
MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 1 -

MYD-YT507H Linux System

Development Guide

File Status：

[] Draft

[√] Release

FILE ID： MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

VERSION： V1.2(DOC)

AUTHOR： Licy

CREATED： 2022-03-30

UPDATED： 2022-08-03

Copyright © MYIR Electronics Limited 2011-2022 all rights reserved.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 2 -

Revision History

VERSION AUTHOR PARTICIPANT DATE DESCRIPTION

V1.0 licy 20220330 Initial Version: u-boot2018.05,

Linux Kernel 4.9.170，Buildroot

2019.02

V1.1 licy 20220707 Modified some SDK

configurations

V1.2 licy 20220803 Added considerations and

problem analysis for setting up

a development environment.

Delete Section 3.3.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 3 -

CONTENT

MYD-YT507H Linux System Development Guide.................................... - 1 -

Revision History .. - 2 -

CONTENT.. - 3 -

1. Overview...- 5 -

1.1. Software Resources ... - 6 -

1.2. Document Resources ..- 6 -

2. Development Environment ... - 7 -

2.1. Developing Host Environment..- 7 -

2.2. Introduction of Software Development Tools .. - 10 -

2.3. Install the cross-compile toolchain ...- 11 -

3. Build the File System with buildroot ..- 13 -

3.1. Introduction Linux SDK..- 13 -

3.2. Get the Source Code.. - 14 -

3.2.1. Get Compressed Source Code from CD Image.............................. - 14 -

3.2.2. Get Source Code from GitHub .. - 15 -

3.2.3. Linux SDK structure ... - 15 -

3.2.4. Buildroot Introduction..- 16 -

3.2.5. kernel .. - 17 -

3.2.6. brandy ...- 17 -

3.2.7. platform... - 18 -

3.2.8. tools ...- 18 -

3.2.9. Test system ... - 19 -

3.2.10. device ... - 19 -

4. How to Burn System Image.. - 21 -

4.1. PhoenixSuit burn... - 21 -

4.2. Make an SD card initiator ...- 24 -

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 4 -

4.3. Make SD card burner ... - 27 -

5. How to Modify Board Level Support Package...................................- 30 -

5.1. Buildroot layer is introduced...- 30 -

5.2. This section describes the board support package - 30 -

5.3. Configuration and build of the Linux SDK... - 31 -

5.4. Onboard U-boot compilation and update ...- 37 -

5.4.1. Compile the U-boot in a separate cross-compile environment- 37 -

5.4.2. Compiling Uboot under Linux SDK projects (recommended)...- 38 -

5.4.3. How do I update the Uboot separately ... - 38 -

5.5. On board Kernel compilation and update... - 39 -

5.5.1. Compile the Kernel in a separate cross-compile environment .- 39 -

5.5.2. How to update the Kernel with OTG ...- 41 -

6. How to Fit Your Hardware Platform.. - 42 -

6.1. How do I configure your sys_config.fex ..- 42 -

6.2. How do I create your device tree.. - 44 -

6.2.1. Onboard device tree ... - 44 -

6.2.2. Add a device tree ... - 45 -

6.3. How to configure CPU function pins based on your hardware - 47 -

6.3.1. GPIO pin configuration method... - 47 -

6.3.2. GPIO is referenced in device tree ...- 48 -

6.4. How to use self-configured pins..- 51 -

6.4.1. GPIO pins are used in u-boot .. - 51 -

6.4.2. GPIO pins are used in kernel drivers ...- 52 -

6.4.3. User space uses GPIO pins ..- 59 -

7. How to add your application... - 66 -

7.1. Makefile-based applications... - 66 -

7.2. Qt-based applications..- 71 -

Reference... - 72 -

Appendix A.. - 73 -

Warranty & Technical Support Services..- 73 -

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 5 -

1. Overview
There are many open source system build frameworks on the Linux system

platform,these frameworks make it easy for developers to build and customize

embedded systems,at present common similar software has Buildroot, buildroot,

OpenEmbedded and so on. The buildroot project uses a more powerful and

customized approach to build Linux systems that suitable for embedded products.

buildroot is not only a file system manufacturing tool, but also provides a

complete set of Linux-based development and maintenance workflow, so that the

embedded developers of the Underlying Software and the High-Level Application

can develop under a unified framework, which solves the fragmented and

unmanaged development mode in the traditional development mode.

This document mainly introduces the complete process of customizing a

complete embedded Linux system based on buildroot project, including the

configuration of development environment, how to get the source code, how to

port bootloader and kernel, and how to customize rootfs suitable for their own

application requirements. First of all, we will introduce how to build a system

image for MYD-YT507H development board based on the source code provided

by us, and how to burn the prebuilt image to the development board. Then, we

focus on the methods and key points of porting the system to the user's hardware

platform. In addition, if you are developing a project based on MYC-YT507H CPU

module ,we will also take some actual BSP porting cases and rootfs customization

cases as examples to guide users to quickly customize the system image suitable

for their own base-board hardware.

This document does not include the introduction of buildroot project and the

basic knowledge of Linux system, and the user guide is suitable for embedded

Linux development engineers with some development experience. For some

specific functions that users may use in the process of secondary development,

we also provide detailed application notes for reference,please refer to Table 2-4

of “MYD-YT507H SDK Release Notes” for the detailed list of documents.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 6 -

1.1. Software Resources

MYD-YT507H series development board runs an operating system based on the

Linux 4.9.170 kernel,which also provided a wealth of system resources and other

software resources. ThThe development board is delivered with the cross-

compilation tool chain, U-boot source code, Linux kernel and source code of each

driver module and other information packages needed for embedded Linux

system development. And for Windows desktop environment and PC Linux

system (recommended ubuntu18.04 desktop 64bit or ubuntu18.04 server 64bit)

various development and debugging tools, application development routines,

etc.For specific software information, ,please refer to Table 2-4 of “MYD-YT507H

SDKRelease Notes” for the detailed list of documents.

1.2. Document Resources

According to the different stages of using the development board, the SDK

contains different types of documents and manuals, such as release notes,

introduction guide, evaluation guide, development guide, application notes,

frequently asked questions and answers, etc.For detailed document list, please

refer to table 2-4 of “MYD-YT507H SDK Release Notes”.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 7 -

2. Development Environment
This chapter mainly introduces some software and hardware environment

required in the development process, including the necessary development host

environment, necessary software tools, code and resource acquisition, etc. the

specific preparatory work will be described in detail below.

2.1. Developing Host Environment

This section describes how to deploy the T5 development environment.By reading

this section, you will learn about the installation and use of hardware and software

tools.And you can quickly deploy the relevant development environment and

prepare for subsequent development and debugging.T5 series processor is a

multi-core SMP processor.

 Host Hardware

To get the buildroot Project expected behavior in a Linux Host Machine, the

packages and utilities described below must be installed. An important

consideration is the hard disk space required in the host machine. It is

recommended that at least 100 GB is provided, which is enough to compile all

backends together.In addition, the processor with more than dual core CPU, 8GB

memory or higher configuration will better meet the operation requirements. It

can be the host with Linux system installed, virtual machine running Linux system

or wsl2 under Windows system, etc.

 Host Operating System

There are many options for the host operating system used to build the buildroot

project. Generally, we choose to build it on the local host with Fedora, openSUSE,

Debian, Ubuntu, RHEL or Cent OS Linux distributions. Here, we recommend the

Ubuntu 20.04 64bit desktop system, the subsequent development is also based

on this system.

 Prerequisite Package Installation

sudo apt-get update

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 8 -

sudo apt-get install build-essential gcc libncurses5-dev bison flex texinfo

sudo apt-get install zlib1g-dev gettext libssl-dev autoconf

sudo apt-get install autoconf

sudo apt-get install automake

sudo apt-get install libtool

sudo apt-get install linux-libc-dev:i386

sudo apt-get install git

sudo apt-get install gnupg

sudo apt-get install flex

sudo apt-get install bison

sudo apt-get install gperf

sudo apt-get install build-essential

sudo apt-get install zip

sudo apt-get install curl

sudo apt-get install libc6-dev

sudo apt-get install libncurses5-dev:i386

sudo apt-get install x11proto-core-dev

sudo apt-get install libx11-dev:i386

sudo apt-get install libreadline6-dev:i386

sudo apt-get install libgl1-mesa-glx:i386

sudo apt-get install libgl1-mesa-dev

sudo apt-get install g++-multilib

sudo apt-get install mingw32

sudo apt-get install tofrodos

sudo apt-get install python-markdown

sudo apt-get install libxml2-utils

sudo apt-get install xsltproc

sudo apt-get install zlib1g-dev:i386

sudo apt-get install gawk

sudo apt-get install texinfo

sudo apt-get install gettext

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 9 -

The preceding packages need to be manually installed. If automatic installation is

required, copy all commands to the sh script and run them in the decompressed

package./build/config.sh.

Other configuration packages

sudo dpkg-reconfigure dash #slect no

sudo ln -s /usr/lib/i386-linux-gnu/mesa/libGL.so.1 /usr/lib/i386-linux-gnu/libGL.

so

sudo apt-get install zlib1g-dev

sudo apt-get install uboot-mkimage

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 10 -

2.2. Introduction of Software Development Tools

In the customized Linux system and debugging process needs to use a lot of

debugging, burning Tools, in the cd-rom image directory provided by MYIR 03-

tools provides some Tools, a brief introduction as follows

 Install driver

In Windows system, USB device drivers will be automatically installed after the

target board device is powered on and plugged in with a USB cable. If the

installation is successful, Android Phone is displayed in the Windows Manager.

Figure 4-1. Connecting the USB to a PC

 Burning software installation

Burn “Phoenixsuit-v1.13”and“PhoenixCard4.2.4”, USB wire brush and SD card,

respectively Brush. The installation packages for both software are located at

Tools\Tools_win\. After decompression, there will be two versions in Chinese and

English, choose one version. Once the SDK is compiled and packaged, it is ready

to burn through the PhoenixSuit, as detailed below.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 11 -

2.3. Install the cross-compile toolchain

In the process of building this system image using the SDK, you also need to

install the cross toolchain. In addition to the various source code, the SDK

provided by MYIR also provides the necessary cross toolchain, which can be

directly used to compile the application, etc. Users can directly use the sub-cross-

compilation tool chain to establish an independent development environment,

independently compile the Bootloader, Kernel or compile their own applications,

the detailed process will be described in the following sections. The installation

steps of SDK are introduced as follows:

a. Copy the SDK package to the user's working directory in Host Ubuntu,

such as $HOME/work/t507, decompress the file, and obtain the

installation script file as follows:

PC$ cd $HOME/work/t507

PC$ tar -jxvf YT507H-buildroot-t5-4.9.170-X.X.X.tar.bz2

X.X.X Represents the current version number

b. Find build/ Toolchain/in the SDK directory

PC$ cd $HOME/work/t507/build/toolchain/

gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gnu.tar.xz

c. Decompress the package to the /opt directory on the host ubuntu

PC$ tar -xvf gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gnu.tar.xz -C /opt

d. Set the environment variables and test that the installation is complete

PC$ export PATH=$PATH:/opt/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-g

nu/bin

PC$ aarch64-linux-gnu-gcc -v

used specs。

COLLECT_GCC=aarch64-linux-gnu-gcc

COLLECT_LTO_WRAPPER=/home/lcy/t507/out/gcc-linaro-7.4.1-2019.02-x86_64_a

arch64-linux-gnu/bin/../libexec/gcc/aarch64-linux-gnu/7.4.1/lto-wrapper

target：aarch64-linux-gnu

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 12 -

config：'/home/tcwg-buildslave/workspace/tcwg-make-release_1/snapshots/gcc.

git~linaro-7.4-2019.02/configure' SHELL=/bin/bash --with-mpc=/home/tcwg-bui

ldslave/workspace/tcwg-make-release_1/_build/builds/destdir/x86_64-unknown-li

nux-gnu --with-mpfr=/home/tcwg-buildslave/workspace/tcwg-make-release_1/_

build/builds/destdir/x86_64-unknown-linux-gnu --with-gmp=/home/tcwg-buildsl

ave/workspace/tcwg-make-release_1/_build/builds/destdir/x86_64-unknown-linux

-gnu --with-gnu-as --with-gnu-ld --disable-libmudflap --enable-lto --enable-sh

ared --without-included-gettext --enable-nls --with-system-zlib --disable-sjlj-ex

ceptions --enable-gnu-unique-object --enable-linker-build-id --disable-libstdcxx

-pch --enable-c99 --enable-clocale=gnu --enable-libstdcxx-debug --enable-lon

g-long --with-cloog=no --with-ppl=no --with-isl=no --disable-multilib --enable

-fix-cortex-a53-835769 --enable-fix-cortex-a53-843419 --with-arch=armv8-a --e

nable-threads=posix --enable-multiarch --enable-libstdcxx-time=yes --enable-g

nu-indirect-function --with-build-sysroot=/home/tcwg-buildslave/workspace/tcw

g-make-release_1/_build/sysroots/aarch64-linux-gnu --with-sysroot=/home/tcwg

-buildslave/workspace/tcwg-make-release_1/_build/builds/destdir/x86_64-unkno

wn-linux-gnu/aarch64-linux-gnu/libc --enable-checking=release --disable-bootst

rap --enable-languages=c,c++,fortran,lto --build=x86_64-unknown-linux-gnu --

host=x86_64-unknown-linux-gnu --target=aarch64-linux-gnu --prefix=/home/tc

wg-buildslave/workspace/tcwg-make-release_1/_build/builds/destdir/x86_64-unk

nown-linux-gnu

Pthread mode：posix

gcc version 7.4.1 20181213 [linaro-7.4-2019.02 revision 56ec6f6b99cc167ff0c2f

8e1a2eed33b1edc85d4] (Linaro GCC 7.4-2019.02)

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 13 -

3. Build the File System with buildroot
3.1. Introduction Linux SDK

Linux SDK development package, which integrates BSP, build system, Linux

application, test system, independent IP, tools and documentation, can be used as

BSP, IP development, verification and release platform, as well as embedded Linux

system.

Is the unified use of Linux development platform. It integrates BSP, build system,

independent IP and test, and can be used as either a BSP development and IP

verification platform, or as a mass-production embedded Linux system

The Functionality of the Linux SDK consists of the following four parts：

BSP，include bootloader，uboot , kernel.

Linux file system，Includes the embedded Linux root file system.

IP's authentication and publishing platform includes GPU, Cedarx, Gstreamer,

DRM/Weston, Security, and other proprietary packages. And the use of IP

and system integration of the demo program, convenient for the third

party to use quickly.

Test, includes board level test and system test.

The 04_sources directory in the image provided by MYIR provides linuxSDK files

and data suitable for MYD-YT507H development board, helping developers to

build different types of Linux system images that can run on MYD-YT507H

development board. For example, myir-image-full system image with Qt5.12.5

graphics library and myir-image-core system image without GUI interface, the

following takes the construction of myir-image-full image as an example to

introduce the specific development process, so as to lay a foundation for the

subsequent customization of their own system image.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 14 -

3.2. Get the Source Code

We provide two ways to obtain the source code. One is to obtain the compressed

package directly from the 04-sources directory of the MYIR image, and the other

is to use repo to obtain the source code updated in real time on GitHub for

construction. Users can choose one of them.

Note:before building the buildroot system, all software packages in the file system need
to be downloaded to the local. In order to build quickly, MYD-YT507H has packaged the
relevant software, and users can directly unzip and copy it to the build directory, so as to
reduce the repeated download time.

3.2.1. Get Compressed Source Code from CD Image

You can find the buildroot compressed source package in the development kit

package 04-sources/YT507H-buildroot-t5-4.9.170-X.X.X.tar.bz. Copy the

compressed package to the user specified directory, such as the

$HOME/work/t507 directory. This directory will be used as the top-level directory

for subsequent construction. After decompressing, the layers directory will appear:

PC$ cd $HOME/work/t507

PC$ tar -jxvf YT507H-buildroot-t5-4.9.170-X.X.X.tar.bz

brandy build buildroot build.sh device kernel out platform test tools

List the layers directory as follows:

PC$ tree -d -L 1 t507

t507

├── brandy

├── build

├── buildroot

├── device

├── kernel

├── out

├── platform

├── test

└── tools

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 15 -

9 directories

3.2.2. Get Source Code from GitHub

At present, the BSP source code and buildroot source code of MYD-YT507H

development board are managed by GitHub and will be updated for a long time.

Please refer to Section 2.2 of “MYD-YT507H SDK1.0.0 Release Notes”. Users can

use repo to get and synchronize the code on GitHub. The specific operation

methods are as follows:

PC$ mkdir $HOME/work/t507

PC$ cd $HOME/work/t507

PC$ repo init -u https://github.com/MYiR-Dev/myir-t5-manifest.git --no-clone-

bundle --depth=1 -b master -m myir-t5-4.9.170-1.0.0.xml

PC$ repo sync

After the synchronization code is completed, you will get a layers folder under the

$home/work/t507 directory, which contains the source code or source repository

path related to myd-YT507H development board. The directory structure is the

same as that extracted from the compressed package.

3.2.3. Linux SDK structure

├── brandy

├── build

├── buildroot

├── device

├── kernel

├── out

├── platform

├── test

└── tools

It is mainly composed of Brandy, Buildroot, Kernel and Platform.

Brandy: include uboot2018；

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 16 -

Buildroot: Responsible for ARM toolchain, application software package, L

inux rootfs system generation.

Kernel: linux kernel；

Platform: platform-specific libraries and SDK applications.

3.2.4. Buildroot Introduction

Buildroot is a set of Makefiles and patches that simplify and automate

building complete, bootable Linux environments (including bootloaders, Linux

kernels, file systems containing various apps) for embedded systems. Buildroo

t runs on Linux and can be used to build an embedded Linux platform for m

ultiple target boards using cross-compilation tools. Buildroot can automaticall

y build the required cross-compile toolchains, create root file systems, compil

e Linux kernel images, and generate boot loaders for target embedded syste

ms, or it can perform any independent combination of these steps. For exam

ple, you can use an installed cross-compilation tool chain alone, while Buildro

ot creates only the root file system.

Buildroot https://buildroot.org/downloads/manual/manual.html
Buildroot source https://buildroot.org/downloads/

├── arch

├── board

├── boot

├── CHANGES

├── Config.in

├── configs

├── COPYING

├── dl

├── docs

├── external-packages

├── fs

├── linux

├── Makefile

├── support

https://buildroot.org/downloads/manual/manual.html
https://buildroot.org/downloads/

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 17 -

├── package

├── README

├── scripts

├── target

├── support

├── system

├── utils

└── toolchain

The configs directory stores predefined configuration files, such as

sun50iW9p1_longan_defconfig, dl directory stores downloaded software packages,

scripts directory stores buildroot compiled scripts, mkcmd.sh, Mkcommon. sh,

mkrule and mksetup.sh etc. The target directory, which houses the rule files used

to generate the root file system, is important for code and tooling integration.

The most important thing for us is the Package directory, which holds the

generation rules for nearly 3,000 packages to which we can add our own

packages or middleware.

More information about the buildroot, can go to the official website

http://buildroot.uclibc.org/ for buildroot.

3.2.5. kernel

Linux kernel source directory. The current kernel version in use is Linux4.9.170.

The above directory structure is consistent with the standard Linux kernel, except

for the modules directory. The modules directory is where we store external

modules that aren't integrated with the kernel's Menuconfig.

3.2.6. brandy

Brandy2.0 is available in the brandy catalog. Currently, T507 uses Brandy2.0

Structure as follows:

├── spl-pub

├── tools

http://buildroot.uclibc.org/

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 18 -

└── u-boot-2018

NOTE:The uboot is not compiled in the default code compilation process. If you need to
modify the uboot, you need to compile it. The specific compilation method will be
introduced later.

3.2.7. platform

Platform private package directory.

platform/

├── apps

├── base

├── config

├── core

├── external

├── framework

└── tools

Framework/Auto includes SDK interfaces and examples for T5 Linux version.

platform/framework/auto/

├── rootfs

├── sdk_demo

└── sdk_lib

Rootfs forces the target of the out directory (the root file system directory of the

machine) to be overridden each time the top layer executes build.sh.

3.2.8. tools

Compile and package tools

tools/

├── build

├── codecheck

├── pack

└── tools_win

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 19 -

3.2.9. Test system

Test is a testing system called Dragonboard. Dragonboard provides

quick board-level testing.

3.2.10. device

├── config

│ ├── chips

│ │ └── t507

│ ├── common

│ │ ├── debug

│ │ ├── dtb

│ │ ├── hdcp

│ │ ├── imagecfg

│ │ ├── partition

│ │ ├── sign_config

│ │ ├── toc

│ │ ├── tools

│ │ └── version

│ └── rootfs_tar

├── bin

│ ├── bl31.bin

│ ├── boot0_nand_sun50iw9p1.bin

│ ├── boot0_sdcard_sun50iw9p1.bin

│ ├── fes1_sun50iw9p1.bin

│ ├── optee_sun50iw9p1.bin

│ ├── sboot_sun50iw9p1.bin

│ ├── u-boot-sun50iw9p1.bin

├── boot-resource

│ ├── boot-resource

│ │ ├── bat

│ │ ├── bootlogo.bmp

│ └── boot-resource.ini

├── configs

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 20 -

│ ├── default

│ │ ├── BoardConfig.mk

│ │ ├── boot_package.cfg

│ │ ├── diskfs.fex

│ │ ├── dragon_toc_android.cfg

│ │ ├── dragon_toc.cfg

│ │ ├── env_burn.cfg

│ │ ├── env.cfg

│ │ ├── env_dragon.cfg

│ │ ├── image.cfg

│ │ ├── image_dragonboard.cfg

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 21 -

4. How to Burn System Image
MYC-YT507H series core board and development board designed by MYIR

Electronics Co., LTD is based on T5 series microprocessor of Allwinner Technology,

which has various startup modes, so it needs different updating system tools and

methods. Users can select different update methods according to their

requirements. The update methods are as follows.

PhoenixSuit burn: Applicable to r&d, commissioning, testing and other

scenarios.

Making SD card initiator: Suitable for r&d, debugging, and quick startup

scenarios.

SD card burner: suitable for mass production of eMMC。

4.1. PhoenixSuit burn

1). preparatory

Development Board

USB Type_C

12VPower adapter

PhoenixSuit

2). Setup the development board

Select the startup mode and set the boot mode switch to the Download mode

(S0/S1/S2/S3:1 0 1 1). Connect the hardware, connect the J6 OTG interface of the

development board to the computer, and insert the power adapter.

3). Burn the system under Windows

Use OTG USB cable to connect the development board and the host. Press and

hold FEL button first, then press the power button to reset the system, and release

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 22 -

FEL button about two seconds later. Open Windows Device Manager..as shown in

the following page：

Figure 4-1. Connecting the USB to a PC

If the driver is not automatically installed, you can find the corresponding driver

files (64bit usbdriver_64. zip and 32bit usbdriver.rar) in the SDK directory /tools/

Tools_win and decompress them to install the driver.

For the OTG full burn test, double-click the Phoenixsuit_v1.13 phoenixsuit.exe file.

Figure 4-2. PhoenixSuit program

On the following screen, click "One-click refresh" and then click "Browse" to select

the firmware image file.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 23 -

Figure 4-3. One key brush machine

On the following screen.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 24 -

Figure 4-4. Formatting the upgrade

Wait until the burn is complete. The following interface is displayed after the burn

is complete.

Figure 4-5. Brush finished

4.2. Make an SD card initiator

The following steps are performed on Windows.

1). The preparatory work

 SD card (not less than 8GB)

 MYD-YT507H development board

 Image Preparation Tool PhoenixCard (Path: \03-tools\myir Tools)

Table 4-1. Image package list

Name of the mirror The package name Applicable

core plate

myir-image-full myir_linux_full_uart0.img MYC-YT507H

myir-image-core myir_linux_core_uart0.img MYC-YT507H

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 25 -

myir-image-ubuntu myir_linux_ubuntu_uart0.img MYC-YT507H

myir-image-android myir_linux_android_uart0.img MYC-YT507H

2). Making SD card to start (taking myir-image-full image as an example)

Copy phoenixcard from the tools directory to any directory in Windows. Double-

clickPhoenixcard Phoenixcard. exe file in the directory. Insert the 8GB SD card into

the Windows USB interface through the SD card reader, as shown in the following

figure, and select the "image" path.Select "start up" and click "burn card" button

to finish automatically.

Figure 4-10. Brush program

The card burning process is in progress and is expected to complete in 3-5

minutes (depending on packet size).

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 26 -

Figure 4-11. Brush process

The card burning is complete, and note that the output indicates that the card

burning is complete.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 27 -

Figure 4-12. Brush finished

After the writing is complete, the SD card can be used to start the system. Insert

the SD card into the SD card slot (J8) on the back of the development board, set

the boot mode switch to (S0/S1/S2/S3: 0 1 1 1), and power on the system again to

start the system with the SD card.

Note: When using the SD card as the boot card to start myir-image-core/full, you need to
modify the boot parameters in the Uboot,Procedure On the Uboot terminal, change the
rootfs mount location. Enter the following command:

=> env set mmc_root /dev/mmcblk1p4

=> saveenv

4.3. Make SD card burner

In order to meet the needs of production firing, this method is suitable for mass

production firing method.The system that needs to be burned is written into the

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 28 -

onboard eMMC through the system in SD card.Please follow the following steps

to complete the specific production process.

 Make an SD card initiator

The purpose of making an SD card launcher is to use SD as a medium to write

eMMC.

Figure 4-13. Mass production card making

Select "product" to make, and the production method is the same as chapter 4.2,

which will not be described here.

 SD card burns EMMC

Insert SD into the SD card slot (J8) on the back of the development board, and set

the boot mode switch to (S0/S1/S2/S3: 0 1 1 1) to start the system.Plug in the

power, automatically start the write system in the SD Card, you can use the

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 29 -

debugging serial port to check the update status, about 3-5 minutes (depending

on the size of the package) to complete.

 Verify eMMC startup

After the system image is burned to eMMC by Micro SD Card, you need to shut

down and pull out the SD Card of eMMC for startup.and set the boot mode

switch to (S0/S1/S2/S3: 1 0 1 1) to start the system.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 30 -

5. How to Modify Board Level Support

Package
The previous chapter has described the complete process of building the system

image running on MYD-YT507H development board and burning the image to

the development board based on Linux SDK(Buildroot) project.Because many pins

of MYC-YT507H core board have the characteristics of multiple functions reuse,

there are always some differences between the backboard designed based on

MYC-YT507H core board and MYB-YT507H in actual projects.These differences

may be the removal of display, the addition of more GPIO, the need to add more

serial ports, the possibility of extending some peripherals through SPI, I2C, USB,

etc.;In addition to the differences in hardware, there are also some differences in

system components, such as HMI application, which may need a relatively

complete graphics system, QT library, etc., and background management

application, which may need a more complete network application, Python

running environment, etc.This requires system developers to do some tailoring

and porting on top of the code we provide.This chapter describes the specific

process of developing and customizing your own system from the perspective of

a system developer, laying the foundation for adapting your own hardware.

5.1. Buildroot layer is introduced

Buildroot is a set of Makefiles and patches that simplify and automate building

complete, bootable Linux environments (including bootloaders, Linux kernels, file

systems containing various apps) for embedded systems.Buildroot runs on Linux

and can be used to build an embedded Linux platform for multiple target boards

using cross-compilation tools.

5.2. This section describes the board support package

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 31 -

A board-level support package (BSP) is a collection of information that defines

how a particular hardware device, device set, or hardware platform is

supported.The BSP includes information about hardware features on the device

and kernel configuration information, as well as any other hardware drivers

required.In some cases, a BSP contains a separately licensed intellectual property

(IP) for one or more components.Usually according to the different stages of

hardware startup, we divide BSP into Bootloader part and Kernel part. The

hardware BSP code designed by MYC-YT507H core board can be viewed in part of

Linux SDK.

Brandy only contains SPL and U-boot of Bootloader, which mainly implements

core hardware initialization, such as DDR and Clock, and kernel boot.Based on

MYC-YT507H core board hardware modification of this part of the content.

├ ─ ─ SPL - pub

├ ─ ─ the tools

└ ─ ─ u - the boot - 2018

Kernel contains the Linux kernel, which mainly implements the kernel and

peripheral firmware content.

kernel/

├ ─ ─ Linux 4.9

When designing products using MYIR's core board, the bootloader part does not

need to be modified unless there are special requirements.You need to pay more

attention to the development and debugging of product kernel driver and the

design of application software.Subsequent chapters will describe kernel

development and application development in detail.

5.3. Configuration and build of the Linux SDK

This chapter describes the detailed steps for full and partial compilation.Once

compiled, the final .img is generated by packaging.

PC$./build.sh config

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 32 -

PC$./build.sh

PC$./build.sh qt

PC$./build.sh

PC$./build.sh pack

Run build.sh config and select configuration in a subsequent dialog."Choice" can

be a number or a number

Enter the string corresponding to the number.

PC$./build.sh config

Welcome to mkscript setup progress

All available platform:

0. android // Android

1. linux

Choice [linux]:1

All available linux_dev:

0. bsp

1. dragonboard

2. longan //default

3. tinyos

Choice [longan]: 2

All available ic:

0. myir

1. t507

Choice [myir]: 0

All available board:

0. core //myir-image-core

1. full //myir-image-full

2. myd_test

3. myt

4. ubuntu //myir-image-ubuntu

Choice [ubuntu]: 1

All available flash:

0. default

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 33 -

1. nor

Choice [default]: 0

All available rootfs:

0. buildroot-201902 //for linux rootfs

1. ubuntu //for ubuntu rootfs

All available build_root:

0. buildroot-201902 //for linux rootfs

1. myir-t5-buildroot //Like buildroot-201902

2. ubuntu //for ubuntu rootfs

Choice [ubuntu]: 0

Go to the top-level directory and run the following command.

PC$./build.sh

PC$./build.sh qt

PC$./build.sh

PC$./build.sh pack

Figure 5-1.Completion of system

Table 5-1. Parameter Description

type The command instructions

The overall

compilation

./build.sh config Compile configuration, pop-up compile selection

./build.sh autoconfig Compile configuration based on the parameters passed in, no

compile selection pops up./build.sh Build the SDK according to the build configuration

./build.sh clean Clear process files and object files

./build.sh distclean Clear all generated files

Local

compile

./build.sh brandy Compile the brandy (uboot)

./build.sh kernel Compile the kernel

./build.sh buildroot Compile buildroot

./build.sh qt Compile the qt

./build.sh dragonboard Compile dragonboard

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 34 -

Compile problem analysis:

The following problem occurs when you run ./build.sh config.

Figure 5-2. Configuration failed

Figure 5-3. Failed to compile the kernel

Since configuring the kernel requires Python2, check to see if Python2 is already

installed in your current development environment. If no, see Section 2.1 or run

the following command:

PC$ sudo apt-get install python

Check whether the current version is Python

PC$ python --version

Python 2.7.18

./build.sh sata Compile the sata

packaging ./build.sh pack Package command, debugging serial port is uart0

./build.sh pack_debug Package command, debugging serial port is card0

./build.sh pack_secure Package command, generate secure firmware, debug serial

port is uart0

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 35 -

If not python2, switch by yourself.

The following error occurs during gdbus compilation:

Figure 5-4. Failed to compile gdbus

Modify step 1 (note that the name of the path may be different, just find

gdbusauth.c according to your actual path):

PC$ vim ./output/myir/full/longan/buildroot/build/host-libglib2-2.56.3/gio/gdbu

sauth.c

Add this code at the following locations:

line = _my_g_input_stream_read_line_safe (g_io_stream_get_input_stream (auth-

>priv->stream),

&line_length,

cancellable,

error);

if (line != NULL)

debug_print ("SERVER: WaitingForBegin, read '%s'", line);

if (line == NULL)

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 36 -

Modify step 2 (note that the name of the path may be different, just find

gdbusmessage.c according to your actual path):

PC$ vim ./out/myir/full/longan/buildroot/build/host-libglib2-2.56.3/gio/gdbusm

essage.c

Add this code at the following locations:

signature_str = g_variant_get_string (signature, NULL);

if (message->body != NULL)

{

gchar *tupled_signature_str;

if (signature != NULL)

tupled_signature_str = g_strdup_printf ("(%s)", signature_str);

if (signature == NULL)

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 37 -

5.4. Onboard U-boot compilation and update

Uboot is a very rich open source to start the bootloader, kernel boot, download

from many aspects, such as update, they are widely used in embedded field can

check the website http://www.denx.de/wiki/U-Boot/WebHome for more

information

T5 platform also uses Boot Chains as boot programs, different Boot Chains mode

will correspond to different boot stages.

5.4.1. Compile the U-boot in a separate cross-compile

environment

1). Obtain u-boot source code

download YT507H-buildroot-t5-4.9.170-X.X.X.tar.bz

PC$ cd $HOME/work/t507

PC$ tar -jxvf YT507H-buildroot-t5-4.9.170-X.X.X.tar.bz

Source code directory: U-boot-2018

SPL source code directory: SPL -pub

Compile the script: build.sh

LRWXRWXRWX 1 root root 14 2 月 10 10:44 build.sh -> tools/build.sh

Drwxr-xr-x 10 root root 4096 3 月 4 14:59 SPL -pub

Drwxr-xr-x 5 root root 4096 February 10 10:45 tools

Drwxr-xr-x 26 root root 4096 3 月 4 14:59 U-boot-2018

2). Configuration and Compilation

 Go to the source directory

PC $cd brandy/brandy-2.0

 Load the toolchain in the SDK

PC$./build.sh -t

Prepare toolchain ...

http://www.denx.de/wiki/U-Boot/WebHome

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 38 -

 Compile the Uboot

PC$ cd u-boot-2018

PC$ make sun50iw9p1_defconfig

PC$ make -j

5.4.2. Compiling Uboot under Linux SDK projects (recommended)

After the user has modified the U-Boot code according to the iterative

development process in 5.4.1, the SDK can also be used to build the entire image.

Compile uboot source code:

PC$./build.sh brandy

Package files:

PC$./build.sh pack

5.4.3. How do I update the Uboot separately

Execute a separate update policy using the PhoenixSuit. See Chapter 4.1 for

details.

Figure 5-1. Updating the Uboot

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 39 -

5.5. On board Kernel compilation and update

The Linux Kernel is a very large open source kernel, which is used in various

distribution operating systems. The Linux Kernel is widely used in embedded

systems due to its portability, support of various network protocols, independent

module mechanism, MMU and many other rich features.

At the same time, T5 also supports the Linux kernel, which will be updated for a

long time. MYD-YT507H uses the T5 kernel transplant, and the latest version

supports the Linux kernel 4.9.170.

5.5.1. Compile the Kernel in a separate cross-compile environment

5.5.1.1. Obtaining kernel source code

PC$ cd $HOME/work/t507

PC $tar -jxvf YT507H-buildroot-t5-4.9.170-X.X.X.tar.bz

PC$ cd kernel/

The directory contains:

Source code soft link directory: Linux-4.9

Source code: myir-t5-kernel

LRWXRWXRWX 1 lcy root 15 10 月 19 17:47 linux-4.9 -> myir-t5-kernel/

Drwxr-xr-x 29 lcy root 4096 3 月 22 10:21 myir-t5-kernel

5.5.1.2. Configuring the kernel (optional)

MYIR has integrated most of the functionality into the kernel and generally does

not require configuration.To add special functions, configure peripheral drivers in

the following way.

 Go to the kernel directory

PC$ cd t507/kernel/Linux-4.9

 Create the output folder build

PC$ mkdir -p ../build

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 40 -

 Configuring the kernel

PC$ make ARCH=arm64 O="$PWD/../build" sun50iw9p1_longan_defconfig

You can also use the following methods to configure the kernel or enable a driver

function of the kernel.

PC$ cd ../build

PC$ make menuconfig

Figure 5-2. Kernel configuration page

5.5.1.3. Compiling the kernel (not recommended)

 Load SDK environment variables

PC$ export PATH=$PATH:/opt/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-Linux-g

nu/bin

 Configuring the kernel

PC$ make ARCH=arm64 O="$PWD/../build" sun50iw9p1_longan_defconfig

 Compile the kernel

PC$ make ARCH=arm64 uImage vmlinux dtbs O="$PWD/../build"

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 41 -

PC$ make ARCH=arm64 modules O="$PWD/../build"

Wait patiently for compilation to complete.

5.5.1.4. Compiling with the Linux SDK (recommended)

Compile kernel source code:

PC$./build.sh kernel

Package files:

PC$./build.sh pack

5.5.2. How to update the Kernel with OTG

Execute a separate update policy using the PhoenixSuit. Select BOOT. For details,

see 4.1.

Figure 5-3. Brush system

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 42 -

6. How to Fit Your Hardware Platform
In order to adapt to your new hardware platform, you need to know what

resources mill's MYD-YT507H development board provides. For details, see MYD-

YT507H SDK1.0.0 Release Notes.In addition, users also need to have a detailed

understanding of the CPU chip manual, as well as the product manual of MYC-

YT507H core board, pin definition, in order to facilitate the correct configuration

and use of these pins according to the actual function.

6.1. How do I configure your sys_config.fex

Sys_config. fex is a set of function configuration files defined by T5. This file can

be used to define pins, properties, power supply of each node, so that users can

quickly configure the function of resources.To enable users to master

sys_config.fex configuration and usage.This chapter will explain how to use it

sys_config. fex file path:

PC$: device/config/chips/t507/configs/myir/sys_config.fex

Define attribute class methods:

[product]

version = "100"

machine = "demo2"

[platform]

eraseflag = 1

debug_mode = 0

;--

;[target] system bootup configuration

;boot_clock = CPU boot frequency, Unit: MHz

;storage_type = boot medium, 0-nand, 1-card0, 2-card2, -1(defualt)auto sca

n

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 43 -

;Advert_enable = 0-close advert logo 1-open advert logo (only valid under m

ulti-core startup)

;--

[target]

boot_clock = 1008

storage_type = -1

advert_enable = 0

burn_key = 1

Define pin mode:

[card0_boot_para]

card_ctrl = 0

card_high_speed = 1

card_line = 4

sdc_d1 = port:PF0<2><1><3><default>

sdc_d0 = port:PF1<2><1><3><default>

sdc_clk = port:PF2<2><1><3><default>

sdc_cmd = port:PF3<2><1><3><default>

sdc_d3 = port:PF4<2><1><3><default>

sdc_d2 = port:PF5<2><1><3><default>

;sdc_type = "tm1"

* Due to the relevant authorization, please contact The technical support of MYIR to
obtain the details of the above two configuration definitions in the document
t507_sys_config.fex Usage Configuration Description files.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 44 -

6.2. How do I create your device tree

6.2.1. Onboard device tree

Users can create their own device trees in the BSP source code, generally without

modifying the code in the Bootloader section.You only need to adjust the Linux

kernel device tree based on actual hardware resources.The device tree list in each

part of BSP of MYD-YT507H is listed here for user development reference. The

specific content is shown in the following table:

Table 6-1. MYD-YT507H device tree list

proje

ct

Device tree instructions

U-boot sys_config.fex Sys_config.fex configuration

(see 6.1)

Kernel sys_config.fex Sys_config.fex configuration

(see 6.1)

board.dts Backplane Configuration

Resources

myir-YT507H.dtsi Resources are configured

internally on the core board

sun50iw9p1-myir.dtsi Core Resource Allocation

sun50iw9p1-myir-pinctrl.dtsi Pin configuration

display/myir-hdmi-1920x1080-1lvds-7-1024x600.dtsi HDMI and LVDS dual display

device tree configuration

display/myir-lcd-1lvds-7-1024-600.dtsi 7 inch single channel LVDS

device tree configuration

display/myir-lcd-2lvds-21-1920-1080.dtsi 21 inch dual LVDS device tree

configuration

display/myir-tv.dtsi CVBS-OUT Device tree

configuration

Display/myir-hdmi.dtsi HDMI Device tree

configuration

DTS path:

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 45 -

device/config/chips/myir/configs/xxx/sys_config.fex (xxx indicates

configuration.)

device/config/chips/myir/configs/xxx/board.dts

kernel/linux-4.9/arch/arm64/boot/dts/sunxi/

kernel/linux-4.9/arch/arm64/boot/dts/sunxi/display/

6.2.2. Add a device tree

Linux kernel device tree is a data structure that describes on-chip and off-chip

device information in a unique syntactic format.The BootLoader passes it to the

kernel, which forms the dev structure associated with the driver for the driver

code to use after parsing.

In the kernel source arch/arm64/boot/dts/sunxi can see a large number of

platform device trees.If a device tree is suitable for MYD-YT507H, you can add a

custom device tree to the current path, for example:

PATH: linux-4.9/arch/arm64/boot/dts/sunxi

We write the resources related to MYD-YT507H core board into sun50iw9p1-

myir.dtsi, myir-yt507.dtsi and board.dts.Other extended interfaces and devices

can reference them, as shown below (for reference only) :

PATH: device/config/chips/myir/configs/full/board.dts

/ *

* myir-YT507H support.

* /

/dts-v1/;

#include "myir-yt507.dtsi"

#include "display/myir-hdmi-1920x1080-1lvds-7-1024x600.dtsi"

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 46 -

#include "display/myir-hdmi-1920x1080-1lvds-7-1024x600.dtsi"

//#include "display/myir-lcd-1lvds-7-1024-600.dtsi"

//#include "display/myir-lcd-lvds-10.1-1280-800.dtsi"

//#include "display/myir-lcd-2lvds-7-1024-600.dtsi"

//#include "display/myir-lcd-2lvds-21-1920-1080.dtsi"

//#include "display/myir-hdmi.dtsi"

//#include "display/myir-tv.dtsi"

/{

model = "myir-yt507h-full";

compatible = "allwinner,t507", "arm,sun50iw9p1";

aliases {

pmu0 = &pmu0;

standby_param = &standby_param;

};

soc@03000000 {

twi2: twi@0x05002800{

status = "okay";

};

};

};

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 47 -

6.3. How to configure CPU function pins based on your

hardware

Realizing the control of a function pin is one of the more complex system

development process, which includes the configuration of the pin, the

development of the drive, the implementation of the application and so on. This

section does not analyze the development process of each part in detail, but

explains the control implementation of the function pin by example.

6.3.1. GPIO pin configuration method

GPIO: general-purpose input/output is a very important resource in embedded

devices. You can output high and low levels through them or read pin states

through them - high or low levels.

T5 encapsulates a large number of peripheral controllers. The communication

between these peripheral controllers and external devices is generally realized by

controlling GPIO, and the GPIO is used by peripheral controllers as Alternate

Function, which endodes them with more complex functions. For example, users

can use GPIO port to interact with external hardware (such as UART), control

hardware work (such as LED, buzzer, etc.), and read hardware working status

signals (such as interrupt signals).Therefore, GPIO port is widely used.

1). Manual Query

The configuration of GPIO can be found in the description Document (01-

Document Datasheet) and the list of core board pins (01-Document Hardware\)

compiled by Mill as follows:

 General calculation method

((port * 16 + line) << 8) | function

 Configuration pinmux

The ncSI0-D15 of Blue on the LED interface is taken as an example. Check the

hardware manual to obtain this pin reuse function

PE19 / NCSI0 - D15 / PE - EINT20

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 48 -

Table 6-2. Pin pin definitions

Fun

ctio

n

pin

Na

me

IO

Ty

pe

IO

Sta

te

up/

dow

n

Multi2(

DDR4)

Mult

i3(D

DR3)

Multi4

(LPDD

R3)

Multi5

(LPDD

R4)

M

ult

i6

PIN

pow

er

PE PE19 I/O DIS NCSI-D15 PE-

EIN

T20

VCC-

PE

6.3.2. GPIO is referenced in device tree

1). Configure function pins as GPIO function instances

This example uses PE19 as the GPIO test.This section describes how to configure

device nodes in the device tree for use by kernel drivers in subsequent

sections.This example can also be used to control the reset of external devices,

power supply and other control functions for reference.

Simply add nodes to the device tree.

//device/config/chips/myir/configs/full/board.dts

gpioctr_device {

compatible = "myir,gpioctr";

status = "okay";

gpioctr-gpios = <&gpioe 19 0>;

};

2). Development board LCD resource reallocation example

MYD-YT507H development board defines and realizes many rich functions, but

also occupies a large number of pin resources, such as users directly use MYD-

YT507H based on the design and development, will need to redefine and

configure the pin.LCD reuse pin (LCD-D0) function, you can first check the table to

understand the reuse pin function.

Table 6-3. Reuse list of pins (partial description)

Fun

ctio

n

pin

Na

me

IO

Sta

te

up/do

wn

Multi2

(DDR4

)

Multi3(D

DR3)

Multi4(

LPDDR3

)

Multi

5(LPD

DR4)

M

ult

i6

PIN

pow

er

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 49 -

PD PD0 I/O DIS LCD-D0 LVDF0-V0P TS0-CLK PD-

EIN

T0

VCC-

PD

MYD-YT507H development board has used PD0 two pins as LVDS data signal pins,

the pin configuration is as follows:

//kernel/Linux-4.9/arch/arm64 /boot/DTS/sunxi/sun50iw9p1-myir-pinctrl.dtsi

lvds0_pins_a: lvds0@0 {

allwinner,pins = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5

", "PD8", "PD9", "PD6", "PD7";

allwinner,pname = "PD0", "PD1", "PD2", "PD3", "PD4", "P

D5", "PD8", "PD9", "PD6", "PD7";

allwinner,function = "lvds0";

allwinner,muxsel = <3>;

allwinner,drive = <3>;

allwinner,pull = <0>;

};

lvds0_pins_b: lvds0@1 {

allwinner,pins = "PD0", "PD1", "PD2", "PD3", "PD4", "PD5

", "PD8", "PD9", "PD6", "PD7";

allwinner,pname = "PD0", "PD1", "PD2", "PD3", "PD4", "P

D5", "PD8", "PD9", "PD6", "PD7";

allwinner,function = "lvds0_suspend";

allwinner,muxsel = <7>;

allwinner,drive = <3>;

allwinner,pull = <0>;

};

Refer to the manual to reconfigure pins for i2C1 and assign them to PD0

(Multi2(DDR4)).

//Linux-4.9/arch/arm64/boot/dts/sunxi/display/myir-lvds-lcd-1-7-1024-600.dtsi

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 50 -

&lcd0 {

lcd_used = <1>;

lcd_driver_name = "default_lcd";

lcd_backlight = <200>;

lcd_if = <3>;

lcd_x = <1024>;

lcd_y = <600>;

lcd_width = <150>;

lcd_height = <94>;

lcd_dclk_freq = <50>; / / < 70 >

lcd_pwm_used = <1>;

lcd_pwm_ch = <0>;

lcd_pwm_freq = <50000>;

lcd_pwm_pol = <1>;

lcd_pwm_max_limit = <255>;

lcd_hbp = <160>;

lcd_ht = <1324>;

lcd_hspw = <116>;

lcd_vbp = <24>;

lcd_vt = <629>;

lcd_vspw = <3>;

lcd_lvds_if = <0>;

lcd_lvds_colordepth = <0>;

lcd_lvds_mode = <0>;

lcd_frm = <0>;

lcd_hv_clk_phase = <0>;

lcd_hv_sync_polarity= <0>;

lcd_gamma_en = <0>;

lcd_bright_curve_en = <0>;

lcd_cmap_en = <0>;

lcd_fsync_en = <0>;

lcd_fsync_act_time = <1000>;

lcd_fsync_dis_time = <1000>;

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 51 -

lcd_fsync_pol = <0>;

deu_mode = <0>;

lcdgamma4iep = <22>;

smart_color = <90>;

lcd_pin_power = "bldo1";

lcd_power = "dc1sw";

//lcd_bl_en = <&pio PD 28 1 0 3 1>;

//lcd_gpio_0 = <&pio PH 4 1 0 3 1>;

pinctrl-0 = <&lvds0_pins_a>;

pinctrl-1 = <&lvds0_pins_b>;

If the lcd0 interface is not used, you can set the node status of the lcd device tree

to “disabled”.

&lcd0 {

status = "disabled";

};

6.4. How to use self-configured pins

The pins configured in the device tree of u-Boot or Kernel can be used in u-Boot

or Kernel to control the pins.

6.4.1. GPIO pins are used in u-boot

1). Terminal command control

Uboot can control GPIO Settings directly using commands.To set GPIOF14, run

the following command.

=> gpio set GPIOF14

gpio: pin GPIOF14 (gpio 94) value is 1

=> gpio clear GPIOF14

gpio: pin GPIOF14 (gpio 94) value is 0

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 52 -

6.4.2. GPIO pins are used in kernel drivers

1). Use of independent I/O drivers

In the first device tree example in Section 6.2.3, the GPIO node information has

been defined, and the kernel driver will be used to control THE GPIO (set the PF14

pin to 1 and 0, if necessary, use a multimeter to test the pin level change).

//gpioctr.c

#include <linux/module.h>

#include <linux/of_device.h>

#include <linux/fs.h>

#include <linux/errno.h>

#include <linux/miscdevice.h>

#include <linux/kernel.h>

#include <linux/major.h>

#include <linux/mutex.h>

#include <linux/proc_fs.h>

#include <linux/seq_file.h>

#include <linux/stat.h>

#include <linux/init.h>

#include <linux/device.h>

#include <linux/tty.h>

#include <linux/kmod.h>

#include <linux/gfp.h>

#include <linux/gpio/consumer.h>

#include <linux/platform_device.h>

/* 1. Determine the number of the main device */

static int major = 0;

static struct class *gpioctr_class;

static struct gpio_desc *gpioctr_gpio;

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 53 -

/* 2. Implement the corresponding open/read/write functions and fill in the fi

le_operations structure */

static ssize_t gpio_drv_read (struct file *file, char __user *buf, size_t size, loff_t

*offset)

{

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

return 0;

}

static ssize_t gpio_drv_write (struct file *file, const char __user *buf, size_t size,

loff_t *offset)

{

int err;

char status;

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

err = copy_from_user(&status, buf, 1);

gpiod_set_value(gpioctr_gpio, status);

return 1;

}

static int gpio_drv_open (struct inode *node, struct file *file)

{

gpiod_direction_output(gpioctr_gpio, 0);

return 0;

}

static int gpio_drv_close (struct inode *node, struct file *file)

{

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 54 -

return 0;

}

/* Define your own file_operations structure */

static struct file_operations gpioctr_drv = {

.owner = THIS_MODULE,

.open = gpio_drv_open,

.read = gpio_drv_read,

.write = gpio_drv_write,

.release = gpio_drv_close,

};

/* Obtain GPIO from platform_device

* Tell the kernel the file_operations structure: register the driver

* /

static int chip_demo_gpio_probe(struct platform_device *pdev)

{

/* Gpioctr - gPIOS =<...>; * /

gpioctr_gpio = gpiod_get(&pdev->dev, "gpioctr", 0);

if (IS_ERR(gpioctr_gpio)) {

dev_err(&pdev->dev, "Failed to get GPIO for led\n");

return PTR_ERR(gpioctr_gpio);

}

/ * registered file_operations * /

major = register_chrdev(0, "myir_gpioctr", &gpioctr_drv); /* /dev/gpioct

r */

gpioctr_class = class_create(THIS_MODULE, "myir_gpioctr_class");

if (IS_ERR(gpioctr_class)) {

printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

unregister_chrdev(major, "gpioctr");

gpiod_put(gpioctr_gpio);

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 55 -

return PTR_ERR(gpioctr_class);

}

device_create(gpioctr_class, NULL, MKDEV(major, 0), NULL, "myir_gpioct

r%d", 0);

return 0;

}

static int chip_demo_gpio_remove(struct platform_device *pdev)

{

device_destroy(gpioctr_class, MKDEV(major, 0));

class_destroy(gpioctr_class);

unregister_chrdev(major, "myir_gpioctr");

gpiod_put(gpioctr_gpio);

return 0;

}

static const struct of_device_id myir_gpioctr[] = {

{ .compatible = "myir,gpioctr" },

{},

};

/* Define platform_driver */

static struct platform_driver chip_demo_gpio_driver = {

.probe = chip_demo_gpio_probe,

.remove = chip_demo_gpio_remove,

.driver = {

.name = "myir_gpioctr",

.of_match_table = myir_gpioctr,

},

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 56 -

};

/* Register platform_driver */ in the entry function

static int __init gpio_init(void)

{

int err;

err = platform_driver_register(&chip_demo_gpio_driver);

return err;

}

/* Where there is an entry function, there should be an exit function: this exi

t function is called when the driver is uninstalled

* uninstall platform_driver

* /

static void __exit gpio_exit(void)

{

platform_driver_unregister(&chip_demo_gpio_driver);

}

/* Other improvements: provide device information, automatically create devic

e nodes */

module_init(gpio_init);

module_exit(gpio_exit);

MODULE_LICENSE("GPL");

Compiling driver code into modules using separate makefiles can also be

configured directly into the kernel.

2). The driver sample will be configured directly into the kernel

Create a gpioctr.c file under the sample folder of the kernel source code, copy the

above driver code into it, and modify Kconfig and Makefile and

sun50iw9p1_myir_defconfig.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 57 -

Add Kconfig:

//linux/sample/Kconfig

config SAMPLE_GPIO

tristate "this is a gpio test driver"

depends on CONFIG_GPIOLIB

Add a Makefile:

//linux/sample/Makefile

SPDX - License - Identifier: GPL - 2.0

Makefile for Linux samples code

obj-$(CONFIG_SAMPLE_ANDROID_BINDERFS) += binderfs/

.

obj-$(CONFIG_SAMPLE_GPIO) += gpioctr.o

Add sun50iw9p1_myir_defconfig:

/ / Linux-4.9/arch/arm64/configs/sun50iw9p1_myir_defconfig

CONFIG_SAMPLES=y

CONFIG_SAMPLE_GPIO=y

CONFIG_SAMPLE_RPMSG_CLIENT=m

Follow section 5.5.3 to compile and update the kernel.

3). The driver sample compiles to a separate module

Add gpioctr.c to your working directory and copy the driver code above. Write a

separate Makefile in the same directory.

modified KERN_DIR

#KERN_DIR =#the directory where the kernel source is used by the board

KERN_DIR = $HOME/work/t507/kernel/Linux-4.9/

obj-m += gpioctr.o

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 58 -

all:

make -C $(KERN_DIR) M=`pwd` modules

clean:

make -C $(KERN_DIR) M=`pwd` modules clean

rm -rf modules.order

#To compile a.c, b.c into ab.ko, you can specify:

ab-y := a.o b.o

obj-m += ab.o

Load SDK environment variables into the current shell.

PC$ export PATH=$PATH:/opt/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-Linux-g

nu/bin

Run the make command to generate the gpioctr.ko driver module file.

root@ubuntu:/home/myir# make

The make -C/home/lcy/work/t507/kernel/linux-4.9/ M =` PWD `modules

Make [1] : if the directory '/ home/lcy/work/t507/kernel/linux-4.9 /'

CC [M] /home/myir/gpioctr.o

Building modules, stage 2.

MODPOST 1 modules

CC [M] /home/myir/gpioctr.mod.o

LD [M] /home/myir/gpioctr.ko

Make [1] : brigade directory '/home/lcy/work/t507/kernel/linux-4.9/'

After successful compilation, the gpioctr.ko file can be transferred to the

/lib/modules directory of the development board through Ethernet, WIFI, USB

OTG, USB disk and other transmission media, and then the driver can be loaded

using the insmod command.

4). Use of peripheral controllers

Different peripheral devices have their own independent driver code and

architecture implementation. When modifying and debugging different peripheral

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 59 -

drivers, they need to comply with their respective driver frameworks.For example,

touch screen and keyboard need to use INPUT driver architecture;ADC and DAC

use IIO architecture, display devices use DRM driver architecture and so on. This

section does not explain driver development in detail.

6.4.3. User space uses GPIO pins

The Linux operating system architecture is divided into user-mode and kernel-

mode (or user-space and kernel).User mode is the activity space of the upper

application program. The execution of the application program must rely on the

resources provided by the kernel, including CPU resources, storage resources, I/O

resources, etc.In order for upper-layer applications to access these resources, the

kernel must provide an interface for upper-layer applications to access them:

system calls.

Shell is a special application program, commonly known as the command line, is

essentially a command interpreter, it calls the system, through a variety of

applications.With Shell scripts, a few lines of Shell scripts can do a lot of work,

because Shell statements often encapsulate system calls.To facilitate user

interaction with the system.

This section describes three basic ways to control GPIO pins in user mode.

 Shell command

 The system calls

 Library function

1). Shell implements pin control

Shell control pins are essentially realized by calling the file operation int

erfaces provided by Linux. This section does not give detailed explanation. Pl

ease refer to section 3.1 of MYD-YT507H_Linux Software Evaluation Guide for

description.

2). Library functions implement pin control

Starting with Linux version 4.8, Linux introduced a new GPIO operation, the GPIO

character device.Instead of using the old /sysfs method of operating GPIO in the

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 60 -

"/sys/class/gpio "directory, a character device based on the" file descriptor "has a

corresponding gpiochip file under "/dev" for each GPIO group. For example,

"/dev/gpiochip0 corresponds to GPIOA, /dev/gpiochip1 corresponds to GPIOB",

etc.

Libgpiod library function implementation due to the gpiochip way, based on the C

language, so the developer implemented Libgpiod, provides some tools and a

simpler C API interface.Libgpiod (Library General Purpose Input/Output Device)

provides a full API for developers, as well as user-space applications to

manipulate GPIO.

Libgpiod interface description:

gpiodetect - Lists all GPIochips present in the system, their name, label, and

GPIO line count.

gpioinfo - Lists all rows of the specified gPIochips, their names, users,

directions, active status, and additional flags.

gpioget - Reads the specified GPIO line value.

gpioset - Sets the specified GPIO line values, potentially holding those lines

exported and waiting for timeout, user input, or signals.

gpiofind - Finds the gpiochip name and row offset for the given row name.

gpiomon - Waits for events on the GPIO line, specifying which events to

watch, how many events to process before exiting, or whether events

should be reported to the console.

More description to view libgpiod source https://git.kernel.org/pub/scm/lib

s/libgpiod/libgpiod.git/.

The following code control examples of C language will be implemented using

PF14 as operation GPIO pins (alternating high and low).

//example-gpio.c

#include <errno.h>

https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 61 -

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/ioctl.h>

#include <unistd.h>

#include <linux/gpio.h>

int main(int argc, char **argv)

{

struct gpiohandle_request req;

struct gpiohandle_data data;

char chrdev_name[20];

int fd, ret;

strcpy(chrdev_name, "/dev/gpiochip5");

/* Open device: GPIochip5 for GPIO bank F */

fd = open(chrdev_name, 0);

if (fd == -1) {

ret = -errno;

fprintf(stderr, "Failed to open %s\n", chrdev_name);

return ret;

}

/* request GPIO line: GPIO_F_14 */

req.lineoffsets[0] = 14;

req.flags = GPIOHANDLE_REQUEST_OUTPUT;

memcpy(req.default_values, &data, sizeof(req.default_values));

strcpy(req.consumer_label, "gpio_f_14");

req.lines = 1;

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 62 -

ret = ioctl(fd, GPIO_GET_LINEHANDLE_IOCTL, &req);

if (ret == -1) {

ret = -errno;

fprintf(stderr,"Failed to issue GET LINEHANDLE IOCTL (%d)\n",ret);

}

if (close(fd) == -1)

perror("Failed to close GPIO character device file");

/* Start GPIO ctr*/

while(1) {

data.values[0] = !data.values[0];

ret = ioctl(req.fd, GPIOHANDLE_SET_LINE_VALUES_IOCTL, &data);

if (ret == -1) {

ret = -errno;

fprintf(stderr,"Failed to issue %s (%d)\n", ret);

}

sleep(1);

}

/* release line */

ret = close(req.fd);

if (ret == -1) {

perror("Failed to close GPIO LINEHANDLE device file");

ret = -errno;

}

return ret;

}

Copy the above code into an example-gpio.c file and load the SDK environment

variables into the current shell:

PC $export PATH= $PATH:/opt/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-Linux-

gnu/bin

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 63 -

The executable example-gpio can be generated using the compile command $CC.

PC$ aarch64-linux-gnu-gcc example-gpio.c -o example-gpio

Copy the executable file to the /usr/sbin directory on the development board over

the network (such as scp) or usb flash drive. You can run the command directly on

the terminal.

root@myir:~# example-gpio

3). System calls implement pin control

The operating system provides a set of "special" interfaces to be invoked by user

programs.The user program can obtain the services provided by the operating

system kernel through this set of "special" interfaces. For example, the user can

request the system to open, close, or read files through file system-related calls,

and obtain system time or set timers through clock-related system calls.

Pins are also resources and can be controlled through system calls.In 6.3.2, we

have completed the implementation of the pin driver, which can control the pin

controlled by the driver.

//gpiotest.c

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <string.h>

/ *

* ./gpiotest /dev/myir_gpioctr on

* ./gpiotest /dev/myir_gpioctr off

* /

int main(int argc, char **argv)

{

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 64 -

int fd;

char status;

/* 1. Check parameters */

if (argc != 3)

{

printf("Usage: %s <dev> <on | off>\n", argv[0]);

return -1;

}

/* 2. Open file */

fd = open(argv[1], O_RDWR);

if (fd == -1)

{

printf("can not open file %s\n", argv[1]);

return -1;

}

/* 3. Write files */

if (0 == strcmp(argv[2], "on"))

{

status = 1;

write(fd, &status, 1);

}

else

{

status = 0;

write(fd, &status, 1);

}

close(fd);

return 0;

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 65 -

}

Copy the above code to a gpiotest.c file and load the SDK environment variables

into the current shell:

PC$ export PATH=$PATH:/opt/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gn

u/bin

Use the compile command aarch64-linux-gnU-gcc to generate the executable file

gpiotest.

PC$ aarch64-linux-gnu-gcc gpiotest.c -o gpiotest

Copy the executable file to the /usr/sbin directory on the development board o
ver the network (SUCH as SCP) or usb flash drive. You can run the command dir
ectly on the terminal (on indicates high, off indicates low).

root@myir:~# gpiotest /dev/myir_gpioctr on

root@myir:~# gpiotest /dev/myir_gpioctr off

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 66 -

7. How to add your application
The migration of Linux applications is usually divided into two phases, the

development debugging phase and the production deployment phase.During the

development and debugging phase, we can use the SDK built by MYIR to cross-

compile the application we have written and then remotely copy it to the target

host for testing.The production deployment phase involves writing a recipe file for

the application and building a production image using Buildroot.

7.1. Makefile-based applications

A Makefile is simply a document that defines a set of compilation rules that

record the details of how the source code is compiled! Once the Makefile is

written, only one make command is required, and the entire project is completely

compiled automatically, greatly improving the efficiency of software

development.Makefiles are widely used in developing Linux programs, whether

kernel, driver, or application.

Make is a command tool that interprets instructions in makefiles.It simplifies

compilation. When make is executed, make searches the current directory for the

Makefile (or Makefile) text file and performs the corresponding operation.Make

automatically checks to see if the source code has changed and automatically

updates the executable.

The following will describe the writing of Makfile and the execution of make using

a practical example (implementing a key-controlled LED light switch on the MYD-

YT507H development board).Makefiles have their own set of rules.

target ...: prerequisites...

command

A target can be an object file, an execution file, or a label.

Prerequisites is the file or target that is required to generate the target.

Command is the command that make needs to execute.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 67 -

key_led.o: key_led.c

${CC} -I . -c key_led.c

all: key_led.o

${CC} key_led.c -o target_bin

clean:

rm -rf *.o

rm target_bin

CC: the name of the C compiler

CXX: name of the C++ compiler

All: usually the default target, performing the default compilation

Clean: Is an agreed goal

Key_led implementation code is as follows:

//File: Key_led.c

#include <linux/input.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

/* ./key_led /dev/input/event0 noblock */

int main(int argc, char **argv)

{

int fd,bg_fd;

int err, len, i;

unsigned char flag;

unsigned int data[1];

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 68 -

char *bg = "/sys/class/leds/heartbeat/brightness";

struct input_event event;

if (argc < 2)

{

printf("Usage: %s <dev> [noblock]\n", argv[0]);

return -1;

}

if (argc == 3 && !strcmp(argv[2], "noblock"))

{

fd = open(argv[1], O_RDWR | O_NONBLOCK);

}

else

{

fd = open(argv[1], O_RDWR);

}

if (fd < 0)

{

printf("open %s err\n", argv[1]);

return -1;

}

while (1)

{

len = read(fd, &event, sizeof(event));

if (event.type == EV_KEY)

{

if (event.value == 1)//key down and up

{

printf("key test \n");

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 69 -

bg_fd = open(bg, O_RDWR);

if (bg_fd < 0)

{

printf("open %d err\n", bg_fd);

return -1;

}

read(bg_fd,&flag,1);

if(flag == '0')

system("echo 1 > /sys/class/leds/heartbeat/brig

htness"); //led off

else

system("echo 0 > /sys/class/leds/heartbeat/brightnes

s");//led on

}

}

}

return 0;

}

Compile and generate the executable target_bin on the target machine using the

make command.

Load and compile the cross toolchain environment variable to the current shell:

Perform the make:

PC$ make

As you can see from the results of the previous command, the compiler used is

the one created by setting CC variables defined in the script.

Copy the target_bin executable file to /usr/sbin on the development board via

network (scp, etc.) or usb disk:

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 70 -

root@myir:~# target_bin /dev/input/event0 noblock

Note: If the target_bin is built using the cross-toolchain compiler, and the architecture of
the build host is different from that of the target machine, you need to run the project on
the target device.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 71 -

7.2. Qt-based applications

Qt is a cross-platform graphics application development framework that can be

used on different sizes of devices and platforms. Qt also provides users with

different copyright versions to choose from. MYD-YT507H uses Qt 5.12 for

application development.In Qt application development, it is recommended to

use QtCreator integrated development environment, which can develop Qt

applications under Linux PC and automatically cross-compile them into ARM

architecture programs of development board.

1). QtCreator installation and configuration

From QT website qtcreator installation package download QT's official website:

http://download.qt.io/development_releases/qtcreator/4.1/4.1.0-rc1/.

Qt-creator-openSource-linux-x86_64-4.1.0-rc1.run /qt-creator-opensource-linux-

x86_64-4.1.0-rc1. If you want to get installation and configuration details, please

see the MYD-YT507H QT application development notebook or QTCreator official

website to get more development guide https://www.qt.io/product/development-tools.

2). MEasy HMI2.0 is compiled and running

MEasy HMI 2.0 is a QT5-based HMI framework developed by MYIR

Technology Co., LTD.The project uses a mixture of QML and C++ programming to

efficiently and conveniently build the UI, while C++ is used to implement business

logic and complex algorithms.

The MEasy HMI2.0 project source code "MYD-YT507H-2022xxx\04-sources

\mxapp2.tar.gz" is available in mill's software distribution package.It can be

loaded and compiled via QT Creator, remote debugging, etc. Please refer to

“MYD-YT507H QT Application Development Notes” .

http://download.qt.io/development_releases/qtcreator/4.1/4.1.0-rc1/
http://download.qt.io/development_releases/qtcreator/4.1/4.1.0-rc1/
https://www.qt.io/product/development-tools
https://www.qt.io/product/development-tools

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 72 -

Reference
 Linux Kernel open source community

https://www.kernel.org/

 Buildroot website
https://buildroot.org/

https://www.kernel.org/
https://buildroot.org/downloads/

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 73 -

Appendix A

Warranty & Technical Support Services

MYIR Electronics Limited is a global provider of ARM hardware and software tools, design

solutions for embedded applications. We support our customers in a wide range of services

to accelerate your time to market.

MYIR is an ARM Connected Community Member and work closely with ARM and many

semiconductor vendors. We sell products ranging from board level products such as

development boards, single board computers and CPU modules to help with your evaluation,

prototype, and system integration or creating your own applications. Our products are used

widely in industrial control, medical devices, consumer electronic, telecommunication systems,

Human Machine Interface (HMI) and more other embedded applications. MYIR has an

experienced team and provides custom design services based on ARM processors to help

customers make your idea a reality.

The contents below introduce to customers the warranty and technical support services

provided by MYIR as well as the matters needing attention in using MYIR’s products.

Service Guarantee

MYIR regards the product quality as the life of an enterprise. We strictly check and control the

core board design, the procurement of components, production control, product testing,

packaging, shipping and other aspects and strive to provide products with best quality to

customers. We believe that only quality products and excellent services can ensure the long-

term cooperation and mutual benefit.

Price

MYIR insists on providing customers with the most valuable products. We do not pursue

excess profits which we think only for short-time cooperation. Instead, we hope to establish

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 74 -

long-term cooperation and win-win business with customers. So we will offer reasonable

prices in the hope of making the business greater with the customers together hand in hand.

Delivery Time

MYIR will always keep a certain stock for its regular products. If your order quantity is less

than the amount of inventory, the delivery time would be within three days; if your order

quantity is greater than the number of inventory, the delivery time would be always four to six

weeks. If for any urgent delivery, we can negotiate with customer and try to supply the goods

in advance.

Technical Support

MYIR has a professional technical support team. Customer can contact us by email

(support@myirtech.com), we will try to reply you within 48 hours. For mass production and

customized products, we will specify person to follow the case and ensure the smooth

production.

After-sale Service

MYIR offers one year free technical support and after-sales maintenance service from the

purchase date. The service covers:

Technical support service

MYIR offers technical support for the hardware and software materials which have provided

to customers:

 To help customers compile and run the source code we offer;

 To help customers solve problems occurred during operations if users follow the user

manual documents;

 To judge whether the failure exists;

 To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical support

service:

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 75 -

 Hardware or software problems occurred during customers’ own development;

 Problems occurred when customers compile or run the OS which is tailored by themselves;

 Problems occurred during customers’ own applications development;

 Problems occurred during the modification of MYIR’s software source code.

After-sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free

maintenance service since the purchase date. But following situations are not included in the

scope of our free maintenance service:

 The warranty period is expired;

 The customer cannot provide proof-of-purchase or the product has no serial number;

 The customer has not followed the instruction of the manual which has caused the damage

the product;

 Due to the natural disasters (unexpected matters), or natural attrition of the components, or

unexpected matters leads the defects of appearance/function;

 Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards,

all those reasons which have caused the damage of the products or defects of appearance;

 Due to unauthorized weld or dismantle parts or repair the products which has caused the

damage of the products or defects of appearance;

 Due to unauthorized installation of the software, system or incorrect configuration or

computer virus which has caused the damage of products.

Warm tips

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the

LCD when receiving the goods. In case the LCD cannot run or no display, customer should

contact MYIR within 7 business days from the moment get the goods.

2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 76 -

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use,

please avoid clean the surface with fingers or hands to leave fingerprint.

4. Do not clean the surface of the screen with chemicals.

5. Please read through the product user manual before you using MYIR’s products.

6. For any maintenance service, customers should communicate with MYIR to confirm the

issue first. MYIR’s support team will judge the failure to see if the goods need to be returned

for repair service, we will issue you RMA number for return maintenance service after

confirmation.

Maintenance period and charges

 MYIR will test the products within three days after receipt of the returned goods and inform

customer the testing result. Then we will arrange shipment within one week for the repaired

goods to the customer. For any special failure, we will negotiate with customers to confirm

the maintenance period.

 For products within warranty period and caused by quality problem, MYIR offers free

maintenance service; for products within warranty period but out of free maintenance

service scope, MYIR provides maintenance service but shall charge some basic material cost;

for products out of warranty period, MYIR provides maintenance service but shall charge

some basic material cost and handling fee.

Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be responsible

by user; MYIR will pay for the return shipping cost to users when the product is repaired. If

the warranty period is expired, all the shipping cost will be responsible by users.

Products Life Cycle

MYIR will always select mainstream chips for our design, thus to ensure at least ten years

continuous supply; if meeting some main chip stopping production, we will inform customers

in time and assist customers with products updating and upgrading.

MYIR-MYD-YT507H-SW-DG-ZH-L4.9.170

- 77 -

Value-added Services

1. MYIR provides services of driver development base on MYIR’s products, like serial port,

USB, Ethernet, LCD, etc.

2. MYIR provides the services of OS porting, BSP drivers’ development, API software

development, etc.

3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

4. ODM/OEM services.

MYIR Electronics Limited

Room 04, 6th Floor, Building No.2, Fada Road,

Yunli Inteiligent Park, Bantian, Longgang District.

Support Email: support@myirtech.com

Sales Email: sales@myirtech.com

Phone: +86-755-22984836

Fax: +86-755-25532724

Website: www.myirtech.com

	MYD-YT507H Linux System Development Guide
	Revision History
	CONTENT

	1.Overview
	1.1.Software Resources
	1.2.Document Resources

	2.Development Environment
	2.1.Developing Host Environment
	 Host Hardware
	 Host Operating System
	Prerequisite Package Installation

	2.2.Introduction of Software Development Tools
	Install driver
	Burning software installation

	2.3.Install the cross-compile toolchain

	3.Build the File System with buildroot
	3.1.Introduction Linux SDK
	3.2.Get the Source Code
	3.2.1.Get Compressed Source Code from CD Image
	3.2.2.Get Source Code from GitHub
	3.2.3.Linux SDK structure
	3.2.4.Buildroot Introduction
	3.2.5.kernel
	3.2.6.brandy
	3.2.7.platform
	3.2.8.tools
	3.2.9.Test system
	3.2.10.device

	4.How to Burn System Image
	4.1.PhoenixSuit burn
	1).preparatory
	2).Setup the development board
	3).Burn the system under Windows

	4.2.Make an SD card initiator
	1).The preparatory work
	2).Making SD card to start (taking myir-image-full im

	4.3.Make SD card burner
	Make an SD card initiator
	SD card burns EMMC
	Verify eMMC startup

	5.How to Modify Board Level Support Package
	5.1.Buildroot layer is introduced
	5.2.This section describes the board support package
	5.3.Configuration and build of the Linux SDK
	5.4.Onboard U-boot compilation and update
	5.4.1.Compile the U-boot in a separate cross-compile env
	1).Obtain u-boot source code
	2).Configuration and Compilation
	Go to the source directory
	Load the toolchain in the SDK
	Compile the Uboot

	5.4.2.Compiling Uboot under Linux SDK projects (recommen
	5.4.3.How do I update the Uboot separately

	5.5.On board Kernel compilation and update
	5.5.1.Compile the Kernel in a separate cross-compile env
	5.5.1.1.Obtaining kernel source code
	5.5.1.2.Configuring the kernel (optional)
	Go to the kernel directory
	Create the output folder build
	Configuring the kernel

	5.5.1.3.Compiling the kernel (not recommended)
	Load SDK environment variables
	Configuring the kernel
	Compile the kernel

	5.5.1.4.Compiling with the Linux SDK (recommended)

	5.5.2.How to update the Kernel with OTG

	6.How to Fit Your Hardware Platform
	6.1.How do I configure your sys_config.fex
	6.2.How do I create your device tree
	6.2.1.Onboard device tree
	6.2.2.Add a device tree

	6.3.How to configure CPU function pins based on your h
	6.3.1.GPIO pin configuration method
	1).Manual Query
	General calculation method
	Configuration pinmux

	6.3.2.GPIO is referenced in device tree
	1).Configure function pins as GPIO function instances
	2).Development board LCD resource reallocation exampl

	6.4.How to use self-configured pins
	6.4.1.GPIO pins are used in u-boot
	1).Terminal command control

	6.4.2.GPIO pins are used in kernel drivers
	1).Use of independent I/O drivers
	2).The driver sample will be configured directly into
	3).The driver sample compiles to a separate module
	4).Use of peripheral controllers

	6.4.3.User space uses GPIO pins
	1).Shell implements pin control
	2).Library functions implement pin control
	3).System calls implement pin control

	7.How to add your application
	7.1.Makefile-based applications
	7.2.Qt-based applications
	1).QtCreator installation and configuration
	2).MEasy HMI2.0 is compiled and running

	Reference
	Linux Kernel open source community
	Buildroot website

	Appendix A
	Warranty & Technical Support Services

