
MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 1 -

MYD-YT507H Android System
Development Guide

File Status：

[] Draft

[√] Release

FILE ID： MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

VERSION： V1.0[DOC]

AUTHOR： Licy

CREATED： 2022-09-21

UPDATED： 2022-11-18

Copyright © MYIR Electronics Limited 2010-2022 all rights reserved

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 2 -

Revision History

VERSION AUTHOR PARTICIPANT DATE DESCRIPTION

V1.0[DOC] Licy 20220921 Initial version

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 3 -

CONTENT

MYD-YT507H Android System Development Guide.............................. - 1 -

Revision History ..- 2 -

CONTENT..- 3 -

1. Overview...- 5 -

1.1. Software Resources ... - 7 -

1.2. Document Resources..- 7 -

2. Development Environment ... - 8 -

2.1. Developing Host Environment..- 8 -

2.2. Introduction of Software Development Tools .. - 10 -

3. The Android SDK Structure ...- 11 -

3.1. Introduction... - 11 -

3.2. Get the Source Code.. - 11 -

3.2.1. Get Compressed Source Code(Preferred) ...- 11 -

3.2.2. Get Source Code from GitHub .. - 12 -

3.2.3. Recognize the longan Structure ... - 12 -

3.2.4. kernel .. - 13 -

3.2.5. brandy ...- 13 -

3.2.6. tools ...- 13 -

3.2.7. test ... - 14 -

3.2.8. device ..- 14 -

4. Configuration and Build of the Android System.....................................16

4.1. Board Level Support Package ... 16

4.2. Configuration and Build of Board-level Support Packages17

4.3. U-boot Compilation and Update ...19

4.3.1. Compile U-Boot Under the Linux Bsp Project 19

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 4 -

4.4. Kernel Compilation and Update...20

4.4.1. Compile Kernel in a Standalone Cross-compiler Environment.......20

4.5. Build of the Android System... 22

4.5.1. Understand the Source Code Structure of Android............................22

4.5.2. Configuring the Android Build Environment... 24

5. How to Burn System Image.. - 30 -

5.1. How to Flash with PhoenixSuit ...- 30 -

5.2. Make TF Card Starter ..- 33 -

5.3. Make TF Card Burner ..- 36 -

6. Porting to Fit Your Hardware Platform...- 38 -

6.1. How do I Configure Your sys_config.fex ...- 38 -

6.2. How do I Create Your Device Tree ..- 39 -

6.2.1. Onboard Device Tree .. - 39 -

6.2.2. Add a Device Tree .. - 40 -

6.3. How to Configure CPU Pins Based on Your Hardware- 42 -

6.3.1. GPIO Pins Configuration Method.. - 42 -

6.4. How to Use Self-configured Pins...- 45 -

6.4.1. How to Use GPIO Pins in Kernel Driver ..- 45 -

6.4.2. Configuration of HAL Layer ..- 52 -

7. How to Add Your Application..- 54 -

7.1. Pre Installed APK ..- 54 -

7.1.1. Pre Install to the system/app Directory ... - 54 -

7.1.2. Pre to the System/preinstall Directory ... - 55 -

8. Resources.. - 56 -

Appendix A.. - 57 -

Warranty & Technical Support Services ... - 57 -

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 5 -

1. Overview
Android operating system is a free and open source mobile operating system

based on Linux kernel developed by Google. This system is mainly used for

mobile devices, such as smartphones and tablets.

The hierarchical architecture of the Android system is very clear, and its platform

consists of five parts: application, application framework, system library, Android

runtime, and Linux kernel. As shown in the figure below:

Figure 1-1. Android Framework

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 6 -

 System Apps

The Android platform includes by default the main applications, including email,

SMS, calendar, maps, browser, contacts, etc. These programs are written in Java

language, but of course you can also write your own software to replace the

programs provided by Android.

 API FRAMEWORK

The Android application framework is the basis for developers to develop. It

consists of 9 main parts: view system, content provider, window manager, activity

manager, notification manager, location manager, resource manager, phone

manager and package manager.

 LIBRARIES

It includes two parts, core library and Android runtime.

 Core library:

Android contains a collection of C/C++ libraries for use by the various

components of the Android system. Its available to developers through Android's

application framework. It includes system C libraries, media libraries, interface

management libraries, graphics libraries, database engine, font libraries, etc.

 Runtime:

Although Android uses Java language to write applications, it does not use J2ME

to execute Java programs, but uses Android runtime which is used by Android

itself.Android runtime includes two parts: core library and Dalvik virtual machine.

 HAL（Hardware Abstraction）

HAL is located at the interface layer between the operating system kernel and the

hardware circuitry, and its purpose is to abstract the hardware and hide the

platform-specific hardware interface details.

 LINUX KERNEL

The operating system in the Android platform uses Linux as the kernel, which

includes a display driver, camera driver, Flash memory driver, Binder (IPC) driver,

keyboard driver, WIFI driver, Audio driver, and a power management section.

This article introduces the complete process of customizing a complete

embedded Android system based on Allwinner T507-H Android Q(10) SDK project

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 7 -

and MYIR Core Board, which includes the preparation of development

environment, code acquisition, and how to port Bootloader, Kernel, customize

android to suit your application needs. file system for your application. We first

introduce how to build the system image for MYD-YT507H development board

based on the source code we provide, and how to burn the built image to the

development board. For those who are developing projects based on the MYC-

YT507H core board, we focus on the method and some key points of porting this

set of system to the user's hardware platform, so that users can quickly customize

the system image to fit their hardware.

This document does not contain an introduction to the open source Android

project and Linux kernel related basics, and is suitable for embedded Linux system

developers and embedded Linux BSP developers and Android system engineers

who have some development experience. For some specific functions that users

may use in the process of secondary development, we will also provide

application notes for R&D personnel to refer to as appropriate, see the document

list in Table 2-5 of "MYD-YT507H Android SDK Release Notes" for specific

information.

1.1. Software Resources

MYD-YT507H can be equipped with Android 10 system, which provides rich

system resources and other software resources. This includes documentation,

code and various development and debugging tools for Windows desktop

environment and PC Linux system, application development routines, etc. For

specific included software information, please refer to the description in Chapter 2

Software Information in the "MYD-YT507H Android SDK Release Notes".

1.2. Document Resources

Depending on the user's use of the development board for each different purpose.

Different types of documents and manuals such as Release Notes, Getting Started

Guide, Evaluation Guide, Development Guide, Application Notes, and Frequently

Asked Questions will be provided to customers. The specific list of documents is

described in Table 2-5 of the "MYD-YT507H Android SDK Release Notes".

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 8 -

2. Development Environment
This chapter introduces some hardware and software environments required for

the development process based on the MYD-YT507H development board,

including the necessary development host environment, essential software tools,

code and data acquisition, etc. Specific preparations will be described in detail

below.

2.1. Developing Host Environment

How to build the development environment for Allwinner T5 series processor

platform. By reading this chapter, you will understand the installation and use of

related hardware tools, software development and debugging tools. You will also

be able to quickly set up the relevant development environment to prepare for

the development and debugging later. Allwinner T5 series processors are SMP

multi-core architecture processors with 4 ARM Cortex A53 cores, which can run

Android system.

 Host Hardware

The build of the entire SDK package project has high requirements for the

development host, requiring a processor with a dual-core CPU or higher, 8GB or

more of memory, and a 200GB hard drive or higher configuration. It can be a PC

or server with a Linux system installed, or a virtual machine running Linux.

 Host Operating System

There are many choices of host operating system for building Android projects,

usually you choose to build on the local host with Fedora, openSUSE, Debian,

Ubuntu, RHEL or CentOS Linux distributions installed, here we recommend

Ubuntu 20.04 64bit desktop system (Ubuntu18.04 64bit and Ubuntu21.04 64bit

are both available), and subsequent development will be introduced with this

system as an example.

 Installation of essential packages

Install the necessary development dependencies on the host side first

sudo apt-get update

sudo apt-get install build-essential gcc libncurses5-dev bison flex texinfo

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 9 -

sudo apt-get install zlib1g-dev gettext libssl-dev autoconf

sudo apt-get install autoconf

sudo apt-get install automake

sudo apt-get install libtool

sudo apt-get install linux-libc-dev:i386

sudo apt-get install git

sudo apt-get install gnupg

sudo apt-get install flex

sudo apt-get install bison

sudo apt-get install gperf

sudo apt-get install build-essential

sudo apt-get install zip

sudo apt-get install curl

sudo apt-get install libc6-dev

sudo apt-get install libncurses5-dev:i386

sudo apt-get install x11proto-core-dev

sudo apt-get install libx11-dev:i386

sudo apt-get install libreadline6-dev:i386

sudo apt-get install libgl1-mesa-glx:i386

sudo apt-get install libgl1-mesa-dev

sudo apt-get install g++-multilib

sudo apt-get install mingw32

sudo apt-get install tofrodos

sudo apt-get install python-markdown

sudo apt-get install libxml2-utils

sudo apt-get install xsltproc

sudo apt-get install zlib1g-dev:i386

sudo apt-get install gawk

sudo apt-get install texinfo

sudo apt-get install gettext

sudo apt-get install openjdk-8-jdk

The above packages need to be installed manually by the user, if you want to

install them all automatically you can copy all the commands into a script file.

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 10 -

Other non-required configuration packages

sudo dpkg-reconfigure dash #choose no

sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/libGL.so

sudo apt-get install zlib1g-dev # Install if libz.so is missing

sudo apt-get install u-boot-tools

2.2. Introduction of Software Development Tools

In the process of customizing the applicable Linux system and debugging will

need to use a number of debugging, burning tools, provided under the CD-ROM

image directory /03-Tools/ in MYIR provides some of the tools, briefly described

as follows:

 Driver Software Installation：

In a Windows environment, the USB device driver is automatically installed when

the target board device is powered up and the USB cable is plugged in. If the

installation is successful, the device Android Phone, identified by the red oval in

the figure below, will appear in the Windows Device Manager.

Figure 2-1. Driver Identification

 Software Burning Installation：

Software PhoenixSuit(v1.19)：Available for USB online burn-in systems

Software PhoenixCard(4.2.4)：It can be used for Micro SD burn-in card creation

and Micro SD boot card creation.

The installation packages for these two programs are located in /tools/tools_win/,

after unpacking there will be two versions in English and Chinese, just choose one.

Once the sdk is compiled and packaged, it can be burned by PhoenixSuit, as

described in detail later.

Note: T5 requires PhoenixSuit (v1.19) and PhoenixCard (4.2.4) or higher. Otherwise,

it may cause problems such as inability to perform card upgrades.

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 11 -

3. The Android SDK Structure
3.1. Introduction

Android SDK development kit, which integrates BSP, android system, standalone

IP and test, can be used both as a BSP development and IP verification platform

and as an embedded Android system for mass production.

The functionality of the Android SDK includes the following four parts：

 BSP development, including bootloader, uboot and kernel.

 Android file system development, including mass-produced embedded android sys

tems.

 IP verification and distribution platform, including gpu, cedarx, gstreamer, security

and other private packages. It also gives the IP usage and system integration demos

for quick use by third parties.

 Testing, including board-level testing and system testing.

The android SDK files and data for the MYD-YT507H development board are

available in the /04_sources/ directory in the iso image provided by MYIR, to help

developers build an android system image that can run on the MYD-YT507H

development board.

3.2. Get the Source Code

We provide two ways to get the source code, one is to get the zip package

directly from the MYIR CD image /04-sources/ directory, the other is to use repo

to get the source code located on github live updates to build, please choose one

of them to build according to the actual needs.

3.2.1. Get Compressed Source Code(Preferred)

The compressed source package is located at MYIR Development Kit Profile /04-

Sources/YT507H-Android10-t5-A4.9.170-X.X.X.tar.bz2/ (X.X.X stands for the

current version number). Copy the tarball to a user-specified directory, such as the

“$HOME/work/t507-android” directory, which will be used as the top-level

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 12 -

directory for subsequent builds, and all directories of the SDK appear after

unpacking as follows：

PC$ cd $HOME/work/t507-android

PC$ tar -jxvf YT507H-Android10-t5-A4.9.170-X.X.X.tar.bz2

android longan

android Directory for AOSP source and HAL source package.
 longan Directory for BSP source package.

3.2.2. Get Source Code from GitHub

Currently the BSP source code and Buildroot source code of MYD-YT507H

development board are hosted on github and will be kept updated for a long

time, please see "MYD-YT507H Android SDK Release Notes" for the code

repository address. Users can use repo to get and synchronize the code on github.

Here's how to do it：

PC$ mkdir $HOME/work/t507-android

PC$ cd $HOME/work/t507-android

PC$ export REPO_URL='https://mirrors.tuna.tsinghua.edu.cn/git/git-repo/'

PC$ repo init -u https://github.com/MYIR-ALLWINNER/myir-t5-android-manifest.

git --no-clone-bundle --depth=1 -b master -m myir-t5-android10-1.0.0.xml

PC$ repo sync

. . .

PC$ android longan

After successful code synchronization, you will also get an SDK folder in the

“$HOME/work/t507-android” directory, which contains the path to the source

code or source code repository related to the MYD-YT507H development board,

with the same directory structure as the one extracted from the zip package.

3.2.3. Understand the BSP Structure

longan is a linux BSP package.

├── brandy

├── build

├── build.sh

├── device

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 13 -

├── kernel

├── out

├── test

└── tools

It is mainly composed of brandy, kernel.

 brandy includes uboot2018；

 kernel is linux 4.9.170 kernel；

3.2.4. kernel

The linux kernel source code directory. The current kernel version is linux 4.9.170,

and the above directory structure is consistent with the standard linux kernel

except for the modules directory, which is where we store external modules that

are not integrated with the kernel's menuconfig.

3.2.5. brandy

There is a brandy2.0 version in the brandy directory, currently T507 uses

brandy2.0 version and its directory structure is:

├── spl-pub

├── tools

└── u-boot-2018

Note: The default code compilation process does not compile uboot, and users

need to compile it themselves when they need to modify uboot. The specific

compilation method is described later.

3.2.6. tools

tools_win is a tool for compiling and packaging, tools_win is a tool for burning on

the PC side, etc.

tools/

├── build

├── codecheck

├── pack

└── tools_win

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 14 -

3.2.7. test

Dragonboard provides fast board-level testing.

3.2.8. device

├── config

│ ├── chips

│ │ └── t507

│ ├── common

│ │ ├── debug

│ │ ├── dtb

│ │ ├── hdcp

│ │ ├── imagecfg

│ │ ├── partition

│ │ ├── sign_config

│ │ ├── toc

│ │ ├── tools

│ │ └── version

│ └── rootfs_tar

├── bin （Startup files used during packaging）

│ ├── bl31.bin

│ ├── boot0_nand_sun50iw9p1.bin （boot0 boot file for nand）

│ ├── boot0_sdcard_sun50iw9p1.bin （boot0 boot file for emmc）

│ ├── fes1_sun50iw9p1.bin （Initialization file for burn tool）

│ ├── optee_sun50iw9p1.bin （optee）

│ ├── sboot_sun50iw9p1.bin （Safe boot bin, not supported at this time）

│ ├── u-boot-sun50iw9p1.bin （uboot 的 bin）

├── boot-resource

│ ├── boot-resource

│ │ ├── bat

│ │ ├── bootlogo.bmp (Boot screen, update bootlogo to replace this file)

│ └── boot-resource.ini

├── configs

│ ├── default (Default platform-based configuration)

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 15 -

│ │ ├── BoardConfig.mk

│ │ ├── boot_package.cfg (Boot package content configuration for boot)

│ │ ├── diskfs.fex

│ │ ├── dragon_toc_android.cfg

│ │ ├── dragon_toc.cfg

│ │ ├── env_burn.cfg

│ │ ├── env.cfg (Boot parameters passed from uboot to linux)

│ │ ├── env_dragon.cfg

│ │ ├── image.cfg

│ │ ├── image_dragonboard.cfg

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

16

4. Configuration and Build of the

Android System
The previous chapters have described the complete process of building a system

image based on the android SDK project running on the MYD-YT507H

development board, and burning the image to the development board. Since

many of the pins of the MYC-YT507H core board have the feature of multiple

functions, there will always be some differences between the base board designed

based on the MYC-YT507H core board and the MYB-YT507H in the actual project.

These differences may be the removal of the display, adding more GPIOs, or the

need to add more serial ports, and possibly expand some peripherals through SPI,

I2C, USB, etc.; this chapter describes the specific process of developing and

customizing your own system from a system developer's point of view, laying the

foundation for adapting your own hardware later.

4.1. Board Level Support Package

A board-level support package (BSP) is a collection of information that defines

how a particular hardware device, device set, or hardware platform is supported.

the BSP includes information about the hardware features on the device and

kernel configuration information, as well as any other hardware drivers required.In

some cases, the BSP contains individually licensed intellectual property (IP) for

one or more components.

Usually according to the different stages of hardware boot, we divide the BSP into

Bootloader part and Kernel part. The hardware BSP code designed with MYC-

YT507H core board can be viewed in the part of linux SDK.

Brandy contains only the Bootloader part of the spl and u-boot, this part mainly

implements the core hardware, such as DDR, Clock initialization and the kernel

boot. Based on the MYC-YT507H core board hardware to modify this part of the

content.

├── spl-pub

├── tools

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

17

└── u-boot-2018

The kernel contains the Linux kernel part, which mainly implements the kernel and

peripheral firmware content.

kernel/

├── linux 4.9

When designing a product using MYIR's core board, the bootloader section can

be left unmodified if there are no special needs. You need to pay more attention

to the development and debugging of the product kernel driver and the design of

the application software. Subsequent chapters will describe kernel development

and application development in detail.

4.2. Configuration and Build of Board-level Support Packages

If you need to compile the board-level support package, you need to perform the

following steps and go to the longan directory.

PC/longan$./build.sh config

PC/longan$./build.sh

Execute . /build.sh config and select the configuration in the subsequent dialogue .

Choice can be selected by either entering a number.

Enter the string corresponding to the number.

PC/longan$./build.sh config

Welcome to mkscript setup progress

All available platform:

0. android //Android option

1. linux //linux option

Choice [linux]:0

All available ic:

0. t507

Choice [myir]: 0

All available board:

0. evb

1. evb2

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

18

Choice [evb]: 0

Go to the longan directory and execute the following command.

PC/longan$./build.sh

Figure 4-1. BSP Construction Completed

Table 4-1. Description of Parameters

Compilation problem analysis：

Executing . /build.sh config gives the following problem

Figure 4-2. Configuration Failure

Type Command Description

Overall

compilation

./build.sh config Compile configuration, pop-up compile selection

./build.sh autoconfig Compile configuration according to the parameters passed in,

without popping up the compile selection

./build.sh Compile the SDK according to the compilation configuration

./build.sh clean Clear process files and target files

./build.sh distclean Clear all generated files

Partial

compilation

./build.sh brandy Compile brandy(uboot)

./build.sh kernel Compiling the kernel

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

19

Figure 4-3. Failed to Compile the Kernel

Since python2 is required to configure the kernel, please check if python2 is

already installed in your development environment; if not, please check section

2.1 or execute the following command：

PC$ sudo apt-get install python

Check if the current version is python2

PC$ python --version

Python 2.7.18

Please switch to python2 version if it is not.

4.3. U-boot Compilation and Update

U-boot is a very feature-rich open source bootloader, including kernel boot,

download updates and many other aspects of the embedded field is very widely

used, check the official website for more information http://www.denx.de/wiki/U-

Boot/WebHome

T5 platform also uses Boot chains as boot programs, different Boot chains mode

will correspond to different boot stages.

4.3.1. Compile U-Boot Under the Linux Bsp Project

Once the user has modified the U-boot code according to the iterative

development process in this document，he entire image can also be built using

the SDK.

Compiling uboot source code：

http://www.denx.de/wiki/U-Boot/WebHome
http://www.denx.de/wiki/U-Boot/WebHome

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

20

PC/longan$./build.sh brandy

Packed files：

PC/longan$./build.sh pack

4.4. Kernel Compilation and Update

Linux kernel is a very large open source kernel that is used in various distributions

of operating systems. Linux kernel is widely adopted in embedded systems due to

its portability, multiple network protocol support, independent module

mechanism, MMU and many other rich features.

At the same time T5 also supports Linux kernel, will get long-term stable updates,

MYD-YT507H using T5 kernel port, the latest support for Linux kernel version

4.9.170.

4.4.1. Compile Kernel in a Standalone Cross-compiler Environment

4.4.1.1. Obtaining Kernel Source Code

Copy the development package /04-Source/YT507H-android10-t5-A4.9.170-

X.X.X.tar.bz (X.X.X represents the current version) to the specified custom

directory, unzip it into the source directory and check the corresponding file

information

PC/longan$ cd kernel/

The catalog contains：

 Source Code: Soft Links Directory：linux-4.9

 Source Code：myir-t5-kernel

lrwxrwxrwx 1 lcy root 15 10 Month 19 17:47 linux-4.9 -> myir-t5-kernel/

drwxr-xr-x 29 lcy root 4096 3 Month 22 10:21 myir-t5-kernel

4.4.1.2. Configuring the Kernel (Optional)

MYIR has integrated most of the features into the kernel and generally does not

require configuration. To add special features, the peripheral drivers should be

configured as follows.

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

21

 Go to the Kernel Directory

PC/longan$ cd kernel/linux-4.9

 Create the Output Folder Build

PC/longan$ mkdir -p ../build

 Configuring the Kernel

PC/longan$ make ARCH=arm64 O="$PWD/../build" sun50iw9p1smp_longan_defc

onfig

If you need to configure the kernel or want to turn on one of the kernel driver

functions, you can also use the following method.

PC/longan$ cd ../build

PC/longan$ make menuconfig

Figure 4-4. Kernel Configuration

4.4.1.3. Compiling with Linux BSP

Compiling kernel source code：

PC/longan$./build.sh kernel

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

22

Packaged files：

PC/longan$./build.sh pack

4.5. Build of the Android System

Since you need to rely on the BSP file built by longan when building the android

file system, you need to build the BSP file first when building the android burner

package.

4.5.1. Understand the Source Code Structure of Android

├── Android.bp -> build/soong/root.bp

├── art

├── bionic

├── bootable

├── bootstrap.bash -> build/soong/bootstrap.bash

├── build

├── cts

├── dalvik

├── developers

├── development

├── device

├── external

├── frameworks

├── hardware

├── kernel

├── libcore

├── libnativehelper

├── Makefile

├── out

├── packages

├── pdk

├── platform_testing

├── prebuilts

├── repo

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

23

├── sdk

├── system

├── test

├── toolchain

├── tools

└── vendor

 art：New ART operating environment

 bionic： Google development system C library, open source under BSD license (c++)

 Bootable：System boot-related code

 build：Storage system compilation rules and configuration of basic development pac

kages such as generic

 cts android：Compatibility Test Suite Standards

 dalvik：Dalvik Virtual Machine

 developer：Developer Directory

 development：Related to application development

 device： Equipment-related configuration

 docs：Reference Document Catalog

 external：Open Source Module Related

 frameworks：Application framework, core part of Android system, written in java and

c++

 hardware：Mainly the code of the hardware abstraction layer

 libcore：Core library related documents

 libnativehelper：Dynamic libraries to implement the foundations of JNI

 out：The compiled code is entered in this directory

 pdk：Abbreviation for Plug Development Kit, local development kit

 paltform_test：Platform Testing

 prebuilts：Some source code compiled under x86 and ARM architecture

 sdk：SDK and Emulator

 package：Application packages

 system：Strata file system libraries, applications and components

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

24

 toolchain：Toolchain files

 tools：Tool files

 makefile：Global Makefile, used to define compilation rules

4.5.2. Configuring the Android Build Environment

You can start to configure and build the system by going to the android directory.

Configuring the Environment

Use the command：source build/envsetup.sh

PC/android$ source build/envsetup.sh

including device/softwinner/common/vendorsetup.sh

Configure the Device

Use the command：lunch

PC/android$ lunch

You're building on Linux

Lunch menu... pick a combo:

1. aosp_arm-eng

2. aosp_arm64-eng

3. aosp_blueline-userdebug

4. aosp_bonito-userdebug

5. aosp_car_arm-userdebug

6. aosp_car_arm64-userdebug

7. aosp_car_x86-userdebug

8. aosp_car_x86_64-userdebug

9. aosp_cf_arm64_phone-userdebug

10. aosp_cf_x86_64_phone-userdebug

...

32. mercury_evb-user

33. mercury_evb-userdebug

34. mercury_evb2-user

35. mercury_evb2-userdebug

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

25

36. mini_emulator_arm64-userdebug

37. mini_emulator_x86-userdebug

38. mini_emulator_x86_64-userdebug

39. poplar-eng

40. poplar-user

41. poplar-userdebug

42. qemu_trusty_arm64-userdebug

43. uml-userdebug

Which would you like? [aosp_arm-eng] 33

Select 33 .mercury_evb-userdebug mode

==

PLATFORM_VERSION_CODENAME=REL

PLATFORM_VERSION=10

TARGET_PRODUCT=mercury_evb

TARGET_BUILD_VARIANT=userdebug

TARGET_BUILD_TYPE=release

TARGET_ARCH=arm

TARGET_ARCH_VARIANT=armv7-a-neon

TARGET_CPU_VARIANT=cortex-a7

HOST_ARCH=x86_64

HOST_2ND_ARCH=x86

HOST_OS=linux

HOST_OS_EXTRA=Linux-5.15.0-43-generic-x86_64-Ubuntu-20.04.5-LTS

HOST_CROSS_OS=windows

HOST_CROSS_ARCH=x86

HOST_CROSS_2ND_ARCH=x86_64

HOST_BUILD_TYPE=release

BUILD_ID=QP1A.191105.004

OUT_DIR=out

==

Get BSP Package

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

26

Use the command：extract-bsp

PC/android$ extract-bsp

Copy /home/myir/t507h-android-0829/longan/out/t507/evb/android/bImage to /

home/myir/t507h-android-0829/android/device/softwinner/mercury-evb/kernel

Copy /home/myir/t507h-android-0829/longan/out/t507/evb/android/dtbo.img to

/home/myir/t507h-android-0829/android/device/softwinner/mercury-evb/dtbo.i

mg

Copy /home/myir/t507h-android-0829/longan/out/t507/evb/android/lib/modules

/*/* to /home/myir/t507h-android-0829/android/device/softwinner/mercury-evb/

modules!

Copy /home/myir/t507h-android-0829/longan/out/t507/evb/android/sunxi.dtb to

/home/myir/t507h-android-0829/android/device/softwinner/mercury-evb/sunxi.

dtb

Building Systems

Use make command to compile Android file system (make -jx where x represents

the number of compilation threads, according to the actual situation of the server

to configure or not), the initial compilation time of android source code will be

long, need to wait patiently：

PC/android$ make

==

PLATFORM_VERSION_CODENAME=REL

PLATFORM_VERSION=10

TARGET_PRODUCT=mercury_evb

TARGET_BUILD_VARIANT=userdebug

TARGET_BUILD_TYPE=release

TARGET_ARCH=arm

TARGET_ARCH_VARIANT=armv7-a-neon

TARGET_CPU_VARIANT=cortex-a7

HOST_ARCH=x86_64

HOST_2ND_ARCH=x86

HOST_OS=linux

HOST_OS_EXTRA=Linux-5.15.0-43-generic-x86_64-Ubuntu-20.04.5-LTS

HOST_CROSS_OS=windows

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

27

HOST_CROSS_ARCH=x86

HOST_CROSS_2ND_ARCH=x86_64

HOST_BUILD_TYPE=release

BUILD_ID=QP1A.191105.004

OUT_DIR=out

==

Starting ninja...

[96% 53/55] build check-all-partition-sizes

The sum of sizes of [system vendor product] is within BOARD_SUPER_PARTITION_

SIZE:

630833152+89174016+182136832 == 902144000 <= 1610612736 == 16106127

36

The sum of sizes of [system vendor product] is within BOARD_SB_SIZE:

630833152+89174016+182136832 == 902144000 <= 1602224128 == 160222412

8

The sum of sizes of [sb] is within BOARD_SUPER_PARTITION_SIZE:

1602224128 == 1602224128 <= 1610612736 == 1610612736

[100% 55/55] Target super fs image for debug: out/target/product/mercury-evb/s

uper.img

2022-09-21 18:20:26 - build_super_image.py - INFO : Building super image from

info dict...

2022-09-21 18:20:26 - sparse_img.py - INFO : Total of 154012 4096-byte output

blocks in 13 input chunks.

2022-09-21 18:20:26 - sparse_img.py - INFO : Total of 21771 4096-byte output b

locks in 7 input chunks.

2022-09-21 18:20:26 - sparse_img.py - INFO : Total of 44467 4096-byte output b

locks in 9 input chunks.

2022-09-21 18:20:26 - common.py - INFO : Running: "lpmake --metadata-size

65536 --super-name super --metadata-slots 2 --device super:1610612736 --group

sb:1602224128 --partition system:readonly:630833152:sb --image system=out/ta

rget/product/mercury-evb/system.img --partition vendor:readonly:89174016:sb --

image vendor=out/target/product/mercury-evb/vendor.img --partition product:re

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

28

adonly:182136832:sb --image product=out/target/product/mercury-evb/product.i

mg --sparse --output out/target/product/mercury-evb/super.img"

2022-09-21 18:20:36 - common.py - INFO : lpmake I 09-21 18:20:26 713 713 b

uilder.cpp:937] [liblp]Partition system will resize from 0 bytes to 630833152 bytes

lpmake I 09-21 18:20:26 713 713 builder.cpp:937] [liblp]Partition vendor will resi

ze from 0 bytes to 89174016 bytes

lpmake I 09-21 18:20:26 713 713 builder.cpp:937] [liblp]Partition product will re

size from 0 bytes to 182136832 bytes

2022-09-21 18:20:36 - build_super_image.py - INFO : Done writing image out/ta

rget/product/mercury-evb/super.img

[W][2022-09-21T18:18:24+0800][3240596] void cmdline::logParams(nsjconf_t *)():

260 Process will be GID/EGID=0 in the global user namespace, and will have grou

p root-level access to files

build completed successfully (02:30 (mm:ss))

Package the Image

Use the command：pack

Generate a burnable image package under the specified path /work/t507h-

android/longan/out.

PC/android$ pack

boot-resource.fex Len: 0x753400

Vboot-resource.fex Len: 0x4

env.fex Len: 0x20000

Venv.fex Len: 0x4

boot.fex Len: 0x2000000

Vboot.fex Len: 0x4

super.fex Len: 0x35252ff4

Vsuper.fex Len: 0x4

recovery.fex Len: 0x2000000

Vrecovery.fex Len: 0x4

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

29

vbmeta.fex Len: 0x2000

Vvbmeta.fex Len: 0x4

vbmeta_system.fex Len: 0x1000

Vvbmeta_system.fex Len: 0x4

vbmeta_vendor.fex Len: 0x1000

Vvbmeta_vendor.fex Len: 0x4

dtbo.fex Len: 0x200000

Vdtbo.fex Len: 0x4

BuildImg 0

Dragon execute image.cfg SUCCESS !

----------image is at----------

/home/myir/t507h-android-0829/longan/out/t507_android10_evb_uart0.img

pack finish

use pack4dist for release

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 30 -

5. How to Burn System Image
The core board and development board of MYC-YT507H series designed by MYIR

is based on Allwinner's T5 series microprocessor, which has various boot methods,

so different tools and methods are needed to update the system. Users can

choose different ways to update according to their needs. The update methods

are mainly as follows：

 PhoenixSuit burn-in: Suitable for R&D debugging, testing and other

scenarios.

 Make an SD card launcher: Suitable for R&D debugging, quick start-up

and other scenarios.

 Create SD card burner：Suitable for mass production burn-in of eMMC.

5.1. How to Flash with PhoenixSuit

1). Tool Requirements

 One development board

 Two USB to Type_C cables

 12V power adapter

 PhoenixSuit Official Software

2). Setting Up the Hardware

Connect the hardware, connect the J6 OTG interface of the development board to

the computer, and plug in the power adapter.

3). Burning the System Under Windows

Use the OTG USB cable to connect the development board and the host computer,

first press and hold the FEL key and then press the power on key to reset the

system, release the FEL key after about two seconds. Open the windows device

manager, you can find the USB device driver automatically installed and

recognized.

Figure 5-1. USB Connection to PC

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 31 -

If you find a yellow exclamation mark, the driver is not automatically installed, you

can find the corresponding driver file (64bit USBDriver_64.zip and 32bit

USBDriver.rar) under the SDK directory /t507/tools/tools_win/ and unzip it

manually to install it.

For OTG full burn test, double-click the PhoenixSuit.exe file in the PhoenixSuit

directory.

Figure 5-2. PhoenixSuit Program

In the following screen, click "One Click" and then click "Browse" to select the

firmware image file

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 32 -

Figure 5-3. Burning Image

In the following screen, click "Yes" to enter the formatting upgrade mode

Figure 5-4. Upgrading Firmware

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 33 -

Wait for the burn-in to complete, the following interface pops up when the burn-

in is complete

Figure 5-5. Burn-in completed

Use the OTG USB cable to connect the development board and the host computer,

first press and hold the FEL key and then press the power on button to reset the

system, release the FEL key after about two seconds and wait for the burn-in to

complete. In the same way, other configuration items such as BOOT and ROOTFS

can be checked to brush separately.

5.2. Make TF Card Starter

The following steps are all made under Windows system.

1). Preparation

 SD card (no less than 8 GB)

 MYD-YT507H Development Board

 Create image tool PhoenixCard (path: \03-Tools\myir tools)

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 34 -

Table 5-1. Image Package List

Image Name Package Name Applicable Core Boards

myir-image-android t507_android10_evb_uart0.img MYC-YT507H

2). Make SD Card Boot

Copy PhoenixCard.zip from the user profile tools directory to any directory in

windows, double click PhoenixCard.exe file in PhoenixCard directory. Insert the

8GB SD card into the windows USB port via SD card reader, as shown below,

select "Firmware" path; select "Boot Card" and click "Burn Card" button. Click the

"Burn Card" button to finish automatically.

Figure 5-6. Burning Program

The process of burning the card is underway and is expected to take 3-5 minutes

to complete (depending on the size of the package).

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 35 -

Figure 5-7. Burning Image

Finish burning the card, and also note the output message indicating that the

burning is complete.

Figure 5-8. Burning Completed

When the writing is finished, you can use this micro SD for booting, insert the

card slot (J8) on the back of the development board and set the dip switch to

(S0/S1/S2/S3: 0 1 1 1) and power up again to boot the system with the micro SD

card.

Note: When using a micro sd card as a boot card to boot myir-image-android,

you need to modify the boot parameters debug interface in uboot to interrupt

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 36 -

the uboot countdown. Modify the file system mount location under the uboot

terminal. Enter the following command:

=> env set mmc_root /dev/mmcblk1p4

=> saveenv

/dev/mmcblk1p4 represents the fourth partition of the micro sd card.

5.3. Make TF Card Burner

In order to meet the needs of production burn-in, this method is suitable for mass

production burn-in method. The system to be burned is written to the onboard

eMMC through the system in the SD card. Please follow the steps below to

complete the process.

 Create SD Card Bootloader

The purpose of making an SD card bootloader is to use SD as a medium to flush

eMMC.

Figure 5-9. Mass Production Card Creation

Choose "mass production card" to create, the production method is the same as chapter

5.2, here will not be repeated.

 SD Card Burning eMMC

Insert the SD into the SD Card slot (J8) on the back of the development board and

set the dip switch to (S0/S1/S2/S3: 0 1 1 1) to start the system. Plug in the power

and automatically start the burn-in system inside the SD Card, you can use the

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 37 -

debug serial port to check the update status, it will finish after about 3-5 minutes

(depending on the package size).

 Verify eMMC boot

After burning the system image to eMMC via Micro SD Card, you need to turn off

the computer and pull out the SD card to switch the boot mode to eMMC

(S0/S1/S2/S3: 1 0 1 1) for booting.

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 38 -

6. Porting to Fit Your Hardware

Platform
In order to adapt to your new hardware platform, you need to know what

resources MYIR's MYD-YT507H development board provides. For details, see

MYD-YT507H Android SDK Release Notes. In addition, users also need to have a

detailed understanding of the CPU chip manual, as well as the product manual of

MYC-YT507H core board, pin definition, in order to facilitate the correct

configuration and use of these pins according to the actual function.

6.1. How to Configure Your sys_config.fex

sys_config.fex is a set of function configuration files defined by T5. This file can be

used to define pins, properties, power supply of each node, so that users can

quickly configure the function of resources.To enable users to master

sys_config.fex configuration and usage.This chapter will explain how to use it

sys_config.fex file path:

PC$: device/config/chips/t507/configs/evb/sys_config.fex

Define attribute class methods:

[product]

version = "100"

machine = "demo2"

[platform]

eraseflag = 1

debug_mode = 0

;--

;[target] system bootup configuration

;boot_clock = CPU boot frequency, Unit: MHz

;storage_type = boot medium, 0-nand, 1-card0, 2-card2, -1(defualt)auto scan

;advert_enable = 0-close advert logo 1-open advert logo (Only valid under m

ulti-core startup)

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 39 -

;--

[target]

boot_clock = 1008

storage_type = -1

advert_enable = 0

burn_key = 1

Define pin mode:

[card0_boot_para]

card_ctrl = 0

card_high_speed = 1

card_line = 4

sdc_d1 = port:PF0<2><1><3><default>

sdc_d0 = port:PF1<2><1><3><default>

sdc_clk = port:PF2<2><1><3><default>

sdc_cmd = port:PF3<2><1><3><default>

sdc_d3 = port:PF4<2><1><3><default>

sdc_d2 = port:PF5<2><1><3><default>

;sdc_type = "tm1"

* Due to the relevant authorization, please contact The technical support of MYIR

to obtain the details of the above two configuration definitions in the document

Android_10_sys_config.fex Usage Configuration Description files.

6.2. How to Create Your Device Tree

6.2.1. Onboard Device Tree

Users can create their own device trees in the BSP source code, generally without

modifying the code in the Bootloader section.You only need to adjust the Linux

kernel device tree based on actual hardware resources.The device tree list in each

part of BSP of MYD-YT507H is listed here for user development reference. The

specific content is shown in the following table:

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 40 -

Table 6-1. MYD-YT507H Device Tree List

Project Device Tree Instructions
U-boot sys_config.fex sys_config.fex configuration (see 6.1)

Kernel sys_config.fex sys_config.fex configuration (see 6.1)

board.dts Backplane Configuration Resources

myir-yt507.dtsi Resources are configured internally

on the core board

sun50iw9p1-myir.dtsi Core Resource Allocation

sun50iw9p1-myir-pinctrl.dtsi Pin configuration

display/myir-hdmi-1920x1080-1lvds-7-

1024x600.dtsi

HDMI and LVDS dual display device

tree configuration

display/myir-lcd-1lvds-7-1024-600.dtsi 7 inch single channel LVDS device

tree configuratio

display/myir-lcd-2lvds-21-1920-1080.dtsi 21 inch dual LVDS device tree

configuration

display/myir-tv.dtsi CVBS-OUT Device tree configuration

Display/myir-hdmi.dtsi HDMI Device tree configuration

DTS path:

longan/device/config/chips/t507/configs/evb/sys_config.fex

longan/device/config/chips/t507/configs/evb/board.dts

kernel/linux-4.9/arch/arm64/boot/dts/sunxi/

kernel/linux-4.9/arch/arm64/boot/dts/sunxi/display/

6.2.2. Add a Device Tree

Linux kernel device tree is a data structure that describes on-chip and off-chip

device information in a unique syntactic format.The BootLoader passes it to the

kernel, which forms the dev structure associated with the driver for the driver

code to use after parsing.

In the kernel source /arch/arm64/boot/dts/sunxi can see a large number of

platform device trees.If a device tree is suitable for MYD-YT507H, you can add a

custom device tree to the current path, for example:

Path: longan/kernel/linux-4.9/arch/arm64/boot/dts/sunxi

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 41 -

We write the resources related to MYC-YT507H core board into “sun50iw9p1-my

ir.dtsi”, “myir-yt507.dtsi” and “board.dts”.Other extended interfaces and devi

ces can reference them, as shown below (for reference only) :

PATH: longan/device/config/chips/t507/configs/evb/board.dts

The board.dts configuration is as follows：

/*

* myir-YT507H support.

*/

/dts-v1/;

#include "myir-yt507.dtsi"

#include "display/myir-hdmi-1920x1080-1lvds-7-1024x600.dtsi"

//#include "display/myir-lcd-1lvds-7-1024-600.dtsi"

//#include "display/myir-lcd-lvds-10.1-1280-800.dtsi"

//#include "display/myir-lcd-2lvds-7-1024-600.dtsi"

//#include "display/myir-lcd-2lvds-21-1920-1080.dtsi"

//#include "display/myir-hdmi.dtsi"

//#include "display/myir-tv.dtsi"

/{

model = "myir-yt507h-full";

compatible = "allwinner,t507", "arm,sun50iw9p1";

aliases {

pmu0 = &pmu0;

standby_param = &standby_param;

};

soc@03000000 {

twi2: twi@0x05002800{

status = "okay";

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 42 -

};

};

}；

6.3. How to Configure CPU Pins Based on Your Hardware

Realizing the control of a function pin is one of the more complex system

development process, which includes the configuration of the pin, the

development of the drive, the implementation of the application and so on. This

section does not analyze the development process of each part in detail, but

explains the control implementation of the function pin by example.

6.3.1. GPIO Pins Configuration Method

GPIO: general-purpose input/output is a very important resource in embedded

devices. You can output high and low levels through them or read pin states

through them - high or low levels.

T5 encapsulates a large number of peripheral controllers. The communication

between these peripheral controllers and external devices is generally realized by

controlling GPIO, and the GPIO is used by peripheral controllers as Alternate

Function, which them with more complex functions. For example, users can use

GPIO port to interact with external hardware (such as UART), control hardware

work (such as LED, buzzer, etc.), and read hardware working status signals (such

as interrupt signals).Therefore, GPIO port is widely used.

6.3.1.1. Understand the Pin Alternate Function Through the Manual

1). Determine the Pins of the Core Board

All the available GPIOs of the core board can be found through the pin list file

MYC-YT507H Pin List V1.0 organized by MYIR. At the same time, you can

determine the default conditions used by the current SDK.

Here we will take an actual GPIO pin as an example: PE19

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 43 -

Figure 6-1. Gpio Pin List

2). View the Alternate Function Relationship of GPIOs

Check the hardware manual or T5 pin V0.9 file to obtain the PE19 pin Alternate

Function relationship.

Table 6-2. PE19 Pin Alternate Function list(Reference)

Funct

ion

PinNa

me

IOTy

pe

IO

State

up/d

own

Multi2(DD

R4)

Multi3(

DDR3)

Multi4(LP

DDR3)

Multi5(LP

DDR4)

Multi

6

PIN

power

PE PE19 I/O DIS NCSI-D15 PE-

EIN

T20

VCC-

PE

6.3.1.2. GPIO is Referenced in Device Tree

1). Configure Function Pins as GPIO Function Instances

You can design a GPIO control node in the device tree to access and control the

node with specific drivers. The following chapters will specifically implement how

the driver refers to the device tree node.

The configuration method is to add nodes in the device tree.

Path:device/config/chips/myir/configs/full/board.dts

//device/config/chips/myir/configs/full/board.dts

gpioctr_device {

compatible = "myir,gpioctr";

status = "okay";

gpioctr-gpios = <&gpioe 19 0>;

};

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 44 -

2). Configure Pins for Other Specific Functions

The MYD-YT507H development board defines and implements many rich

functions, but it also occupies a large number of pin resources. Here, the LVDS

display control pin (LVDF0-V0P) is taken as an example to illustrate how to use

the GPIO Alternate Function function. As above, learn about the Alternate

Function relationship of pins first.

Table 6-3. LCD-D0 Pin Alternate Function List

Functi

on

pinNa

me

IO

State

up/dow

n

Multi2(D

DR4)

Multi3(DDR

3)

Multi4(LPD

DR3)

Multi5(L

PDDR4)

Mult

i6

PIN

power

PD PD0 I/O DIS LCD-D0 LVDF0-V0P TS0-CLK PD-

EIN

T0

VCC-

PD

It can be seen from the above table that the Multi3 Alternate Function

relationship of PD0 is used as the data signal of LVDS.

The following pin configurations can be performed:

//kernel/linux-4.9/arch/arm64/boot/dts/sunxi/sun50iw9p1-myir-pinctrl.dtsi

lvds0_pins_a: lvds0@0 {

allwinner,pins = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5", "

PD8", "PD9", "PD6", "PD7";

allwinner,pname = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5",

"PD8", "PD9", "PD6", "PD7";

allwinner,function = "lvds0";

allwinner,muxsel = <3>; //3 stands for Multi3

allwinner,drive = <3>;

allwinner,pull = <0>;

};

lvds0_pins_b: lvds0@1 {

allwinner,pins = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5", "

PD8", "PD9", "PD6", "PD7";

allwinner,pname = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5",

"PD8", "PD9", "PD6", "PD7";

javascript:void(0);

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 45 -

allwinner,function = "lvds0_suspend";

allwinner,muxsel = <7>;

allwinner,drive = <3>;

allwinner,pull = <0>;

};

6.4. How to Use Configured Pins

The pins configured in the device tree of Kernel can be used in Kernel to control

the pins.

6.4.1. How to Use GPIO Pins in Kernel Driver

6.4.1.1. Use of Standalone IO Drivers

In the first device tree example in Section 6.3.1, the gpio node information has

been defined. Next, the kernel driver will be used to implement GPIO control (set

PE19 pin to 1 and 0, and use a multimeter to test the change of pin level if

necessary).

//gpioctr.c

#include <linux/module.h>

#include <linux/of_device.h>

#include <linux/fs.h>

#include <linux/errno.h>

#include <linux/miscdevice.h>

#include <linux/kernel.h>

#include <linux/major.h>

#include <linux/mutex.h>

#include <linux/proc_fs.h>

#include <linux/seq_file.h>

#include <linux/stat.h>

#include <linux/init.h>

#include <linux/device.h>

#include <linux/tty.h>

#include <linux/kmod.h>

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 46 -

#include <linux/gfp.h>

#include <linux/gpio/consumer.h>

#include <linux/platform_device.h>

/* 1. Determine the master device number */

static int major = 0;

static struct class *gpioctr_class;

static struct gpio_desc *gpioctr_gpio;

/* 2. Implement the corresponding open/read/write functions and fill in the file_o

perations structure */

static ssize_t gpio_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offs

et)

{

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

return 0;

}

static ssize_t gpio_drv_write (struct file *file, const char __user *buf, size_t size, loff_

t *offset)

{

int err;

char status;

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

err = copy_from_user(&status, buf, 1);

gpiod_set_value(gpioctr_gpio, status);

return 1;

}

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 47 -

static int gpio_drv_open (struct inode *node, struct file *file)

{

gpiod_direction_output(gpioctr_gpio, 0);

return 0;

}

static int gpio_drv_close (struct inode *node, struct file *file)

{

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

return 0;

}

/* Define your own file_operations structure */

static struct file_operations gpioctr_drv = {

.owner = THIS_MODULE,

.open = gpio_drv_open,

.read = gpio_drv_read,

.write = gpio_drv_write,

.release = gpio_drv_close,

};

/* Get GPIO from platform_device

* Tell the kernel about the file_operations structure: register the driver

*/

static int chip_demo_gpio_probe(struct platform_device *pdev)

{

/* Defined in the device tree: gpioctr-gpios=<... >; */

gpioctr_gpio = gpiod_get(&pdev->dev, "gpioctr", 0);

if (IS_ERR(gpioctr_gpio)) {

dev_err(&pdev->dev, "Failed to get GPIO for led\n");

return PTR_ERR(gpioctr_gpio);

}

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 48 -

/* Register file_operations */

major = register_chrdev(0, "myir_gpioctr", &gpioctr_drv); /* /dev/gpioctr */

gpioctr_class = class_create(THIS_MODULE, "myir_gpioctr_class");

if (IS_ERR(gpioctr_class)) {

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

unregister_chrdev(major, "gpioctr");

gpiod_put(gpioctr_gpio);

return PTR_ERR(gpioctr_class);

}

device_create(gpioctr_class, NULL, MKDEV(major, 0), NULL, "myir_gpioctr%

d", 0);

return 0;

}

static int chip_demo_gpio_remove(struct platform_device *pdev)

{

device_destroy(gpioctr_class, MKDEV(major, 0));

class_destroy(gpioctr_class);

unregister_chrdev(major, "myir_gpioctr");

gpiod_put(gpioctr_gpio);

return 0;

}

static const struct of_device_id myir_gpioctr[] = {

{ .compatible = "myir,gpioctr" },

{ },

};

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 49 -

/* Define platform_driver */

static struct platform_driver chip_demo_gpio_driver = {

.probe = chip_demo_gpio_probe,

.remove = chip_demo_gpio_remove,

.driver = {

.name = "myir_gpioctr",

.of_match_table = myir_gpioctr,

},

};

/* Register platform_driver in the entry function */

static int __init gpio_init(void)

{

int err;

err = platform_driver_register(&chip_demo_gpio_driver);

return err;

}

/* If you have an entry function, you should have an exit function: when you unins

tall the driver, you will call this exit function */

// Uninstall platform_driver

static void __exit gpio_exit(void)

{

platform_driver_unregister(&chip_demo_gpio_driver);

}

/* Other refinements: provide device information and automatically create device

nodes */

module_init(gpio_init);

module_exit(gpio_exit);

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 50 -

MODULE_LICENSE("GPL");

Compiling driver code into modules using separate makefiles can also be

configured directly into the kernel.

6.4.1.2. Example Drivers Configured Directly Into the Kernel

Create a “gpioctr.c” file under the sample folder of the kernel source code, copy

the above driver code into it, and modify “Kconfig” and “Makefile” and

“sun50iw9p1_myir_defconfig”.

Add “Kconfig”：

//linux/sample/Kconfig

config SAMPLE_GPIO

tristate "this is a gpio test driver"

depends on CONFIG_GPIOLIB

Add “Makefile”：

//linux/sample/Makefile

SPDX-License-Identifier: GPL-2.0

Makefile for Linux samples code

obj-$(CONFIG_SAMPLE_ANDROID_BINDERFS) += binderfs/

...

obj-$(CONFIG_SAMPLE_GPIO) += gpioctr.o

Add “sun50iw9p1_longan_defconfig”：

//linux-4.9/arch/arm64/configs/sun50iw9p1_longan_defconfig

CONFIG_SAMPLES=y

CONFIG_SAMPLE_GPIO=y

CONFIG_SAMPLE_RPMSG_CLIENT=m

Follow section 4.4.1.3 to compile and update the kernel.

6.4.1.3. The Driver Sample Compiled as a Separate Module

Add “gpioctr.c” to your working directory and copy the driver code above.

Write a separate “Makefile” in the same directory.

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 51 -

Change KERN_DIR

#KERN_DIR = # Directory of development board kernel source code

KERN_DIR = $HOME/work/t507/kernel/linux-4.9/

obj-m += gpioctr.o

all:

make -C $(KERN_DIR) M=`pwd` modules

clean:

make -C $(KERN_DIR) M=`pwd` modules clean

rm -rf modules.order

To compile a.c, b.c into ab.ko, you can specify this:

ab-y := a.o b.o

obj-m += ab.o

Load SDK environment variables to the current shell.

PC$ export PATH=$PATH:/opt/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gn

u/bin

Run the make command to generate the “gpioctr.ko” driver module file.

root@ubuntu:/home/myir# make

make -C /home/lcy/work/t507/kernel/linux-4.9/ M=`pwd` modules

make[1]: Entering directory '/home/lcy/work/t507/kernel/linux-4.9/'

CC [M] /home/myir/gpioctr.o

Building modules, stage 2.

MODPOST 1 modules

CC [M] /home/myir/gpioctr.mod.o

LD [M] /home/myir/gpioctr.ko

make[1]: Leaving directory '/home/lcy/work/t507/kernel/linux-4.9/'

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 52 -

After successful compilation, the “gpioctr.ko” file can be transferred to the

directory of the development board via Ethernet, WIFI, USB otg, USB disk, etc. to

load the driver using the “insmod” command.

6.4.2. Configuration of HAL Layer

Continuing the GPIO control in the previous section, we will introduce how gpio is

called and controlled by the HAL layer. Let's take GPIO (PE19) control LED as an

example. PE19 is designed on the bottom plate of MYD-YT507H to control a blue

LED, as shown in the following figure. When GPIO (PE19) is configured as 0, the

lamp will be on. Otherwise, it will be extinguished.

Figure 6-2. Gpio Control led

6.4.2.1. Controllable GPIO in the System

After adding the GPIO configuration, nodes will be generated under the sys file

system.

/sys/class/gpio_sw # ls

PE19 normal_led

/sys/class/gpio_sw # echo 1 > normal_led

Writing 0 to the normal_led node in the directory will cause the output to be low,

and writing 1 will cause the output to be high. To facilitate the operation in the

code, there are java and C++interfaces that provide FRAMEWORK

6.4.2.2. Interface of Java Layer

The interface for java to control GPIO is defined in the file gpio.java.The path

is:/platform/framework “setNormalLedOn(bool)”

“setStandbyLedOn(bool)”,These interface files facilitate the control of Led

opening and closing.The interfaces provided are as follows:

public static int setNormalLedOn(boolean on);

javascript:void(0);

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 53 -

public static int setStandbyLedOn(boolean on);

public static int setNetworkLedOn(boolean on) ;

public static int writeGpio(char group, int num, int value);

public static int readGpio(char group, int num) ;

public static int setPull(char group, int num, int value);

public static int getPull(char group, int num);

public static int setDrvLevel(char group, int num, int value);

public static int getDrvLevel(char group, int num);

public static int setMulSel(char group, int num, int value);

public static int getMulSel(char group, int num);

6.4.2.3. Interface of C++ Layer

The operation functions of the C++layer are simple encapsulation of the kernel

interface. The specific interfaces are as follows:

int readData(const char * filePath);

int writeData(const char *data, int count, const char *filePath);

cfg： Setting/reading functions of gpio

0x00：input

0x01：output

pull：Set/read gpio resistance pull-up or pull-down

0x00：Close pull-up/pull-down

0x01：pull-up

0x02：pull-down

0x03：retain

drv：Set/read the drive level of gpio

0x00：level 00x01：level 10x02：level 20x03：level 3

data：Set/read the level status of gpio

0x00：Low level

0x01：High level

In C++language, you can use read and write functions to directly operate these

four files.For specific examples, refer to the file

/vendor/aw/homelet/framework/gpio/libgpio/GPIOService

https://fanyi.baidu.com/
javascript:void(0);

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 54 -

7. How to Add Your Application
The porting of Android applications is usually divided into two phases, the

development and debugging phase and the production deployment phase. The

development debugging phase allows us to cross-compile our written application

using the MYIR build SDK and then remotely copy it to the target host for testing.

The production deployment phase involves writing recipe files for the application

and using the build production image.

7.1. Pre Installed APK

There are two ways to install the preinstalled apk, either to the /system/app

directory or to the /system/preinstall directory.

Note: The apk name cannot contain Chinese, spaces or other special characters.

Due to the copyright issue, it is recommended not to install the GAPP application.

If you pass the GMS certification you need to install the genuine GAPP application

provided by Google.

7.1.1. PreInstall to the system/app Directory

Create a directory in /vendor/aw/public/prebuild/apk/ to store the corresponding

APK. Create the Android.mk file in that directory and edit it to：

Example

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := APK_MODULE_NAME（Unique name of the module）

LOCAL_MODULE_CLASS := APPS

LOCAL_MODULE_TAGS := optional

LOCAL_BUILT_MODULE_STEM := package.apk

LOCAL_MODULE_SUFFIX := $(COMMON_ANDROID_PACKAGE_SUFFIX)

LOCAL_CERTIFICATE := PRESIGNED（Signature Method）

#LOCAL_OVERRIDES_PACKAGES := OVERRIDES_MODULE（Modules to be replace

d）LOCAL_SRC_FILES := name.apk（The file name of the apk, usually the same na

me as MODULE）

include $(BUILD_PREBUILT)

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 55 -

In the solution mk file (device/{vendor-name}/{device-name}/{product-name}.mk)

PRODUCT_PACKAGES item, add：

PRODUCT_PACKAGES += APK_MODULE_NAME（apk module name, pre-installed

multiple apk separated by spaces）

Pre install to the /system/preinstall directory

Pre-install in the /system/app directory and complete all the above steps. Modify

Android.mk in the apk directory and add the line：

LOCAL_MODULE_PATH := $(TARGET_OUT)/preinstall

7.1.2. Preinstall to the System/preinstall Directory

Complete all the above steps with the pre installation to the /system/app

directory. Modify Android.mk in the apk directory and add a line

LOCAL_MODULE_PATH := $(TARGET_OUT)/preinstall

javascript:void(0);

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 56 -

8. Resources
 Linux kernel open source community

https://www.kernel.org/

 Android Developer Center
https://developer.android.com/

https://www.kernel.org/
https://developer.android.com/

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 57 -

Appendix A
Warranty & Technical Support Services
MYIR Electronics Limited is a global provider of ARM hardware and software tools, design

solutions for embedded applications. We support our customers in a wide range of services

to accelerate your time to market.

MYIR is an ARM Connected Community Member and work closely with ARM and many

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

prototype, and system integration or creating your own applications. Our products are used

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has an

experienced team and provides custom design services based on ARM processors to help

customers make your idea a reality.

The contents below introduce to customers the warranty and technical support services

provided by MYIR as well as the matters needing attention in using MYIR’s products.

Service Guarantee

MYIR regards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

packaging, shipping and other aspects and strive to provide products with best quality to

customers. We believe that only quality products and excellent services can ensure the long-

term cooperation and mutual benefit.

Price

MYIR insists on providing customers with the most valuable products. We do not pursue

excess profits which we think only for short-time cooperation. Instead, we hope to establish

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 58 -

long-term cooperation and win-win business with customers. So we will offer reasonable

prices in the hope of making the business greater with the customers together hand in hand.

Delivery Time

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

quantity is greater than the number of inventory, the delivery time would be always four to six

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

in advance.

Technical Support

MYIR has a professional technical support team. Customer can contact us by email

(support@myirtech.com), we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

production.

After-sale Service

MYIR offers one year free technical support and after-sales maintenance service from the

purchase date. The service covers:

Technical support service

MYIR offers technical support for the hardware and software materials which have provided

to customers;

 To help customers compile and run the source code we offer;

 To help customers solve problems occurred during operations if users follow the user

manual documents;

 To judge whether the failure exists;

 To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical support

service:

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 59 -

 Hardware or software problems occurred during customers’ own development;

 Problems occurred when customers compile or run the OS which is tailored by themselves;

 Problems occurred during customers’ own applications development;

 Problems occurred during the modification of MYIR’s software source code.

After-sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free

maintenance service since the purchase date. But following situations are not included in the

scope of our free maintenance service:

 The warranty period is expired;

 The customer cannot provide proof-of-purchase or the product has no serial number;

 The customer has not followed the instruction of the manual which has caused the damage

the product;

 Due to the natural disasters (unexpected matters), or natural attrition of the components, or

unexpected matters leads the defects of appearance/function;

 Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards,

all those reasons which have caused the damage of the products or defects of appearance;

 Due to unauthorized weld or dismantle parts or repair the products which has caused the

damage of the products or defects of appearance;

 Due to unauthorized installation of the software, system or incorrect configuration or

computer virus which has caused the damage of products.

Warm tips

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the

LCD when receiving the goods. In case the LCD cannot run or no display, customer should

contact MYIR within 7 business days from the moment get the goods. 2. Please do not use

finger nails or hard sharp object to touch the surface of the LCD.

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 60 -

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

please avoid clean the surface with fingers or hands to leave fingerprint.

4. Do not clean the surface of the screen with chemicals.

5. Please read through the product user manual before you using MYIR’s products.

6. For any maintenance service, customers should communicate with MYIR to confirm the

issue first. MYIR’s support team will judge the failure to see if the goods need to be returned

for repair service, we will issue you RMA number for return maintenance service after

confirmation.

Maintenance period and charges

 MYIR will test the products within three days after receipt of the returned goods and inform

customer the testing result. Then we will arrange shipment within one week for the repaired

goods to the customer. For any special failure, we will negotiate with customers to confirm

the maintenance period.

 For products within warranty period and caused by quality problem, MYIR offers free

maintenance service; for products within warranty period but out of free maintenance

service scope, MYIR provides maintenance service but shall charge some basic material cost;

for products out of warranty period, MYIR provides maintenance service but shall charge

some basic material cost and handling fee.

Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be responsible

by user; MYIR will pay for the return shipping cost to users when the product is repaired. If

the warranty period is expired, all the shipping cost will be responsible by users.

Products Life Cycle

MYIR will always select mainstream chips for our design, thus to ensure at least ten years

continuous supply; if meeting some main chip stopping production, we will inform customers

in time and assist customers with products updating and upgrading.

MYIR-MYD-YT507H-SW-DG-EN-A4.9.170

- 61 -

Value-added Services

1. MYIR provides services of driver development base on MYIR’s products, like serial port,

USB, Ethernet, LCD, etc.

2. MYIR provides the services of OS porting, BSP drivers’ development, API software

development, etc.

3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

4. ODM/OEM services.

MYIR Electronics Limited

Room 04, 6th Floor, Building No.2, Fada Road,

Yunli Inteiligent Park, Bantian, Longgang District.

Support Email: support@myirtech.com

Sales Email: sales@myirtech.com

Phone: +86-755-22984836

Fax: +86-755-25532724

Website: www.myirtech.com

	MYD-YT507H Android System Development Guide
	Revision History
	CONTENT
	1.Overview
	1.1.Software Resources
	1.2.Document Resources

	2.Development Environment
	2.1.Developing Host Environment
	Host Hardware
	Host Operating System
	Installation of essential packages

	2.2.Introduction of Software Development Tools
	Driver Software Installation：
	Software Burning Installation：

	3.The Android SDK Structure
	3.1.Introduction
	3.2.Get the Source Code
	3.2.1.Get Compressed Source Code(Preferred)
	3.2.2.Get Source Code from GitHub
	3.2.3.Understand the BSP Structure
	3.2.4.kernel
	3.2.5.brandy
	3.2.6.tools
	3.2.7.test
	3.2.8.device

	4.Configuration and Build of the Android System
	4.1.Board Level Support Package
	4.2.Configuration and Build of Board-level Support Pac
	4.3.U-boot Compilation and Update
	4.3.1.Compile U-Boot Under the Linux Bsp Project

	4.4.Kernel Compilation and Update
	4.4.1.Compile Kernel in a Standalone Cross-compiler Envi
	4.4.1.1.Obtaining Kernel Source Code
	4.4.1.2.Configuring the Kernel (Optional)
	Go to the Kernel Directory
	Create the Output Folder Build
	Configuring the Kernel

	4.4.1.3.Compiling with Linux BSP

	4.5.Build of the Android System
	4.5.1.Understand the Source Code Structure of Android
	4.5.2.Configuring the Android Build Environment

	5.How to Burn System Image
	5.1.How to Flash with PhoenixSuit
	1).Tool Requirements
	2).Setting Up the Hardware
	3).Burning the System Under Windows

	5.2.Make TF Card Starter
	1).Preparation
	2).Make SD Card Boot

	5.3.Make TF Card Burner
	Create SD Card Bootloader
	SD Card Burning eMMC
	Verify eMMC boot

	6.Porting to Fit Your Hardware Platform
	6.1.How to Configure Your sys_config.fex
	6.2.How to Create Your Device Tree
	6.2.1.Onboard Device Tree
	6.2.2.Add a Device Tree

	6.3.How to Configure CPU Pins Based on Your Hardware
	6.3.1.GPIO Pins Configuration Method
	6.3.1.1.Understand the Pin Alternate Function Through the
	1).Determine the Pins of the Core Board
	2).View the Alternate Function Relationship of GPIOs

	6.3.1.2.GPIO is Referenced in Device Tree
	1).Configure Function Pins as GPIO Function Instances
	2).Configure Pins for Other Specific Functions

	6.4.How to Use Configured Pins
	6.4.1.How to Use GPIO Pins in Kernel Driver
	6.4.1.1.Use of Standalone IO Drivers
	6.4.1.2.Example Drivers Configured Directly Into the Kerne
	6.4.1.3.The Driver Sample Compiled as a Separate Module

	6.4.2.Configuration of HAL Layer
	6.4.2.1.Controllable GPIO in the System
	6.4.2.2.Interface of Java Layer
	6.4.2.3.Interface of C++ Layer

	7.How to Add Your Application
	7.1.Pre Installed APK
	7.1.1.PreInstall to the system/app Directory
	7.1.2.Preinstall to the System/preinstall Directory

	8.Resources
	Linux kernel open source community
	Android Developer Center

	Appendix A
	Warranty & Technical Support Services

