile

Bootloader, Kernel or compile their own applications separately, which will be

described in detail in later chapters. Here the installation steps of the SDK are

described first, as follows:

mailto:sales.cn@myirtech.com
http://d.myirtech.com/MYD-YT113

- 9 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes ⚫ Copy the SDK to the Linux directory

Copy the SDK archive to the user working directory under Ubuntu, such as

“$HOME/T113X”, which is defined according to your actual situation, and then

unzip the file to get the SDK source code file as follows:

PC$ cd $HOME/T113X

PC$ tar -jxf YT113X-buildroot-T1-5.4.61-X.X.X.tar.bz2

Note: where X.X.X represents the current version number

⚫ View compiled chain file

Go to the SDK directory and you can find it under the “build/toolchain”

directory:

PC$ cd $HOME/T113X/T113Xauto-t113x-linux/build/toolchain

PC$ $HOME/T113X/T113Xauto-t113x-linux/build/toolchain$ ls

gcc-linaro-5.3.1-2016.05-x86_64_aarch64-linux-gnu.tar.xz

gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gnu.tar.xz

gcc-linaro-arm.tar.xz

gcc-linaro-5.3.1-2016.05-x86_64_arm-linux-gnueabi.tar.xz

gcc-linaro-aarch64.tar.xz

gcc-linaro.tar.bz2

The file names marked in red are the compilation chain of T113

⚫ Extracting compilation chain files

Extract to the host's “/opt” directory, or you can choose your own directory if

prompted

PC$ $HOME/T113X/T113Xauto-t113x-linux/build/toolchain

tar -xf gcc-linaro-5.3.1-2016.05-x86_64_arm-linux-gnueabi.tar.xz -C /opt

⚫ Installing and testing the compilation chain

Set the environment variables and test that the installation is complete.

PC$ export PATH=$PATH:/opt/gcc-linaro-5.3.1-2016.05-x86_64_arm-linux-gnuea

bi/bin

PC$ arm-linux-gnueabi-gcc -v

Using built-in specs.

mailto:sales.cn@myirtech.com

- 10 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes COLLECT_GCC=arm-linux-gnueabi-gcc

COLLECT_LTO_WRAPPER=/home/sur/opt/gcc-linaro-5.3.1-2016.05-x86_64_arm-li

nux-gnueabi/bin/../libexec/gcc/arm-linux-gnueabi/5.3.1/lto-wrapper

Target: arm-linux-gnueabi

Configured with: /home/tcwg-buildslave/workspace/tcwg-make-release/label/doc

ker-trusty-amd64-tcwg/target/arm-linux-gnueabi/snapshots/gcc-linaro-5.3-2016.

05/configure SHELL=/bin/bash --with-mpc=/home/tcwg-buildslave/workspace/tc

wg-make-release/label/docker-trusty-amd64-tcwg/target/arm-linux-gnueabi/_bui

ld/builds/destdir/x86_64-unknown-linux-gnu --with-mpfr=/home/tcwg-buildslave

/workspace/tcwg-make-release/label/docker-trusty-amd64-tcwg/target/arm-linux

-gnueabi/_build/builds/destdir/x86_64-unknown-linux-gnu --with-gmp=/home/tc

wg-buildslave/workspace/tcwg-make-release/label/docker-trusty-amd64-tcwg/ta

rget/arm-linux-gnueabi/_build/builds/destdir/x86_64-unknown-linux-gnu --with-

gnu-as --with-gnu-ld --disable-libstdcxx-pch --disable-libmudflap --with-cloog=n

o --with-ppl=no --with-isl=no --disable-nls --enable-c99 --with-tune=cortex-a9 -

-with-arch=armv7-a --with-fpu=vfpv3-d16 --with-float=softfp --with-mode=thu

mb --disable-multilib --enable-multiarch --with-build-sysroot=/home/tcwg-build

slave/workspace/tcwg-make-release/label/docker-trusty-amd64-tcwg/target/arm

-linux-gnueabi/_build/sysroots/arm-linux-gnueabi --enable-lto --enable-linker-bu

ild-id --enable-long-long --enable-shared --with-sysroot=/home/tcwg-buildslave

/workspace/tcwg-make-release/label/docker-trusty-amd64-tcwg/target/arm-linux

-gnueabi/_build/builds/destdir/x86_64-unknown-linux-gnu/arm-linux-gnueabi/lib

c --enable-languages=c,c++,fortran,lto --enable-checking=release --disable-boot

strap --build=x86_64-unknown-linux-gnu --host=x86_64-unknown-linux-gnu --ta

rget=arm-linux-gnueabi --prefix=/home/tcwg-buildslave/workspace/tcwg-make-r

elease/label/docker-trusty-amd64-tcwg/target/arm-linux-gnueabi/_build/builds/d

estdir/x86_64-unknown-linux-gnu

Thread model: posix

gcc version 5.3.1 20160412 (Linaro GCC 5.3-2016.05)

You can see that the last line prints the same version as the one installed, which

proves that the installation was successful.

mailto:sales.cn@myirtech.com

- 11 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

3. Build development board image

using SDK

3.1. Introduction

Linux SDK development kit, which integrates BSP, build system, linux application,

test system, standalone IP, tools and documentation, both as a development,

verification and release platform for BSP, IP and also as an embedded Linux

system.

It is a unified use linux development platform. It integrates BSP, build system,

standalone IP and test, and can be used both as a BSP development and IP

verification platform and as a mass-produced embedded linux system.

The features of the Linux SDK include the following four parts:

➢ BSP development, including bootloader, uboot and kernel.

➢ Linux file system development, including mass-produced embedded linux syste
ms.

➢ IP validation and publishing platform, and give the IP usage and system integrat
ion demo program, easy for third parties to use quickly.

➢ Testing, including board-level testing and system testing.

The 04_sources directory in the CD image provided by MYIR provides linux SDK

files and data for the "MYD-YT113X" development board to help developers build

different types of Linux system images that can be run on the "MYD-YT113X"

development board, as shown below.

Table 3-1. MYD-YT113X Image file description

Image Files Name Content Description

myir-image-yt113s3-emmc-core Building an image without QT GUI with buildroot

myir-image-yt113s3-emmc-full Build image with QT GUI, 7" LVDS display with buildroot

myir-image-yt113s3-nand Building an image without QT GUI with buildroot

myir-image-yt113i-emmc-core Building an image without QT GUI with buildroot

myir-image-yt113i-emmc-full Build image with QT GUI, 7" LVDS display with buildroot

mailto:sales.cn@myirtech.com

- 12 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes The following to build "myir-image-yt113s3-emmc-full" image as an example to

introduce the specific development process for the subsequent customization of

their own system image to lay the foundation for the user to select the

corresponding operation according to their own development board model, the

basic operation with the production of "myir-image-yt113s3-emmc-full" image

The basic operation is the same as making "myir-image-yt113s3-emmc-full

image", if there is a different operation this article will be specific point out, please

watch this document carefully to avoid improper operation caused by the failure

of the image production.

3.2. Get the source code

We provide two ways to get the source code, one is to get the zip package

directly from the MYIR CD image 04_sources directory, and the other is to use

repo to get the source code located on github real-time updates to build, please

choose one of them according to the actual needs of the user to build.

3.2.1. Use the SDK source code provided by MYIR (recommended)

The compressed source package is located in MYIR Development Kit Profile

“04_Sources/YT113X-buildroot-T1-5.4.61-X.X.X.tar.bz2” (X.X.X stands for the

current version number). Copy the tarball to a user-specified directory, such as the

“$HOME/T113X” directory, which will serve as the top-level directory for

subsequent builds, and extract it as follows to bring up all the contents of the SDK:

PC$ cd $HOME/T113X

PC$ $HOME/T113X$ tar -jxf YT113X-buildroot-T1-5.4.61-X.X.X.tar.bz2

PC$ $HOME/T113X/ T113Xauto-t113x-linux$ tree -L 1

.

├── brandy

├── build

├── buildroot

├── build.sh

├── device

├── kernel

├── out

mailto:sales.cn@myirtech.com

- 13 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes ├── platform

├── test

└── tools

9 directories, 1 file

3.2.2. Get the source code via github

Currently the BSP source code and Buildroot source code of MYD-YT113X

development board are hosted on github and will be kept updated for a long

time, please see "MYD-YT113X_SDK Release Notes" for the code repository

address. Users can use repo to get and synchronize the code on github. Here's

how to do it:

PC$ mkdir $HOME/T113X

PC$ cd $HOME/T113X

PC$ export REPO_URL='https://mirrors.tuna.tsinghua.edu.cn/git/git-repo/'

PC$ repo init -u git@github.com:MYIR-ALLWINNER/myir-t1-manifest.git --no-clo

ne-bundle --depth=1 -m myir-t113-5.4.61-1.0.0.xml -b develop-yt113x-manifest

PC$ repo sync

After successful code synchronization, you will also get an SDK folder in the

“$HOME/T113X” directory, which contains the path to the source code or

source code repository related to the MYD-YT113X development board, with the

same directory structure as the one extracted from the zip package.

3.3. Understanding the linux SDK structure

├── brandy

├── build

├── buildroot

├── device

├── kernel

├── out

├── platform

├── test

└── tools

mailto:sales.cn@myirtech.com
https://mirrors.tuna.tsinghua.edu.cn/git/git-repo/
mailto:git@github.com

- 14 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Mainly composed of brandy, buildroot, kernel, platform.

➢ brandy contains uboot2018

➢ buildroot is responsible for ARM toolchain, application packages, Linux root

file system generation

➢ kernel is the linux kernel

➢ platform is a platform-related library and sdk application

3.3.1. buildroot Introduction

Buildroot is a set of Makefiles and patches that simplify and automate the

building of complete, bootable Linux environments for embedded systems

(including bootloader, Linux kernel, filesystem with various APPs). Embedded

Linux platform.

Buildroot can automatically build the required cross-compilation toolchain, create

the root filesystem, compile the Linux kernel image, and generate the bootloader

for the target embedded system, or it can perform any independent combination

of these steps. For example, the installed cross-compilation toolchain can be used

alone, while Buildroot creates only the root filesystem.

Reference URL

Buildroot User Manuals https://buildroot.org/downloads/manual/manual.html

Buildroot Source code download site https://buildroot.org/downloads/

The directory structure is as follows

buildroot-201902/

├── arch

├── board

├── boot

├── build.sh

├── CHANGES

├── Config.in

├── Config.in.legacy

├── configs

├── COPYING

├── DEVELOPERS

├── dl

mailto:sales.cn@myirtech.com
https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/

- 15 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes ├── docs

├── fs

├── linux

├── Makefile

├── Makefile.legacy

├── package

├── README

├── scripts

├── support

├── system

├── toolchain

└── utils

The configs directory holds the predefined configuration files, as follows:

 Table 3-2. MYD-YT113X buildroot configuration file description

Models Configuration File Description

MYD-YT113-S3 myd_yt113s3_emmc_core_br_defconfig emmc core system buildroot

configuration

myd_yt113s3_emmc_full_br_defconfig emmc full system buildroot

configuration

myd_yt113s3_nand_br_defconfig nand system buildroot

configuration

MYD-YT113-I myd_yt113i_emmc_core_br_defconfig emmc core system buildroot

configuration

myd_yt113i_emmc_full_br_defconfig emmc full system buildroot

configuration

The dl directory holds downloaded packages, the scripts compiled by buildroot,

“mkcmd.sh”, “mkcommon.sh”, mkrule and “mksetup.sh”, etc.

The target directory holds the rules files for generating the root filesystem, which

is important for code and tool integration. The most important for us is the

package directory, which holds the rules for generating almost 3000 packages,

where we can add our own packages or middleware

mailto:sales.cn@myirtech.com

- 16 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes For more information about buildroot, please visit buildroot's official website

http://buildroot.uclibc.org.

3.3.2. kernel

The linux kernel source code directory. The current kernel version is linux 5.4.61.

The above directory structure is consistent with the standard linux kernel except

for the modules directory, which is where we store external modules that are not

integrated with the kernel's menuconfig.

3.3.3. brandy

There is a brandy2.0 version in the brandy directory. T113 currently uses

brandy2.0, and its directory

structure is

brandy-2.0/

├── build.sh -> tools/build.sh

├── spl-pub

├── tools

└── u-boot-2018

3.3.4. platform

Platform Private Package Catalog

platform/

├── apps

├── base

├── config

├── core

├── external

├── framework

├── Makefile -> /home/XXX/T113X/auto-t113x-linux/build/Makefile

└── tools

In particular, "framework/auto" contains the SDK interface and examples for the

T1 linux version.

mailto:sales.cn@myirtech.com
http://buildroot.uclibc.org/

- 17 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes platform/framework/auto/

├── rootfs

├── sdk_demo

└── sdk_lib

where rootfs will force an overwrite to the corresponding target in the out

directory (target is the machine's root filesystem directory) each time "build.sh" is

executed at the top level.

"framework/qt" contains the source code for QT5.12.5.

3.3.5. tools

tools/

├── build

├── codecheck

├── pack

└── tools_win

3.3.6. Allwinner test system

test is a test system called dragonboard. dragonboard provides fast board-level

testing

3.3.7. device

This catalog contains two products, t113(MYD-YT113-S3) and t113_i(MYD-YT113-

I). The t113 product catalog contains three types of image configurations, and the

t113_i product catalog contains two types of image configurations. The core and

full system configuration directory structure of MYD-YT113-S3 and MYD-YT113-I

are basically the same, only the kernel and buildroot configurations are different,

please refer to the “MYD-YT113X_SDK Release Notes" section 2.1 for the specific

differences. Since there are many models, and the directory structure of full and

core system of each model is not much different, so this article only explains the

development method of different configurations."

/device/config/chips/t113 is the MYD-YT113-S3 model chip configuration

directory, /device/config/chips/t113_i is the MYD-YT113-I model chip

configuration directory, which contains multiple board configurations, and each

mailto:sales.cn@myirtech.com

- 18 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes board configuration has different configuration files like board.dts, sys_config.fex

and so on. config.fex and other configuration files.

⚫ MYD-YT113-S3 Model Configuration Explained

The main contents are as follows:

device/config/chips/t113

├── bin

│ ├── boot0_nand_sun8iw20p1.bin boot0 boot file for nand

│ ├── boot0_sdcard_sun8iw20p1.bin boot0 boot file for emmc

│ ├── dsp0.bin

│ ├── fes1_sun8iw20p1.bin Initialization file for burn tool

│ ├── optee_sun8iw20p1.bin optee

│ ├── sboot_sun8iw20p1.bin Safe start of bin

│ └── u-boot-sun8iw20p1.bin

├── boot-resource

│ ├── boot-resource

│ │ ├── bat

│ │ ├── bootlogo.bmp

│ │ ├── fastbootlogo.bmp

│ └── boot-resource.ini

├── configs

│ ├── default Not valid under normal conditions

│ ├── myir-image-yt113s3-emmc-full EMMC

│ │ ├── board.dts EMMC type dts configuration

│ │ ├── bsp

│ │ │ ├── BoardConfig.mk

│ │ │ ├── BoardConfig_nor.mk

│ │ │ ├── bootlogo.bmp

│ │ │ ├── env.cfg

│ │ │ ├── env_nor.cfg

│ │ │ ├── sys_partition.fex

│ │ │ └── sys_partition_nor.fex

│ │ ├── linux-5.4

│ │ │ ├── board.dts

mailto:sales.cn@myirtech.com

- 19 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes │ │ │ └── config-5.4

│ │ ├── longan

│ │ │ ├── BoardConfig.mk Kernel, buildroot, toolchain and other

 configurations

│ │ │ ├── BoardConfig_nor.mk

│ │ │ ├── bootlogo.bmp EMMC board type bootlog picture

│ │ │ ├── env_ab.cfg

│ │ │ ├── env.cfg EMMC board type environment variables

│ │ │ ├── env-recovery.cfg

│ │ │ ├── sys_partition.fex EMMC board type default partition file

│ │ ├── sys_config.fex EMMC board type sys_config configuration

│ │ └── uboot-board.dts EMMC board type uboot using the dts file

│ ├── myir-image-yt113s3-nand SPI NAND Board Level Catalog

│ │ ├── BoardConfig.mk

│ │ ├── board.dts -> linux-5.4/board.dts SPI NAND board-level dts configura

tion

│ │ ├── bsp

│ │ │ ├── bootlogo.bmp

│ │ │ ├── env.cfg

│ │ │ └── sys_partition.fex

│ │ ├── env.cfg

│ │ ├── linux-5.4

│ │ │ ├── board.dts

│ │ │ └── config-5.4

│ │ ├── longan

│ │ │ ├── BoardConfig.mk Kernel, buildroot, toolchain and other

 configurations

│ │ │ ├── bootlogo.bmp SPI NAND board type bootlog picture

│ │ │ ├── env.cfg SPI NAND board type environment variables

│ │ │ └── sys_partition.fex SPI NAND board type default partition file

│ │ ├── sys_config.fex SPI NAND board type sys_config configuration

│ │ ├── sys_partition.fex

│ │ └── uboot-board.dts SPI NAND board type dts file used by uboot

mailto:sales.cn@myirtech.com

- 20 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes ⚫ MYD-YT113-I Model Configuration Explained

device/config/chips/t113_i

├── bin

│ ├── boot0_nand_sun8iw20p1.bin boot0 boot file for nand

│ ├── boot0_sdcard_sun8iw20p1.bin boot0 boot file for emmc

│ ├── boot0_spinor_sun8iw20p1.bin

│ ├── dsp0.bin

│ ├── fes1_sun8iw20p1.bin Initialization file for burn tool

│ ├── optee_sun8iw20p1.bin optee

│ ├── sboot_sun8iw20p1.bin Safe start of bin

│ ├── u-boot-spinor-sun8iw20p1.bin

│ └── u-boot-sun8iw20p1.bin

├── boot-resource

│ ├── boot-resource

│ │ ├── bat

│ │ ├── bootlogo.bmp

│ │ ├── fastbootlogo.bmp

│ │ ├── font24.sft

│ │ ├── font32.sft

│ │ └── wavefile

│ └── boot-resource.ini

├── configs

│ ├── default Not valid under normal conditions

│ └── myir-image-yt113i-full EMMC

│ ├── board.dts EMMC type dts configuration

│ ├── bsp

│ ├── linux-5.4

│ ├── longan

│ │ │ ├── BoardConfig.mk Kernel, buildroot, toolchain and other

configurations

│ │ │ ├── BoardConfig_nor.mk

│ │ │ ├── bootlogo.bmp EMMC board type bootlog picture

│ │ │ ├── env_ab.cfg

mailto:sales.cn@myirtech.com

- 21 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes │ │ │ ├── env.cfg EMMC board type environment variables

│ │ │ ├── env_nor.cfg

│ │ │ ├── sys_partition_ab.fex

│ │ │ ├── sys_partition.fex EMMC board type default partition file

│ │ ├── sys_config.fex EMMC board type sys_config configuration

│ │ └── uboot-board.dts EMMC board type uboot using the dts file

3.4. Linux SDK configuration and build

This section describes the detailed steps of full compilation and partial

compilation. After compilation, the final img is generated by packaging.

This section explains how to generate "myir-image-yt113s3-emmc-full.img" and

"myir-image-yt113i-full.img" images by performing the following steps：

First go to the source top-level directory: "T113Xauto-t113x-linux", then execute

the following command.

PC$: cd $HOME/T113X/T113Xauto-t113x-linux

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh config

After the implementation of the configuration of the corresponding development

board model, the details of the selection explained later

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh

====If you don't need the qt function, you can skip these two commands=====

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh qt

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh

===

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh pack

The commands required for the entire compilation process are described above,

and each command will be explained step by step below

1). Step 1 “./build.sh config”

Execute build.sh config and select the configuration in the subsequent dialog.

Enter the string corresponding to the number.

⚫ MYD-YT113-S3 Model Configuration Selection

PC$./build.sh config

mailto:sales.cn@myirtech.com

- 22 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Welcome to mkscript setup progress

All available platform:

 0. linux

Choice [linux]: 0

All available linux_dev:

 0. bsp

 1. dragonboard

 2. longan

 3. tinyos

Choice [longan]: 2

All available kern_ver:

 0. linux-5.4

Choice [linux-5.4]: 0

All available ic:

 0. t113

 1. t113_i

Choice [t113]: 0

All available board:

 0. myir-image-yt113s3-emmc-core

 1. myir-image-yt113s3-emmc-full

 2. myir-image-yt113s3-nand

Choice [myir-image-yt113s3-emmc-full]: 1

"S3" model "nand" development board only "core" system can only choose "2".

"EMMC" development boards can be selected "core", "full" system

All available flash:

 0. default

 1. nor

Choice [default]: 0

All available gnueabi:

 0. gnueabi

 1. gnueabihf

Choice [gnueabi]: 0

mailto:sales.cn@myirtech.com

- 23 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes ⚫ MYD-YT113-I Model Configuration Selection

PC$./build.sh config

Welcome to mkscript setup progress

All available platform:

 0. linux

Choice [linux]: 0

All available linux_dev:

 0. bsp

 1. dragonboard

 2. longan

 3. tinyos

Choice [longan]: 2

All available kern_ver:

 0. linux-5.4

Choice [linux-5.4]: 0

All available ic:

 0. t113

 1. t113_i

Choice [t113_i]: 1

All available board:

 0. myir-image-yt113i-core

 1. myir-image-yt113i-full

Choice [myir-image-yt113i-full]: 1

All available flash:

 0. default

 1. nor

Choice [default]: 0

All available gnueabi:

 0. gnueabi

 1. gnueabihf

Choice [gnueabi]: 0

If after executing “. /build.sh config”, the following error message appears

 File "<string>", line 1

mailto:sales.cn@myirtech.com

- 24 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes import os.path; print os.path.relpath('/home/XXX/T113X/auto-t113x-linux/kern

el/linux-5.4/arch/arm/configs/sun8iw20p1smp_t113_auto_defconfig', '/home/XXX

/T113X/auto-t113x-linux/kernel/linux-5.4/arch/arm/configs')

 ^

SyntaxError: invalid syntax

ERROR: Can't find kernel defconfig!

This is caused by the wrong version of python, python2 is required. Please check if

python2 is already installed in your development environment, if not, please

check section 2.1 or run the following command directly:

PC$ sudo apt-get install python

Check if the current version is python2

PC$ python --version

Python 2.7.18

If python2 is installed but the version is still other versions, then the host

environment has more than one version of python installed, at this time you need

to switch the python version by yourself, execute the following command to

switch the version:

Switch according to your actual hosting environment

sudo update-alternatives --install /usr/bin/python python /usr/bin/python2.7 2

sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.6 1

sudo update-alternatives --config python

--

 0 /usr/bin/python2.7 2

* 1 /usr/bin/python2.7 2

 2 /usr/bin/python3.6 1

2). Step 2 “./build.sh”

After the configuration is selected, execute the following command to start

compiling the system, this process will take a long time.

PC$: cd $HOME/T113X/T113Xauto-t113x-linux

mailto:sales.cn@myirtech.com

- 25 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh

ACTION List: mklichee;========

Execute command: mklichee

INFO: --

INFO: build lichee ...

INFO: chip: sun8iw20p1

INFO: platform: linux

INFO: kernel: linux-5.4

INFO: board: emmc_full

INFO: output: /home/koi/T113X/T113Xauto-t113x-linux/out/t113/myir-image-yt1

13s3-emmc-full/longan

INFO: --

INFO: build buildroot ...

.......

INFO: pack rootfs ok ...

INFO: --

INFO: build lichee OK.

INFO: --

The following error may be encountered when performing this step

Figure 3-1. Compile failure 1

mailto:sales.cn@myirtech.com

- 26 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Modify step 1: (Note that the full name of the path may not be the same, find

“gdbusauth.c” according to your actual path).

PC$: $HOME/T113X/T113Xauto-t113x-linux$ vim ./out/t113/myir-image-yt113s3-

emmc-full/longan/buildroot/build/host-libglib2-2.56.3/gio/gdbusauth.c

Add this judgment code in the following position:

line = _my_g_input_stream_read_line_safe (g_io_stream_get_input_stream (auth->

priv->stream),

&line_length,

cancellable,

error);

 if (line != NULL)

 debug_print ("SERVER: WaitingForBegin, read '%s'", line);

if (line == NULL)

Modify step 2: (Note that the path may be different in full, find

“gdbusmessage.c” according to your actual path).

PC$: $HOME/T113X/T113Xauto-t113x-linux$ vim ./out/t113/myir-image-yt113s3-

emmc-full/longan/buildroot/build/host-libglib2-2.56.3/gio/gdbusmessage.c

Add this judgment code in the following position:

signature_str = g_variant_get_string (signature, NULL);

if (message->body != NULL)

{

 gchar *tupled_signature_str;

 if (signature != NULL)

 tupled_signature_str = g_strdup_printf ("(%s)", signature_str);

 if (signature == NULL)

mailto:sales.cn@myirtech.com

- 27 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

Figure 3-2. Compilation failure 2

PC$ cd $HOME/T113X/T113Xauto-t113x-linux/out/t113/myir-image-yt113s3-em

mc-full/longan/buildroot/build/libgpg-error-1.33/src

Change "namespace" to "pkg_namespace" in "Makefile", "Makefile.am",

"Makefile.in", and "mkstrtable.awk" in this directory, and then re-execute the

compile command.

3). Qt Compilation

If you don't need the qt function, you can skip this step and execute the following

command to compile qt:

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh qt

ACTION List: mkqt;========

Execute command: mkqt

INFO: build Qt ...

INFO: build arm-linux-gnueabi version's Qt

$HOME/T113X/T113Xauto-t113x-linux/platform/framework/qt/qt-everywhere-src

-5.12.5

.......

INFO: build buildroot OK.

INFO: build Qt and buildroot Ok.

At this point, qt is compiled successfully, and then you must execute ". /build.sh"

command, this command will just compile qt generated by the relevant files,

mailto:sales.cn@myirtech.com

- 28 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes libraries, demos compiled into the system, otherwise the system will not support

qt.

4). Step 3 “./build.sh pack”

The last step is to package the image to generate the system by executing the

following command:

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh pack

ACTION List: mkpack ;========

Execute command: mkpack

INFO: packing firmware ...

INFO: Use BIN_PATH: $HOME/T113X/T113Xauto-t113x-linux/device/config/chips/

t113/bin

......

Dragon execute image.cfg SUCCESS !

----------image is at----------

size:456M $HOME/T113X/T113Xauto-t113x-linux/out/myir-image-yt113s3-emmc

-full.img

3.5. Onboard u-boot compilation

U-boot is a very feature-rich open source boot program, including kernel boot,

download updates and many other aspects, in the embedded field is very widely

used, check the official website for more information http://www.denx.de/wiki/U-

Boot/WebHome

The T1 platform also uses boot chains as the bootloader, and different boot

chains modes will correspond to different boot phases.

3.5.1. Compile u-boot separately

1). Obtain u-boot source code

Copy the development package "04 Source/YT113X-buildroot T1-5.4.61-

X.X.X.X.tar. bz" (X.X.X represents the current version) to the specified custom T113

directory (such as "$HOME/T113X"), unzip and enter the source directory to view

the corresponding file information, such as copying to the T113 directory:

mailto:sales.cn@myirtech.com
http://www.denx.de/wiki/U-Boot/WebHome
http://www.denx.de/wiki/U-Boot/WebHome

- 29 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes PC$ cd $HOME/T113X

PC$ $HOME/T113X$ tar -jxf YT113X-buildroot-T1-5.4.61-X.X.X.tar.bz

➢ Source Code Directory：u-boot-2018

➢ SPL source code directory： spl-pub

➢ Compile Scripts：build.sh

PC$ $HOME/T113X$ cd T113Xauto-t113x-linux/brandy/brandy-2.0$

PC$: $HOME/T113X/T113Xauto-t113x-linux/brandy/brandy-2.0$ tree -L 1

├── build.sh -> tools/build.sh

├── spl-pub

├── tools

└── u-boot-2018

2). Configuration and Compilation

⚫ Go to the source code directory

PC$: $HOME/T113X/T113Xauto-t113x-linux/$ cd brandy/brandy-2.0

⚫ Load the toolchain in the SDK

PC$: $HOME/T113X/T113Xauto-t113x-linux/brandy/brandy-2.0$./build.sh -t

Prepare toolchain ...

⚫ Load the defconfig configuration file

➢ MYD-YT113-S3

PC$: $HOME/T113X/T113Xauto-t113x-linux/brandy/brandy-2.0$ cd u-boot-2018

eMMC：

PC$: $HOME/T113X/T113Xauto-t113x-linux/brandy/brandy-2.0/u-boot-2018$ ma

ke sun8iw20p1_auto_defconfig

Nand：

PC$: $HOME/T113X/T113Xauto-t113x-linux/brandy/brandy-2.0/u-boot-2018$ ma

ke sun8iw20p1_auto_nand_defconfig

➢ MYD-YT113-I

PC$: $HOME/T113X/auto-t113x-linux/brandy/brandy-2.0/u-boot-2018$

make sun8iw20p1_auto_t113_i_defconfig

Note: Be sure to load the corresponding defconfig file according to your board model.

mailto:sales.cn@myirtech.com

- 30 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes ⚫ Modify uboot configuration

➢ make menuconfig GUI changes

After loading the "defconfig" file, execute "make menuconfig" to open the uboot

GUI configuration.

PC$: $HOME/T113X/auto-t113x-linux/brandy/brandy-2.0/u-boot-2018$

make menuconfig

Figure 3-3. Uboot Graphical Configuration Interface

At this point, users only need to check or uncheck a configuration option

according to their actual situation, you can make corresponding changes to the

uboot configuration.

However, the configuration modified by this operation is only saved in an

intermediate temporary configuration file, so if the next time you load another

model's configuration file, and then come back to load that configuration file,

then the changes made earlier will be restored.

➢ Modify the defconfig configuration file directly (recommended)

Users can directly modify the corresponding "defconfig" file to change the uboot

configuration, take the MYD-YT113-S3 EMMC board as an example, the

corresponding "defconfig" file needs to be modified as

"sun8iw20p1_auto_defconfig", users only need to open the file and modify it

mailto:sales.cn@myirtech.com

- 31 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes according to their actual situation. The corresponding "defconfig" file is

"sun8iw20p1_auto_defconfig", users only need to open the file and modify it

according to their actual situation. This method can save the changes made to the

configuration of uboot, and will not disappear because of loading the

configuration for the second time.

The defconfig file for all MYD-YT113X models is in the following path

PC$: $HOME/T113X/auto-t113x-linux/brandy/brandy-2.0/u-boot-2018/configs$

⚫ Compile and update uboot

The configuration file corresponding to "defconfig" has been loaded and

modified above, so let's start compiling uboot.

PC$: $HOME/T113X/auto-t113x-linux/brandy/brandy-2.0/u-boot-2018$ make

 CHK include/config/uboot.release

 CHK include/generated/version_autogenerated.h

 CHK include/generated/timestamp_autogenerated.h

 CHK include/generated/generic-asm-offsets.h

 CHK include/generated/asm-offsets.h

'u-boot.bin' -> 'u-boot-sun8iw20p1.bin'

'u-boot-sun8iw20p1.bin' -> '/media/home/nico/RC/T113-I/SDK/device/config/chi

ps/t113/bin/u-boot-sun8iw20p1.bin'

'u-boot-sun8iw20p1.bin' -> '/media/home/nico/RC/T113-I/SDK/out/t113/myd_yt

113_s3_emmc_full/longan/u-boot-sun8iw20p1.bin'

 CHK include/config.h

 CFG u-boot.cfg

 CFGCHK u-boot.cfg

After the compilation is complete, you need to go back to the top-level directory

of the SDK source code and execute the following command to package the

changed uboot compiled files into the out directory

PC$: cd $HOME/T113X/auto-t113x-linux$

PC$: $HOME/T113X/auto-t113x-linux$./build.sh pack

At this time in the "$HOME/T113X/auto-t113x-linux/out/pack_out" directory to

find the "boot_package.fex" file, this file into the USB flash disk Insert the USB

mailto:sales.cn@myirtech.com

- 32 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes flash drive into the development board, the USB flash drive will be automatically

mounted in the following path, and then execute the following commands to

update the uboot individually

root@myd-yt113-s3:~# cd /mnt/usb/sda1/

root@myd-yt113-s3:/mnt/usb/sda1# ota-burnuboot boot_package.fex

Burn Uboot Success

At this time uboot update success, at present the separate update uboot method

only applies to EMMC board type development board, nand development board

does not support separate update for the time being. Therefore, nand boards do

not support separate update for the time being, so after nand boards execute the

". /build.sh pack" and then burn it into the board according to the method in

chapter 4.1, then uboot can be updated.

3.5.2. Compile u-boot under linux SDK (recommended)

Once the user has changed the U-boot code according to the iterative

development process in 3.5.1, the entire image can also be built using the SDK.

It is not possible to modify the uboot configuration through the GUI, you can only

modify the defconfig file directly and then compile it using this method.

Compiling uboot source code:

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh brandy

Return to the top-level directory of the SDK source code and package the image:

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh pack

After compiling the uboot source code, follow the steps in section 3.5.1 to update

uboot separately, or follow the method in section 4.1 to burn into the

development board and update uboot.

3.6. Onboard Kernel Compilation and Update

Linux kernel is a very large open source kernel that is used in various distributions

of operating systems. Linux kernel is widely used in embedded systems due to its

portability, multiple network protocol support, independent module mechanism,

MMU and many other rich features.

mailto:sales.cn@myirtech.com

- 33 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes At the same time, T1 also supports Linux kernel, will get long-term stable update,

MYD-YT113X using T1 kernel port, the latest support Linux kernel 5.4.61 version.

1). Get the kernel source code

Copy the development package "04_Source/YT113X-buildroot-T1-5.4.61-

X.X.X.tar.bz" (X.X.X represents the current version) to the specified custom work

directory (such as "$HOME/T113X"), unzip it into the source directory and check

the corresponding file information, e.g. copy it to the work directory:

PC$ cd $HOME/T113X

PC$ $HOME/T113X$ tar -jxf YT113X-buildroot-T1-5.4.61-X.X.X.tar.bz

PC$ $HOME/T113X$ cd T113Xauto-t113x-linux/kernel

PC$ $HOME/T113X/T113Xauto-t113x-linux/kernel$ tree -L 1

.

└── linux-5.4

The catalog contains:

➢ Source Code：linux-5.4

2). Modify kernel configuration

MYIR already integrates most of the functionality into the kernel and generally

does not need to be configured. To add special features, the peripheral drivers

should be configured as follows.

⚫ Loading compilation chain

Configure the compilation chain according to section 2.2, then configure the

compilation chain environment.

PC$ export PATH=$PATH:/opt/gcc-linaro-5.3.1-2016.05-x86_64_arm-linux-gnuea

bi/bin

⚫ Go to the kernel directory

PC$ cd $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4$

⚫ Load defconfig configuration

➢ MYD-YT113-S3

emmc：

full：

mailto:sales.cn@myirtech.com

- 34 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes PC$ $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4$ make ARCH=arm m

yd_yt113s3_emmc_full_defconfig

core：

PC$ $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4$ make ARCH=arm m

yd_yt113s3_emmc_core_defconfig

nand：

PC$ $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4$ make ARCH=arm m

yd_yt113s3_nand_defconfig

➢ MYD-YT113-I

full：

PC$ $HOME/T113X/auto-t113x-linux/kernel/linux-5.4$ make myd_yt113i_emmc_f

ull_defconfig

core：

PC$ $HOME/T113X/auto-t113x-linux/kernel/linux-5.4$ make myd_yt113i_emmc_c

ore_defconfig

Note: After loading the corresponding "defconfig" file, a temporary ".config" file will be
created in the current directory, make a copy of this file to directory A and name it "1.
con" (you can choose the directory according to your own situation), which will be
needed in the following steps.

⚫ Open the kernel configuration screen

PC$ $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4$ make ARCH=arm m

enuconfig

mailto:sales.cn@myirtech.com

- 35 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

Figure 3-4. Kernel configuration interface

After opening the kernel configuration interface, you can add or some kernel

configuration, this time add System V IPC for example, the configuration can be

found under "General setup--->", press "y" to select the configuration, press "n"

to cancel the configuration, press "m" to compile into a module.

Figure 3-5. Checking the kernel configuration

mailto:sales.cn@myirtech.com

- 36 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Note: After adding the configuration, you need to make corresponding changes in the
corresponding "defconfig" file, otherwise the configuration will not take effect. Exit the
graphical interface after adding the configuration. At this time, the ".config" file in the
current directory has saved the configuration just now, copy the new ".config" file to the
directory A and name it "2. con", compare it with "1.con" in the previous section, and
modify the corresponding "defconfig" file.

All defconfig files for the MYD-YT113X kernel are in the following directory

PC$: $HOME/T113X/auto-t113x-linux/kernel/linux-5.4/arch/arm/configs$

Go back to the top-level directory of the SDK source code and execute the

following commands to select the configuration, compile, and package images

PC$: cd $HOME/T113X/T113Xauto-t113x-linux$

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh config

（Same configuration as step 1 of section 3.4）

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh kernel

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh pack

At this point in the "$HOME/T113X/auto-t113x-linux/out/pack_out" directory to

find the "boot.fex" file, this file into the USB flash drive, insert the USB flash drive

into the development board, the USB flash drive will be automatically mounted in

the following path, then execute the following command to update the kernel

individually. Insert the USB flash drive into the development board, the USB flash

drive will be automatically mounted in the following path, then execute the

following command to update the kernel separately.

root@myd-yt113-s3:~# dd if=/mnt/usb/sda1/boot.fex of=/dev/mmcblk0p4

41200+0 records in

41200+0 records out

21094400 bytes (21 MB, 20 MiB) copied, 3.51428 s, 6.0 MB/s

At this time, the kernel update is successful, at present, the separate update kernel

method is only applicable to EMMC board type development board, nand

development board does not support the separate update for the time being. The

nand board does not support separate update at the moment, so the nand board

should follow the 4.4.2 procedure after executing the ". /build.sh pack" and then

burn the kernel into the board according to the method in section 4.1, then the

kernel can be updated.

mailto:sales.cn@myirtech.com

- 37 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes 3). Update the device tree

The board-level dts and the dts used by uboot are in the

"$HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/ myir-

image-yt113s3-emmc-full" directory (take the emmc full image configuration as

an example).

PC$: cd $HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/

myir-image-yt113s3-emmc-full$ tree -L 1

.

├── board.dts

├── bsp

├── linux-5.4

├── longan

├── sys_config.fex

└── uboot-board.dts

After modifying the device tree, go back to the top-level directory of the SDK

source code and execute the following commands to compile and package the

image.

PC$: cd $HOME/T113X/T113Xauto-t113x-linux$

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh kernel

PC$: $HOME/T113X/T113Xauto-t113x-linux$./build.sh pack

Currently, it is not possible to update the device tree alone, so after compiling the

device tree file, packing the image, and burning it to the development board

according to the method in chapter 4.1, you can update the device tree file.

mailto:sales.cn@myirtech.com

- 38 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

4. Burning the system image

MYIR company designed MYC-YT113X series core board and development board

is based on Allwinner's T1 series microprocessor, which has various boot methods,

so different tools and methods are needed to update the system. Users can

choose different ways to update according to their needs. The update methods

are mainly as follows:

➢ Create SD card bootloader: suitable for R&D debugging, fast boot scenarios,

etc.

➢ Make SD card burner: suitable for mass production burning eMMC

4.1. Create SD card image

The following steps are made under Windows system.

⚫ Preparation

➢ SD card (not less than 8G)

➢ MYD-YT113X Development Board

➢ Create image tool PhoenixCard (path: \03_Tools\myir tools)

Table 4-1. list of mirror packages

Image Name Package Name Applicable core

boards

myir-image-yt113s3-emmc-core myir-image-yt113s3-emmc-core.img MYC-YT113S3-4E128D

myir-image-yt113s3-emmc-full myir-image-yt113s3-emmc-full.img MYC-YT113S3-4E128D

myir-image-yt113s3-nand myir-image-yt113s3-nand.img MYC-YT113S3-256N128D

myir-image-yt113i-core myir-image-yt113i-core.img MYC-YT113i-4E512D

MYC-YT113i-8E1D

myir-image-yt113i-full myir-image-yt113i-full.img MYC-YT113i-4E512D

MYC-YT113i-8E1D

4.1.1. Making an SD card bootloader (using the myir-image-

yt113s3-emmc-full system as an example)

1). Modify the configuration file to make the SD image

mailto:sales.cn@myirtech.com

- 39 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Currently the image generated by the SDK does not support SD card boot, you

need to modify the following configuration:

PC$ cd $HOME/T113X/auto-t113x-linux/device/config/chips/t113/configs/myir-i

mage-yt113s3-emmc-full

PC$ $HOME/T113X/auto-t113x-linux/device/config/chips/t113/configs/ myir-ima

ge-yt113s3-emmc-full$ vim sys_config.fex

……

;--

;storage_type = boot medium, 0-nand, 1-sd, 2-emmc, 3-nor, 4-emmc3, 5-spinan

d -1(defualt)auto scan

;--

[target]

storage_type = 1

burn_key = 0

;--

PC$ $HOME/T113X/auto-t113x-linux/device/config/chips/t113/configs/ myir-ima

ge-yt113s3-emmc-full /longan$ vim

#kernel command arguments

earlycon=uart8250,mmio32,0x02501400

initcall_debug=0

console=ttyAS5,115200

nand_root=ubi0_5

mmc_root=/dev/mmcblk1p5

mtd_name=sys

rootfstype=ubifs,rw

init=/init

loglevel=7

……..

Note: nand image does not support SD card boot

mailto:sales.cn@myirtech.com

- 40 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes 2). SD boot image burning steps

Copy PhoenixCard_.zip from the user profile tools directory to any directory in

windows, double click PhoenixCard.exe file in PhoenixCard directory. Insert the

16GB SD card into the windows USB port via SD card reader, as shown below,

select "Firmware" path; select "Boot Card" and click "Burn Card" button. "button

to automatically complete the production.

Figure 4-1. Brush writing steps

The figure below (Figure 4-2) shows that the card is being burned and the process

is expected to take 3-5 minutes to complete (the time depends on the size of the

mirror)

mailto:sales.cn@myirtech.com

- 41 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

Figure 4-2. Swipe process

The following figure (Figure 4-3) shows that the burning of the card is complete,

while note that the output message indicates that the burning is complete, at this

time the SD card booter is successfully created, insert the SD card into the SD card

slot (J5) of the emmc or nand board, and then power on the development board

can be started.

Figure 4-3. Successful swipe

mailto:sales.cn@myirtech.com

- 42 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes 4.1.2. Making an SD card burner

1). Production card

In order to meet the needs of production burn-in, this method is suitable for mass

production burn-in method. The system to be burned is written to the onboard

eMMC or spi nand via the system on the SD card. Please follow the steps below to

complete the process:

The preparation work is the same as in section 4.1, and the operation steps are

more or less the same.

First open PhoenixCard program under windows (the location of the program is

explained in chapter 4.1 Preparation). Insert the 16GB SD card into the windows

USB port through the SD card reader, as shown in the figure below, select the

"Firmware" path; choose "Mass Production Card" and click the "Burn Card" button.

Click the "Burn" button to finish automatically.

Figure 4-4. production card

The subsequent production method is consistent with section 4.1.1, so we won't

go over it here.

2). Verify eMMC boot

mailto:sales.cn@myirtech.com

- 43 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Insert the SD burner card into the SD card slot (J5) of the emmc or nand board,

then power up the development board and wait for the burner to finish printing,

then power down and unplug the SD card and restart the development board.

Note: If the development board is started without unplugging the SD card after burning,
the image will be re-burned.

Because the burn-in printed information is more, only part of the important data

intercepted to display, the last Flash Success message indicates the completion of

the burn-in (nand board burn-in process information is different from the emmc

board, but the final burn-in will appear Flash Success message)

[07.110]begin to download part boot

partdata hi 0x0

partdata lo 0x1423000

sparse: bad magic

[09.469]successed in writting part boot

origin_verify value = 262bacf0, active_verify value = 262bacf0

[09.959]successed in verify part boot

[09.963]successed in download part boot

[09.966]begin to download part rootfs

partdata hi 0x0

partdata lo 0xf962f40

chunk 0(8515)

chunk 1(8515)

chunk 2(8515)

chunk 3(8515)

chunk 4(8515)

chunk 5(8515)

chunk 6(8515)

chunk 7(8515)

chunk 8(8515)

chunk 9(8515)

chunk 10(8515)

......

[84.409]successed in downloading boot0

mailto:sales.cn@myirtech.com

- 44 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes current bitmap buffer size is 0 and new bitmap size is 483.

pitch abs is 21 and glyph rows is 23.

current bitmap buffer size is 483 and new bitmap size is 529.

pitch abs is 23 and glyph rows is 23.

CARD OK

[84.431]sprite success

sprite_next_work=3

next work 3

SUNXI_UPDATE_NEXT_ACTION_SHUTDOWN

sunxi board shutdown

[87.441][mmc]: mmc exit start

[87.459][mmc]: mmc 2 exit ok

*** Flash Success ***

*** Flash Success ***

*** Flash Success ***

mailto:sales.cn@myirtech.com

- 45 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

5. Adapt to your own hardware

platform

In order to adapt to the user's new hardware platform, the first thing you need to

know is what resources are provided by MYIR's MYD-YT113X development board,

the specific information can be found in the "MYD-YT113X SDK Release Notes". In

addition, users need to have a more detailed understanding of the CPU chip

manual, as well as the MYC-YT113X core board product manual, pin definitions, in

order to facilitate the correct configuration and use of these pins according to the

actual function.

5.1. Configure sys_config.fex

sys_config.fex is a set of functional configuration files defined by Allwinner for T1.

This file can be used to define the pins, attributes, power supply, etc. of each node,

so that users can quickly configure the functions of the resources. In order to let

users master the sys_config.fex configuration and usage. This chapter will explain

how to use

Path to sys_config.fex file:

PC$: $HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/myi

r_xxx/sys_config.fex (xxx stands for different configurations)

Defining the property class method:

; version:

; machine:

;---

[product]

version = "100"

machine = "emmc"

;--

;debug_mode = 0-close printf, > 0-open printf

;--

mailto:sales.cn@myirtech.com

- 46 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes [platform]

eraseflag = 1

debug_mode = 8

;--

;storage_type = boot medium, 0-nand, 1-sd, 2-emmc, 3-nor, 4-emmc3, 5-spinan

d -1(defualt)auto scan

;--

[target]

storage_type = 2

burn_key = 0

[card0_boot_para]

card_ctrl = 0

card_high_speed = 1

card_line = 4

sdc_d1 = port:PF0<2><1><2><default>

sdc_d0 = port:PF1<2><1><2><default>

sdc_clk = port:PF2<2><1><2><default>

sdc_cmd = port:PF3<2><1><2><default>

sdc_d3 = port:PF4<2><1><2><default>

sdc_d2 = port:PF5<2><1><2><default>

bus-width = 4

cap-sd-highspeed =

cap-wait-while-busy =

no-sdio =

no-mmc =

sunxi-power-save-mode =

;--

[card2_boot_para]

card_ctrl = 2

card_high_speed = 1

mailto:sales.cn@myirtech.com

- 47 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes card_line = 4

sdc_clk = port:PC02<3><1><3><default>

sdc_cmd = port:PC03<3><1><3><default>

sdc_d0 = port:PC06<3><1><3><default>

sdc_d1 = port:PC05<3><1><3><default>

sdc_d2 = port:PC04<3><1><3><default>

sdc_d3 = port:PC07<3><1><3><default>

sdc_tm4_hs200_max_freq = 150

sdc_tm4_hs400_max_freq = 100

sdc_ex_dly_used = 2

;sdc_io_1v8 = 1

sdc_tm4_win_th = 8

sdc_dis_host_caps = 0x180

;sdc_erase = 2

;sdc_boot0_sup_1v8 = 1

;sdc_type = "tm4"

* Due to the need to obtain the relevant license for Allwinner materials, please contact
MYIR's technical support to obtain the document "sys_config.fex usage configuration
instructions.pdf" for the detailed meaning of the above two types of configuration
definitions.

5.2. Creating a device tree

5.2.1. Onboard Device Tree

Users can create their own device trees in the BSP source code, and generally do

not need to modify the code in the Bootloader section. Users only need to make

appropriate adjustments to the Linux kernel device tree according to the actual

hardware resources. The device trees in each part of the BSP of MYD-YT113X are

listed here for the user's reference, as shown in the following table:

Table 5-1. MYD-YT113X device tree list

Projects Device Tree Description

U-boot uboot-board.dts dts used by uboot

myir-t113-lvds.dtsi 7" single channel LVDS device tree

configuration

mailto:sales.cn@myirtech.com

- 48 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes myir-t113-lvds-dual.dtsi 19" dual LVDS device tree configuration

Kernel board.dts Base plate configuration resource, pin

resource configuration

sun8iw20p1.dtsi Core resourcing

myir-t113-lvds.dtsi 7" single channel LVDS device tree

configuration

myir-t113-lvds-dual.dtsi 19" dual LVDS device tree configuration

This SDK source code provides t113 and t113_i two models of five types of image

type configuration, their use of board.dts, uboot-board.dts in the following path

respectively:

PC$: $HOME/T113X/auto-t113x-linux/device/config/chips/t113/configs/ myir-ima

ge-yt113s3-emmc-core

PC$: $HOME/T113X/auto-t113x-linux/device/config/chips/t113/configs/ myir-ima

ge-yt113s3-emmc-full

PC$: $HOME/T113X/auto-t113x-linux/device/config/chips/t113/configs/ myir-ima

ge-yt113s3-nand

PC$: $HOME/T113X/auto-t113x-linux/device/config/chips/t113_i/configs/ myir-im

age-yt113i-core

PC$: $HOME/T113X/auto-t113x-linux/device/config/chips/t113_i/configs/ myir-im

age-yt113i-full

The device tree configuration file for using LVDS under uboot is at the following

path:

PC$: $HOME/T113X/T113Xauto-t113x-linux/brandy/brandy-2.0/u-boot-2018/arch

/arm/dts

The device tree configuration file for using LVDS under kernel is in the following

path:

PC$: $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4/arch/arm/boot/dts

mailto:sales.cn@myirtech.com

- 49 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes 5.2.2. Adding device trees

The Linux kernel device tree is a data structure that describes the on-chip and off-

chip device information in a unique syntax format. It is passed from the

BootLoader to the kernel, which parses it to form a dev structure associated with

the driver for use by the driver code.

Under "$HOME/T113X/T113Xauto-t113x-linux/kernel/linux-

5.4/arch/arm/boot/dts" in the kernel source code, you can see a large number of

platform device trees. If the device tree is suitable for MYD-YT113X, you can add a

custom device tree under the current path, such as:

PC$: $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4/arch/arm/boot/dts

The resources related to the MYC-YT113X core board are written into

"sun8iw20p1.dtsi" and "board.dts". Other extended interfaces and devices can be

referenced as follows (for reference only):

If you want to modify the configuration of different monitors, you need to modify

the following files (since only the full image provides a graphical display, only the

"board.dts" file in the following path will be modified)

$HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/myir-im

age-yt113s3-emmc-full/board.dts

The board.dts configuration is as follows:

The following example is a 7" LVDS display configuration. If you need to change

to a 19" dual LVDS display, turn on the corresponding configuration comment

and then comment on the original display configuration, as it does not support

simultaneous display.

// $HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/myir-i

mage-yt113s3-emmc-full/board.dts

#include "sun8iw20p1.dtsi"

#include "myir/myir-t113-lvds.dtsi"

//#include "myir/myir-t113-lvds-dual.dtsi"

mailto:sales.cn@myirtech.com

- 50 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes /{

 model = "sun8iw20";

 compatible = "allwinner,r528", "arm,sun8iw20p1";

 reg_vdd_cpu: vdd-cpu {

 compatible = "pwm-regulator";

 pwms = <&pwm 3 5000 0>;

 regulator-name = "vdd_cpu";

 regulator-min-microvolt = <810000>;

 regulator-max-microvolt = <1160000>;

 regulator-settling-time-us = <4000>;

 regulator-always-on;

 regulator-boot-on;

 status = "okay";

 };

After modifying board.dts, you also need to modify the uboot-board.dts file in the

same level directory, the modification method is the same as board.dts.

// $HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/myir-i

mage-yt113s3-emmc-full/uboot-board.dts

/*

 * Allwinner Technology CO., Ltd.

 */

/dts-v1/;

/* optee used 7MB: SHM 2M: OS: 1M: TA:4M*/

/*/memreserve/ 0x41900000 0x00100000;*/

/* DSP used 1MB */

/* /memreserve/ 0x42000000 0x00100000; */

#include "sun8iw20p1.dtsi"

#include "myir-t113-lvds.dtsi"

mailto:sales.cn@myirtech.com

- 51 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes //#include "myir-t113-lvds-dual.dtsi"

……

Finally the dual LVDS display also needs to be modified in the env.cfg file by

adding lvds_if_reg to the bootcmd

$HOME/T113X/auto-t113x-linux/device/config/chips/t113/configs/ myir-image-yt

113s3-emmc-full/longan/env.cfg

…………..

boot_dsp0=sunxi_flash read 43000000 ${dsp0_partition};bootr 43000000 0 0

boot_normal=sunxi_flash read 43000000 boot;bootm 43000000

boot_recovery=sunxi_flash read 43000000 recovery;bootm 43000000

boot_fastboot=fastboot

lvds_if_reg=mw.l 0x05461084 0xE0100000

#uboot system env config

bootdelay=3

#default bootcmd, will change at runtime according to key press

#default nand boot

bootcmd=run lvds_if_reg setargs_mmc boot_dsp0 boot_normal

5.3. Configuring CPU Function Pins

Realizing the control of a functional pin is one of the more complex system

development processes, which includes the configuration of the pin, the

development of the driver, the implementation of the application and other steps,

this section does not specifically analyze each part of the development process,

but rather to explain the implementation of functional pin control by example.

5.3.1. GPIO pin multiplexing

GPIO: General-purpose input/output, a very important resource in embedded

devices, which can be used to output high and low levels or read the state of the

pins as high or low.

MYD-YT113X package has peripheral controllers, these peripheral controllers and

external devices are generally through the control of GPIO to achieve, and the

mailto:sales.cn@myirtech.com

- 52 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes GPIO is used by peripheral controllers we call multiplexing (Alternate Function), to

give them more complex functions, such as the user can use the GPIO port and

external hardware for data interaction (such as UART), control the work of

hardware (such as LED, buzzer, etc.), read the working status of hardware signals

(such as interrupt signals), so the GPIO port is very widely used.

1). GPIO pin multiplexing uart4 function

To configure uart4 function, you need to find which pins can be multiplexed into

uart4 function first, the multiplexing relationship between pins can refer to "MYC-

YT113X-PinList" core board PinList list, the following will take uart4 as an

example to introduce how to configure gpio pins. (Explained by myir-image-

yt113s3-emmc-full mirror configuration)

⚫ Reference uart4 node

PC$: $HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/myi

r-image-yt113s3-emmc-full/board.dts

&uart4 {

 pinctrl-names = "default", "sleep";

 pinctrl-0 = <&uart4_pins_a>;

 pinctrl-1 = <&uart4_pins_b>;

 status = "okay";

};

⚫ View pin schematic connections

Check the schematic of the base board can be seen corresponding to the core

module pin 109 and 107, as shown in Figure 5-1:

Figure 5-1. Pinout schematic

⚫ View uart4 core module pinout

Check the core module PinList pins 109 and 107 can be seen corresponding to

PE4 and PE5, as shown in Figure 5-2:

mailto:sales.cn@myirtech.com

- 53 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

Figure 5-2. Pin Correspondence

⚫ Configuring Multiplexing Relationships

From Figure 5-2, we can see that PE4 and PE5 pins can be configured as

UART4_TX, UART4_RX.

PC$: $HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/myi

r-image-yt113s3-emmc-full/board.dts

 uart4_pins_a: uart4_pins@0 {

 pins = "PE4", "PE5";

 function = "uart4";

 drive-strength = <10>;

 bias-pull-up;

 };

 uart4_pins_b: uart4_pins@1 {

 pins = "PE4", "PE5";

 function = "gpio_in";

 };

⚫ Add serial port aliases

At this point, you need to add the serial port alias to the following path.

PC$: $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4/arch/arm/boot/dts/s

un8iw20p1.dtsi

/ {

mailto:sales.cn@myirtech.com

- 54 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes model = "sun8iw20";

 compatible = "allwinner,sun8iw20p1";

 interrupt-parent = <&gic>;

 #address-cells = <2>;

 #size-cells = <2>;

 aliases {

 serial0 = &uart0;

 serial1 = &uart1;

 serial2 = &uart2;

 serial3 = &uarT1;

 serial4 = &uart4;

 serial5 = &uart5;

};

Finally, update the device tree according to Chapter 3.6, Subsection 3, and burn

the new device tree to the development board.

5.3.2. Configure the function pin as GPIO function

This example uses the PD20 as a test GPIO and describes how to configure the

device nodes in the device tree and for use by the kernel driver in later chapters.

This example also gives a reference to control the reset, power and other control

functions of external devices. (using emmc full image as an example)

Just add nodes to the device tree。

PC$: $HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/myi

r-image-yt113s3-emmc-full/board.dts

gpioctr_device {

 compatible = "myir,gpioctr";

 status = "okay";

 gpioctr-gpios = <&pio PD 20 1 1 1 1>;

 };

5.3.3. LCD resource pin reallocation

mailto:sales.cn@myirtech.com

- 55 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes MYD-YT113X development board defines and implements many rich functions,

but also occupies a large number of pin resources, such as the user directly using

MYD-YT113X based on design development, will need to redefine and

reconfigure the pins. The following is an example of LCD multiplexing pin function,

multiplexing relationship view "MYC-YT113X-PinList" document。

See the following directory in the dts file, you can know that the lvds0 function

occupies PD0~10 pins, to freely allocate the use of these pins, first of all, these

pins will be released。

PC$: $HOME/T113X/T113Xauto-t113x-linux/device/config/chips/t113/configs/myi

r-image-yt113s3-emmc-full/board.dts

Before modification：

/*

 * Allwinner Technology CO., Ltd.

 */

/dts-v1/;

/* optee used 7MB: SHM 2M: OS: 1M: TA:4M*/

/*/memreserve/ 0x41900000 0x00100000;*/

/* DSP used 1MB */

/* /memreserve/ 0x42000000 0x00100000; */

#include "sun8iw20p1.dtsi"

#include "myir/myir-t113-lvds.dtsi"

//#include "myir/myir-t113-lvds-dual.dtsi"

...............

 lvds0_pins_a: lvds0@0 {

mailto:sales.cn@myirtech.com

- 56 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes allwinner,pins = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5", "PD6", "PD7

", "PD8", "PD9";

 allwinner,pname = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5", "PD6", "PD

7", "PD8", "PD9";

 allwinner,function = "lvds0";

 allwinner,muxsel = <3>;

 allwinner,drive = <3>;

 allwinner,pull = <0>;

 };

 lvds0_pins_b: lvds0@1 {

 allwinner,pins = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5", "PD6", "PD7

", "PD8", "PD9";

 allwinner,pname = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5", "PD6", "PD

7", "PD8", "PD9";

 allwinner,function = "lvds0_suspend";//io_disabled

 allwinner,muxsel = <7>;

 allwinner,drive = <3>;

 allwinner,pull = <0>;

 };

The following is the modified display, here we need to pay attention to the display

of the reference to comment out (#include "myir-t113-lvds.dtsi")。

Note: these pins are also referenced in “sun8iw20p1.dtsi” and “uboot-board.dts” in

the same level directory, so they should also be modified in this way, which is not shown

here。

After modification：

/*

 * Allwinner Technology CO., Ltd.

 */

/dts-v1/;

mailto:sales.cn@myirtech.com

- 57 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes /* optee used 7MB: SHM 2M: OS: 1M: TA:4M*/

/*/memreserve/ 0x41900000 0x00100000;*/

/* DSP used 1MB */

/* /memreserve/ 0x42000000 0x00100000; */

#include "sun8iw20p1.dtsi"

//#include "myir/myir-t113-lvds.dtsi"

//#include "myir/myir-t113-lvds-dual.dtsi"

...............

 lvds0_pins_a: lvds0@0 {

 allwinner,pins = " ";

 allwinner,pname = " ";

 allwinner,function = "lvds0";

 allwinner,muxsel = <3>;

 allwinner,drive = <3>;

 allwinner,pull = <0>;

 };

 lvds0_pins_b: lvds0@1 {

 allwinner,pins = " ";

 allwinner,pname = " ";

 allwinner,function = "lvds0_suspend";//io_disabled

 allwinner,muxsel = <7>;

 allwinner,drive = <3>;

 allwinner,pull = <0>;

};

5.4. Use your own configured pins

The pins configured in the device tree of u-boot or Kernel can be used in Kernel

to control the pins。

5.4.1. Use of GPIO pins in the kernel driver

mailto:sales.cn@myirtech.com

- 58 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes ⚫ Use of standalone IO drivers

In the first device tree example in section 5.3.2, the gpio node information has

been defined, the following will use the kernel driver to implement the GPIO

control (the PD20 pin to set 1 and set 0, if you need to test the change in pin level

using a multimeter).

//gpioctr.c

#include <linux/module.h>

#include <linux/of_device.h>

#include <linux/fs.h>

#include <linux/errno.h>

#include <linux/miscdevice.h>

#include <linux/kernel.h>

#include <linux/major.h>

#include <linux/mutex.h>

#include <linux/proc_fs.h>

#include <linux/seq_file.h>

#include <linux/stat.h>

#include <linux/init.h>

#include <linux/device.h>

#include <linux/tty.h>

#include <linux/kmod.h>

#include <linux/gfp.h>

#include <linux/gpio/consumer.h>

#include <linux/platform_device.h>

static int major = 0;

static struct class *gpioctr_class;

static struct gpio_desc *gpioctr_gpio;

static ssize_t gpio_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offs

et)

{

mailto:sales.cn@myirtech.com

- 59 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

 return 0;

}

static ssize_t gpio_drv_write (struct file *file, const char __user *buf, size_t size, loff_

t *offset)

{

 int err;

 char status;

 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

 err = copy_from_user(&status, buf, 1);

 gpiod_set_value(gpioctr_gpio, status);

 return 1;

}

static int gpio_drv_open (struct inode *node, struct file *file)

{

 gpiod_direction_output(gpioctr_gpio, 0);

 return 0;

}

static int gpio_drv_close (struct inode *node, struct file *file)

{

 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

 return 0;

}

static struct file_operations gpioctr_drv = {

 .owner = THIS_MODULE,

mailto:sales.cn@myirtech.com

- 60 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes .open = gpio_drv_open,

 .read = gpio_drv_read,

 .write = gpio_drv_write,

 .release = gpio_drv_close,

};

static int chip_demo_gpio_probe(struct platform_device *pdev)

{

 gpioctr_gpio = gpiod_get(&pdev->dev, "gpioctr", 0);

 if (IS_ERR(gpioctr_gpio)) {

 dev_err(&pdev->dev, "Failed to get GPIO for led\n");

 return PTR_ERR(gpioctr_gpio);

 }

 major = register_chrdev(0, "myir_gpioctr", &gpioctr_drv); /* /dev/gpioctr */

 gpioctr_class = class_create(THIS_MODULE, "myir_gpioctr_class");

 if (IS_ERR(gpioctr_class)) {

 printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

 unregister_chrdev(major, "gpioctr");

 gpiod_put(gpioctr_gpio);

 return PTR_ERR(gpioctr_class);

 }

 device_create(gpioctr_class, NULL, MKDEV(major, 0), NULL, "myir_gpioctr%

d", 0);

 return 0;

}

static int chip_demo_gpio_remove(struct platform_device *pdev)

{

mailto:sales.cn@myirtech.com

- 61 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes device_destroy(gpioctr_class, MKDEV(major, 0));

 class_destroy(gpioctr_class);

 unregister_chrdev(major, "myir_gpioctr");

 gpiod_put(gpioctr_gpio);

 return 0;

}

static const struct of_device_id myir_gpioctr[] = {

 { .compatible = "myir,gpioctr" },

 { },

};

static struct platform_driver chip_demo_gpio_driver = {

 .probe = chip_demo_gpio_probe,

 .remove = chip_demo_gpio_remove,

 .driver = {

 .name = "myir_gpioctr",

 .of_match_table = myir_gpioctr,

 },

};

static int __init gpio_init(void)

{

 int err;

 err = platform_driver_register(&chip_demo_gpio_driver);

 return err;

}

static void __exit gpio_exit(void)

{

 platform_driver_unregister(&chip_demo_gpio_driver);

mailto:sales.cn@myirtech.com

- 62 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes }

module_init(gpio_init);

module_exit(gpio_exit);

MODULE_LICENSE("GPL");

Compiling the driver code into modules using a separate Makefile can also be

configured directly into the kernel。

⚫ Configure the driver example into the kernel

Create a new "gpioctr.c" file in the "/drivers/char" folder of the kernel source code,

copy the above driver code into it, and modify the "Kconfig " and "Makefile" and

"defconfig".

In the “/drivers/char/Kconfig” file add:

config SAMPLE_GPIO

 tristate "this is a gpio test driver"

In the "/drivers/char/Makefile" file, add：

...

obj-$(CONFIG_SAMPLE_GPIO) += gpioctr.o

In the “arch/arm/configs/myd_yt113s3_emmc_full_defconfig” file, add

CONFIG_SAMPLE_GPIO=y

Update the kernel according to section 3.6, and then burn it to the development

board.

⚫ Driver examples compiled into separate modules

Add "gpioctr.c" to the working directory and copy the above driver code, then

write a separate Makefile program in the same directory.

PC$: $HOME/gpioctr$ ls

gpioctr.c Makefile

PC$: $HOME/gpioctr$ vi Makefile

KERN_DIR = $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4/

mailto:sales.cn@myirtech.com

- 63 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes obj-m += gpioctr.o

all:

 make -C $(KERN_DIR) M=`pwd` modules

clean:

 make -C $(KERN_DIR) M=`pwd` modules clean

 rm -rf modules.order

ab-y := a.o b.o

obj-m += ab.o

Load SDK environment variables to the current shell.(Load according to your

actual installation compilation chain directory)

PC$ export PATH=$PATH:/opt/gcc-linaro-5.3.1-2016.05-x86_64_arm-linux-gnueab

i/bin

Execute the make command to generate the "gpioctr.ko" driver module file。

PC$: $HOME/gpioctr$ make

make -C $HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.4/ M=`pwd` modul

es

make[1]: Entering directory '$HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.

4/'

 CC [M] /home/sur/gpioctr/gpioctr.o

 MODPOST /home/sur/gpioctr/Module.symvers

 CC [M] /home/sur/gpioctr/gpioctr.mod.o

 LD [M] $Home/gpioctr/gpioctr.ko

make[1]: Leaving directory '$HOME/T113X/T113Xauto-t113x-linux/kernel/linux-5.

4/'

PC$: $HOME/gpioctr$ ls

gpioctr.c gpioctr.ko gpioctr.mod gpioctr.mod.c gpioctr.mod.o gpioctr.o Makefi

le modules.order Module.symvers

mailto:sales.cn@myirtech.com

- 64 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes After successful compilation, the gpioctr.ko file can be transferred to the

development board via Ethernet, WIFI, U disk and other transfer media to load the

driver using the insmod command.

Different external devices have their own independent driver code and

architecture implementation, in different peripheral driver modification,

debugging, need to comply with their own driver framework. Such as touch

screen, keyboard, etc. need to use input driver architecture; ADC and DAC use IIO

architecture, display devices use DRM driver architecture, etc., this section does

not do specific explanation of all driver development。

5.4.2. User space using GPIO pins

The Linux operating system architecture is divided into user state and kernel state

(or user space and kernel). The user state is the active space for upper-level

applications, which must rely on the resources provided by the kernel, including

CPU resources, storage resources, and I/O resources. In order for the upper-layer

application to access these resources, the kernel must provide an interface for the

upper-layer application to access them: i.e., system calls。

A shell is a special application, commonly known as a command line, which is

essentially a command interpreter that goes down to system calls and up to

various applications. The reason for using Shell scripts, which can usually achieve

a very large function in just a few lines, is that these Shell statements usually do a

layer of encapsulation of system calls. To facilitate user-system interaction。

This section describes how to use the GPIO pins in the user state to control the

three basic ways。

➢ Shell Command

➢ System calls

➢ Library functions

⚫ Shell implementation of pin control

Shell control pins are essentially implemented by calling the file manipulation

interface provided by Linux. Using the debug interface to configure, each gpio's

PIN has four attributes, namely, multiplexing (function), data (data), drive

capability (dlevel), and pull up and down status (pull). The operation is as follows:

mailto:sales.cn@myirtech.com

- 65 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes [root@myir:/]# mount -t debugfs none /sys/kernel/debug

[root@myir:/]# cd /sys/kernel/debug/sunxi_pinctrl

To view the configuration of the pin:

[root@myir:/]# echo PD20 > sunxi_pin

[root@myir:/]# cat sunxi_pin_configure

pin[PD20] funciton: f

pin[PD20] data: 0

pin[PD20] dlevel: 20mA

pin[PD20] pull up: 0xffffff

pin[PD20] pull down: 0xffffff

pin[PD20] pull disable: 0x0

Modify pin properties:

[root@myir:/]# echo PD20 1 > pull

[root@myir:/]# cat sunxi_pin_configure

pin[PD20] funciton: f

pin[PD20] data: 0

pin[PD20] dlevel: 20mA

pin[PD20] pull up: 0x1

pin[PD20] pull down: 0xffffff

pin[PD20] pull disable: 0xffffff

⚫ Library functions for pin control

Starting with Linux 4.8, Linux introduced a new way of operating gpio, the GPIO

character device. Instead of using the previous SYSFS method of operating GPIOs

under the "/sys/class/gpio" directory, each GPIO group has a corresponding

gpiochip file under "/dev", e.g. "/dev/gpiochip0 corresponds to GPIOA, /dev/

gpiochip1 corresponds to GPIOB", etc.

Libgpiod library function implementation is based on C language due to the way

of gpiochip, so developers have implemented Libgpiod to provide some tools and

a simpler C API interface. libgpiod (Library General Purpose Input/Output device)

provides a complete API to developers, and also provides some applications

under user space to operate GPIO.

mailto:sales.cn@myirtech.com

- 66 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes The following will use PD20 as the operation GPIO pin to implement the C code

control example (alternately set high and low).

#include <errno.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/ioctl.h>

#include <unistd.h>

#include <linux/gpio.h>

int main(int argc, char **argv)

{

 struct gpiohandle_request req;

 struct gpiohandle_data data;

 char chrdev_name[20];

 int fd, ret;

 strcpy(chrdev_name, "/dev/gpiochip0");

 /* Open device: gpiochip5 for GPIO bank F */

 fd = open(chrdev_name, 0);

 if (fd == -1) {

 ret = -errno;

 fprintf(stderr, "Failed to open %s\n", chrdev_name);

 return ret;

 }

 /* request GPIO line: P4_1 */

 req.lineoffsets[0] = 33;

 req.flags = GPIOHANDLE_REQUEST_OUTPUT;

 memcpy(req.default_values, &data, sizeof(req.default_values));

mailto:sales.cn@myirtech.com

- 67 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes strcpy(req.consumer_label, "P4_1");

 req.lines = 1;

 ret = ioctl(fd, GPIO_GET_LINEHANDLE_IOCTL, &req);

 if (ret == -1) {

 ret = -errno;

 fprintf(stderr,"Failed to issue GET LINEHANDLE IOCTL (%d)\n",ret);

 }

 if (close(fd) == -1)

 perror("Failed to close GPIO character device file");

 /* Start GPIO ctr*/

 while(1) {

 data.values[0] = !data.values[0];

 ret = ioctl(req.fd, GPIOHANDLE_SET_LINE_VALUES_IOCTL, &data);

 if (ret == -1) {

 ret = -errno;

 fprintf(stderr,"Failed to issue %s (%d)\n", ret);

 }

 sleep(1);

 }

 /* release line */

 ret = close(req.fd);

 if (ret == -1) {

 perror("Failed to close GPIO LINEHANDLE device file");

 ret = -errno;

 }

 return ret;

Copy the above code into a gpioctr-test.c file and load the SDK environment

variables into the current shell:

PC$ export PATH=$PATH:/opt/gcc-linaro-5.3.1-2016.05-x86_64_arm-linux-gnueab

i/bin

mailto:sales.cn@myirtech.com

- 68 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Use the compile command $CC to generate the executable gpioctr.

PC$ $HOME/gpioctr$ $CC gpioctr-test.c -o gpioctr-test

Copy the executable file to the /usr/sbin directory of the development board

through the network (scp, etc.), u disk and other transfer media, you can enter

commands in the terminal can be run directly, using a multimeter can see the

P4_1 pin alternately high and low level changes.

[root@myir:/]# ./gpioctr-test

⚫ System call for pin control

The operating system provides a set of "special" interfaces for user programs to

call. For example, the user can request the system to open a file, close a file, or

read or write a file through a file system-related call, get the system time or set a

timer through a clock-related call, etc.

The pins are also resources that can be controlled by system calls. In 5.3.2 we have

completed the implementation of the driver for the pins, so we can make system

calls to control the pins controlled by this driver.

//gpiotest.c

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <string.h>

/*

 * ./gpiotest /dev/myir_gpioctr0 on

 * ./gpiotest /dev/myir_gpioctr0 off

 */

int main(int argc, char **argv)

{

 int fd;

 char status;

mailto:sales.cn@myirtech.com

- 69 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

 if (argc != 3)

 {

 printf("Usage: %s <dev> <on | off>\n", argv[0]);

 return -1;

 }

 fd = open(argv[1], O_RDWR);

 if (fd == -1)

 {

 printf("can not open file %s\n", argv[1]);

 return -1;

 }

 if (0 == strcmp(argv[2], "on"))

 {

 status = 1;

 write(fd, &status, 1);

 }

 else

 {

 status = 0;

 write(fd, &status, 1);

 }

 close(fd);

 return 0;

}

Copy the above code into a gpiotest-API.c file and load the SDK environment

variables into the current shell:

PC$ export PATH=$PATH:/opt/gcc-linaro-5.3.1-2016.05-x86_64_arm-linux-gnueab

i/bin

mailto:sales.cn@myirtech.com

- 70 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Use the compile command $CC to generate the executable gpiotest.

PC$ $HOME/gpioctr$ $CC gpiotest-API.c -o gpiotest-API

Copy the executable file to the “/usr/sbin” directory of the development board

through the network (scp, etc.), u disk and other transfer media, you can enter

commands in the terminal can be run directly (on means set high, off means set

low).

[root@myir:/]# ./gpiotest-API /dev/myir_gpioctr0 on

[root@myir:/]# ./gpiotest-API /dev/myir_gpioctr0 off

mailto:sales.cn@myirtech.com

- 71 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

6. How to add your application

The porting of Linux applications is usually divided into two phases, the

development and debugging phase and the production deployment phase. The

development debugging phase allows us to cross-compile our application using

the Mil-built SDK and copy it remotely to the target host for testing, while the

production deployment phase requires writing recipe files for the application and

building the production image using Buildroot.

6.1. Makefile based applications

A Makefile is actually a document that defines a set of compilation rules, it

records the details of how the source code is compiled! Once the Makefile is

written, only one make command is needed and the whole project is compiled

completely automatically, which greatly improves the efficiency of software

development. Makefile is commonly used in the development of Linux programs,

whether kernel, driver, or application.

make is a command tool that interprets the instructions in a makefile. When make

is executed, it searches for the Makefile (or makefile) text file in the current

directory and performs the corresponding operation. make automatically

determines whether the original file has been changed and automatically

recompiles the changed source code.

The following will be a practical example (in the MYD-YT113X development board

to implement the key control LED light switch) to describe the Makfile writing and

make execution process, Makefile has its own set of rules.

target ... : prerequisites ...

 command

➢ target can be an object file (target file), or an executable file, or a label.

➢ prerequisites are the files or targets needed to generate that target.

➢ command is also the command that make needs to execute.

sur@ubuntu:~/key-led$ vi Makefile

TARGET = $(notdir $(CURDIR))

objs := $(patsubst %c, %o, $(shell ls *.c))

mailto:sales.cn@myirtech.com

- 72 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes $(TARGET)_test:$(objs)

 $(CC) -o $@ $^

%.o:%.c

 $(CC) -c -o $@ $<

clean:

 rm -f $(TARGET)_test *.all *.o

 ${CC} -I . -c key_led.c

➢ $(notdir $(path))： means to remove the path name from the path

directory, leaving only the current directory name, for example, the

current Makefile directory is /home/sur/key_led, the execution will

become TARGET = key_led

➢ $(patsubst pattern, replacement,text) ：Replace the characters in the

text that match the format "pattern" with replacement, such as

$(patsubst %c, %o, $(shell ls *.c)), which means that the files in the

current directory with the .c suffix are listed first, and then replaced

with the .o suffix

➢ CC：Name of C compiler

➢ CXX: Name of C++ compiler

➢ clean: It is an agreed target

Key_led implementation code is as follows:

sur@ubuntu:~/key-led$ vi key_led.c

/File: Key_led.c

#include <linux/input.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

mailto:sales.cn@myirtech.com

- 73 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes /* ./key_led /dev/input/event0 noblock */

int main(int argc, char **argv)

{

 int fd,bg_fd;

 int err, len, i;

 unsigned char flag;

 unsigned int data[1];

 char *bg = "/sys/class/leds/LED0/trigger";

 struct input_event event;

 if (argc < 2)

 {

 printf("Usage: %s <dev> [noblock]\n", argv[0]);

 return -1;

 }

 if (argc == 3 && !strcmp(argv[2], "noblock"))

 {

 fd = open(argv[1], O_RDWR | O_NONBLOCK);

 }

 else

 {

 fd = open(argv[1], O_RDWR);

 }

 if (fd < 0)

 {

 printf("open %s err\n", argv[1]);

 return -1;

 }

 while (1)

 {

 len = read(fd, &event, sizeof(event));

 if (event.type == EV_KEY)

 {

 if (event.value == 1)//key down and up

mailto:sales.cn@myirtech.com

- 74 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes {

 printf("key test \n");

 bg_fd = open(bg, O_RDWR);

 if (bg_fd < 0)

 {

 printf("open %d err\n", bg_fd);

return -1;

 }

 read(bg_fd,&flag,1);

 printf("flag =%d\n",flag);

 if(flag == '0')

 {

 system("echo heartbeat > /sys/class/leds/LED0/trigger");

//led off

 //system("echo 0 > /sys/class/leds/LED0/brightness"); //l

ed off

 }

 else

 {

 system("echo none > /sys/class/leds/LED0/trigger"); //led

 off

 sleep(3);

 system("echo heartbeat > /sys/class/leds/LED0/trigger");

 }

 }

 }

 }

 return 0;

Use the make command to compile and generate an executable file on the target

machine.

Load the SDK environment variables to the current shell:

mailto:sales.cn@myirtech.com

- 75 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes PC$ export PATH=$PATH:/opt/gcc-linaro-5.3.1-2016.05-x86_64_arm-linux-gnueab

i/bin

make:

PC$ $HOME/key-led$ make

PC$ $HOME/key-led$ ls

key_led.c key_led.o key-led_test Makefile

As you can see from the results of the previous command, the compiler used is

the compiler created by setting the CC variables defined in the script, and the key-

led_test executable is copied to the /usr/sbin directory of the development board

via network (scp, etc.), u disk, and other transfer media:

[root@myir:/]# key-led_test /dev/input/event0

Note: If you build the target executable using the cross toolchain compiler and the
architecture of the build host is different from the architecture of the target machine, you
need to run the project on the target device.

6.2. Qt based applications

Qt is a cross-platform graphical application development framework that is used

on different size devices and platforms, while providing different copyright

versions for users to choose from. MYD-YT113X uses Qt version 5.12 for

application development. In Qt application development, it is recommended to

use QtCreator IDE, which can develop Qt applications under Linux PC and

automatically cross-compile them into ARM architecture programs for

development boards.

6.2.1. QtCreator installation and configuration

Get qtcreator installation package from QT official website or MYIR official

package QT official website download：

https://download.qt.io/development_releases/qtcreator/.

The QtCreator installer is a binary program that can be directly executed to

complete the installation . /qt-creator-opensource-linux-x86_64-5.0.0-rc1.run. For

installation and configuration details, please see "MYD-YT113X_MEasy HMI

Software Development Guide" or get more development guidance from the

official QTCreator website https://www.qt.io/product/development-tools。

mailto:sales.cn@myirtech.com
https://download.qt.io/development_releases/qtcreator/
https://www.qt.io/product/development-tools

- 76 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes 6.2.2. MEasy HMI2.x Compile and run

MEasy HMI 2.x is a set of QT5-based HMI framework developed by MYIR. The

project uses a mixture of QML and C++ programming, using QML to build UI

efficiently and conveniently, while C++ is used to implement business logic and

complex algorithms.

The source code of MEasy HMI2.x project "MYD-YT113X-

2023xxx\04_Sources\mxapp2.tar.gz" is available in MYIR's software distribution

package. It can be loaded and compiled by Qtcreator, remote debugging, etc. See

"MYD-YT113X_MEasy HMI Software Development Guide".

mailto:sales.cn@myirtech.com

- 77 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes

7. References
⚫ Linux kernel Open Source Community

https://www.kernel.org/

⚫ Buildroot Official Site

https://buildroot.org/

mailto:sales.cn@myirtech.com
https://www.kernel.org/
https://buildroot.org/downloads/

- 78 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Appendix A

Warranty & Technical Support Services

MYIR Electronics Limited is a global provider of ARM hardware and software tools, design

solutions for embedded applications. We support our customers in a wide range of services

to accelerate your time to market.
MYIR is an ARM Connected Community Member and work closely with ARM and many

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

prototype, and system integration or creating your own applications. Our products are used

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has an

experienced team and provides custom design services based on ARM processors to help

customers make your idea a reality.
The contents below introduce to customers the warranty and technical support services

provided by MYIR as well as the matters needing attention in using MYIR’s products.
Service Guarantee

MYIR regards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

packaging, shipping and other aspects and strive to provide products with best quality to

customers. We believe that only quality products and excellent services can ensure the long-

term cooperation and mutual benefit.
Price

MYIR insists on providing customers with the most valuable products. We do not pursue

excess profits which we think only for short-time cooperation. Instead, we hope to establish

mailto:sales.cn@myirtech.com

- 79 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes long-term cooperation and win-win business with customers. So we will offer reasonable

prices in the hope of making the business greater with the customers together hand in hand.
Delivery Time

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

quantity is greater than the number of inventory, the delivery time would be always four to six

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

in advance.
Technical Support

MYIR has a professional technical support team. Customer can contact us by email

(support@myirtech.com), we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

production.
After-sale Service

MYIR offers one year free technical support and after-sales maintenance service from the

purchase date. The service covers:
Technical support service

MYIR offers technical support for the hardware and software materials which have provided

to customers:
➢ To help customers compile and run the source code we offer;
➢ To help customers solve problems occurred during operations if users follow the

user manual documents;
➢ To judge whether the failure exists;
➢ To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical support

service:

mailto:sales.cn@myirtech.com

- 80 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes ➢ Hardware or software problems occurred during customers’ own development;

➢ Problems occurred when customers compile or run the OS which is tailored by

themselves;

➢ Problems occurred during customers’ own applications development;

➢ Problems occurred during the modification of MYIR’s software source code.

After-sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free

maintenance service since the purchase date. But following situations are not included in the

scope of our free maintenance service:
➢ The warranty period is expired;

➢ The customer cannot provide proof-of-purchase or the product has no serial

number;

➢ The customer has not followed the instruction of the manual which has caused the

damage the product;

➢ Due to the natural disasters (unexpected matters), or natural attrition of the

components, or unexpected matters leads the defects of appearance/function;

➢ Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the

boards, all those reasons which have caused the damage of the products or defects

of appearance;

➢ Due to unauthorized weld or dismantle parts or repair the products which has

caused the damage of the products or defects of appearance;

➢ Due to unauthorized installation of the software, system or incorrect configuration

or computer virus which has caused the damage of products.

Warm tips

mailto:sales.cn@myirtech.com

- 81 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes 1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the

LCD when receiving the goods. In case the LCD cannot run or no display, customer should

contact MYIR within 7 business days from the moment get the goods.
2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.
3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

please avoid clean the surface with fingers or hands to leave fingerprint.
4. Do not clean the surface of the screen with chemicals.
5. Please read through the product user manual before you using MYIR’s products.
6. For any maintenance service, customers should communicate with MYIR to confirm the

issue first. MYIR’s support team will judge the failure to see if the goods need to be returned

for repair service, we will issue you RMA number for return maintenance service after

confirmation.
Maintenance period and charges

➢ MYIR will test the products within three days after receipt of the returned goods

and inform customer the testing result. Then we will arrange shipment within one

week for the repaired goods to the customer. For any special failure, we will

negotiate with customers to confirm the maintenance period.

➢ For products within warranty period and caused by quality problem, MYIR offers

free maintenance service; for products within warranty period but out of free

maintenance service scope, MYIR provides maintenance service but shall charge

some basic material cost; for products out of warranty period, MYIR provides

maintenance service but shall charge some basic material cost and handling fee.

Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be responsible

by user; MYIR will pay for the return shipping cost to users when the product is repaired. If

the warranty period is expired, all the shipping cost will be responsible by users.

mailto:sales.cn@myirtech.com

- 82 -

MYIR Electronics Limited

Web: www.myirtech.com Mail: sales@myirtech.com Tel: 0755-22316235

System Development Guide

Notes Products Life Cycle

MYIR will always select mainstream chips for our design, thus to ensure at least ten years

continuous supply; if meeting some main chip stopping production, we will inform customers

in time and assist customers with products updating and upgrading.
Value-added Services

1. MYIR provides services of driver development base on MYIR’s products, like serial port,

USB, Ethernet, LCD, etc.
2. MYIR provides the services of OS porting, BSP drivers’ development, API software

development, etc.
3. MYIR provides other products supporting services like power adapter, LCD panel, etc.
4. ODM/OEM services.
MYIR Electronics Limited
Room 04, 6th Floor, Building No.2, Fada Road,
Yunli Inteiligent Park, Bantian, Longgang District.
Support Email: support@myirtech.com
Sales Email: sales@myirtech.com
Phone: +86-755-22984836
Fax: +86-755-25532724
Website: www.myirtech.com

mailto:sales.cn@myirtech.com

	Revision History
	CONTENT
	1. Overview
	1.1. Software Resources
	1.2. Document Resources

	2. Development Environment
	2.1. Developing Host Environment
	⚫ Host Hardware
	⚫ Host Operating System
	⚫ Prerequisite Package Installation

	2.2. Software Environment
	2.2.1. Information Acquisition
	2.2.2. Install cross compilation tool chain
	⚫ Copy the SDK to the Linux directory
	⚫ View compiled chain file
	⚫ Extracting compilation chain files
	⚫ Installing and testing the compilation chain

	3. Build development board image using SDK
	3.1. Introduction
	3.2. Get the source code
	3.2.1. Use the SDK source code provided by MYIR (recommended)
	3.2.2. Get the source code via github

	3.3. Understanding the linux SDK structure
	3.3.1. buildroot Introduction
	3.3.2. kernel
	3.3.3. brandy
	3.3.4. platform
	3.3.5. tools
	3.3.6. Allwinner test system
	3.3.7. device
	⚫ MYD-YT113-S3 Model Configuration Explained
	⚫ MYD-YT113-I Model Configuration Explained

	3.4. Linux SDK configuration and build
	1). Step 1 “./build.sh config”
	⚫ MYD-YT113-S3 Model Configuration Selection
	⚫ MYD-YT113-I Model Configuration Selection

	2). Step 2 “./build.sh”
	3). Qt Compilation
	4). Step 3 “./build.sh pack”

	3.5. Onboard u-boot compilation
	3.5.1. Compile u-boot separately
	1). Obtain u-boot source code
	2). Configuration and Compilation
	⚫ Go to the source code directory
	⚫ Load the toolchain in the SDK
	⚫ Load the defconfig configuration file
	⚫ Modify uboot configuration
	⚫ Compile and update uboot

	3.5.2. Compile u-boot under linux SDK (recommended)

	3.6. Onboard Kernel Compilation and Update
	1). Get the kernel source code
	2). Modify kernel configuration
	⚫ Loading compilation chain
	⚫ Go to the kernel directory
	⚫ Load defconfig configuration
	⚫ Open the kernel configuration screen

	3). Update the device tree

	4. Burning the system image
	4.1. Create SD card image
	⚫ Preparation
	4.1.1. Making an SD card bootloader (using the myir-image-yt113s3-emmc-full system as an example)
	1). Modify the configuration file to make the SD image
	2). SD boot image burning steps

	4.1.2. Making an SD card burner
	1). Production card
	2). Verify eMMC boot

	5. Adapt to your own hardware platform
	5.1. Configure sys_config.fex
	5.2. Creating a device tree
	5.2.1. Onboard Device Tree
	5.2.2. Adding device trees

	5.3. Configuring CPU Function Pins
	5.3.1. GPIO pin multiplexing
	1). GPIO pin multiplexing uart4 function
	⚫ Reference uart4 node
	⚫ View pin schematic connections
	⚫ View uart4 core module pinout
	⚫ Configuring Multiplexing Relationships
	⚫ Add serial port aliases

	5.3.2. Configure the function pin as GPIO function
	5.3.3. LCD resource pin reallocation

	5.4. Use your own configured pins
	5.4.1. Use of GPIO pins in the kernel driver
	⚫ Use of standalone IO drivers
	⚫ Configure the driver example into the kernel
	⚫ Driver examples compiled into separate modules

	5.4.2. User space using GPIO pins
	⚫ Shell implementation of pin control
	⚫ Library functions for pin control
	⚫ System call for pin control

	6. How to add your application
	6.1. Makefile based applications
	6.2. Qt based applications
	6.2.1. QtCreator installation and configuration
	6.2.2. MEasy HMI2.x Compile and run

	7. References
	⚫ Linux kernel Open Source Community
	⚫ Buildroot Official Site

	Appendix A
	Warranty & Technical Support Services

