MYiR

JRIREB=F

Make Your Idea Real

MYD-LD25X Linux

Software Development Guide

File status:
[1 Draft
[V]Release

FILE ID: MYIR-MYD-LD25X-SW-DG-EN-L6.1.82
VERSION: | V1.1[Doc]
AUTHOR: | MSWO0192
RELEASE: 2024-09-11
UPDATED: | 2024-11-08

Copyright © MYIR Electronics Limited 2011-2024 all rights reserved

‘. =y S
H I lR ﬂfﬂ{'{&r%ﬂ%l Development Guide ‘

Revision History

VERSION AUTHOR | PARTICIPANT DATE DESCRIPTION
V1.0[Doc] MSW0192 MSW0041 2024-09-15 Official Release
V1.1[Doc] MSW0192 MSW0041 2024-11-08 Thefggg;"’_‘g‘éq gint(h,ie“fm

-2.

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

CONTENT

REVISION HISTOIY ...ttt sseaees -2-
CONTENT oottt snsssenas -3-
1. Overview of System Development..........occmneereneeneeneeneeseeneeneeenenn. -5-
1.1, SOFtWAre RESOUICES ...ttt sss st ssssssnsnns -6 -
2. Setting Up the Development Environment...........ccceeeverecerrenennecnnnes -7 -
2.1, HOSt ENVIFONMENT ...ttt sss st sssssssssssssanens -7 -
2.2. Installation of cross-compilation toolchain............oececeircnicniceieinnne. - 10 -
3. How to Flash the System Image.........cveeeceneereeeeeeeeeenn -13 -

4. Separate Compilation and Update of the Board Support Package- 14 -

4.1. Introduction to the Board Support Package..........ecenenecninneneninnn. - 14 -
4.2. Bootloader Compilation and Update.......c.ccooeovrereererensinninsirsereseieeiseiseeeene - 16 -
4.3. Onboard Kernel Compilation and Update........cccoccoevrrrnrreneneneeneneneenn. -19 -
5. Setting Up a Basic Yocto Environment........cccoevreevnennnnessenenennn, - 23 -
5.1 INEFOAUCTION ...ttt -23 -
5.2. Obtaining the SOUrce Code ... sssessssnes - 24 -
5.3. Quick Compilation of Development Board Image........ccccoocovveverrrerrerrennnnee - 25 -
5.4, BUIIA SDK ..ottt ssse s es s sssssess - 30 -
6. Adapting Hardware to the Baseboard..........cccocovvvnencninnincnennenn. -31-
6.1. Introduction to the meta-bsp Layer......... s -31 -
6.2. How to Create Your Own Machine........cocnnininnineeseeeeeeeeeeeenes -33 -
6.3. HOw t0 Create YOUr DeViCe Tree ... reereineireireeseseiseiseiseiseisessesseasenne - 37 -
6.4. Configuring CPU Function Pins for Your Hardware..........ccocooeveverrurnunee. -39 -
6.5. UsiNg CoNfIQUIEd PiNs ...ttt sessssesens -41 -
7. Application Development and Deployment.........cccoovveovvernenennnes - 42 -
7.1. Applications Based on Makefilg.g. ... -42 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

k =y S
H I lR ﬂfﬂ{'{}r%ﬂ%l Development Guide ‘

7.2. Qt-Based APPlICAtiONS ...ttt sssssaees - 47 -

7.3. Configuring Applications for Automatic Startup........cccceeeevereverereenennee. - 48 -

8. RETEIENCES ...ttt ss s nssnaes - 53 -

APPENIX A .ttt sttt st ssnaes - 54 -
-4 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

1. Overview of System Development

The embedded Linux system is a relatively large software system, including the
board support package BSP (Board Support Package), which can be narrowly
understood as the system bootloader, drivers, etc.; the Linux system kernel, which
includes numerous protocol stacks, resource management, and schedulers; the
Rootfs root file system, the application runtime environment, initialization scripts,
and service resources, etc. To integrate these resources into a whole that can be
well managed, a framework is needed for management.

Embedded Linux system software has many open-source build frameworks,
among which the more common ones are Buildroot, Yocto, Busyboxand so on.
Yocto uses powerfulresource integration
methodsandhighcustomizablearchitecture,making it very convenient tobuild Linux
systems suitable for embedded products.At the same timeYocto is not only
asystem tool for creating files, but also provides a complete set of Linux-based
development and maintenance workflows, allowing lower-level embedded
developers and upper-level application developers to work within a unified
framework, solving the scattered and unmanaged development forms of
traditional development methods.

MYD-LD25X series development platform on, using Yocto to deploy
development environments, build systems, and Linux applications integration and
image updates, etc. After system developers are familiar with the Yocto
development process in Chapter five, they can refer to the porting guide in
Chapter six to customize the BSP according to actual project needs, allowing them
to quickly port the system to hardware platforms based on the MYD-LD25X core
board design.

Note:This document does not include an introduction to the Yocto projectand basic
knowledge related to Linux systems,and is suitable for embedded Linuxsystem
developers with some development experience.For specific functions that users may use
during secondary development, we also provide detailed application development
manuals.

-5-

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

& .y =
H I |I l ﬂfe{/{:r%ﬂiv Development Guide

1.1. Software Resources

The MYD-LD25X board runs an operating system based on Linux kernel version
6.1.82, providing a wealth of system and software resources. The development
board comes pre-installed with the cross-compilation toolchain required for
embedded Linux system development, ATF source code, U-boot source code,
Linux kernel and various driver modules' source codes, as well as various
development and debugging tools for Windows and Linux desktop environments,
and application development examples. For detailed software information, please
refer to Chapter 2 of the "MYD-LD25X SDK Release Note."

-6 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

[] =~
H I |I l ﬂfe{/{}r%ﬂﬁr Development Guide

2. Setting Up the Development

Environment

This chapter provides guidance on setting up the environment based on the
MYD-LD25X development board, including the necessary hardware and software

components for the entire development process.

2.1. Host Environment

1) Host Hardware and Software Requirements
® Host Hardware

Yocto project builds require a development host with a dual-core CPU or better,
at least 8GB of RAM, and a 400GB or larger hard drive. It can be a physical

machine or a virtual machine running Linux.
® Host Operating System

Various Linux distributions can be used for building Yocto projects. Common
choices include Fedora, openSUSE, Debian, Ubuntu, RHEL, or CentOS. This guide
recommends Ubuntu 20.04 64-bit for development.

2) Host Environment Configuration

After installing the Ubuntu 20.04 64-bit system, you can make appropriate
configurations to prepare for subsequent development.

® Set Root Password

For development operations, it is advisable to use a regular user account rather
than the root account. This means that the hostname should match your
username instead of 'root’, in order to avoid potential permission-related issues

during the development process.

$ sudo passwd root
® Install SSH

-7 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

[=y S
H I lI !me{’lu}r%ﬂil Development Guide -

After installing the SSH service, you can connect to Ubuntu for subsequent

development using an SSH2 connection with a remote serial debugging tool in a
Windows environment. You can search online for tutorials on how to use the

serial debugging tool.

$ sudo apt-get install openssh-server

To generate a key for the user, use the following commands:

$ su user
$ ssh-keygen -t rsa

® Configure Samba

Samba allows you to access Ubuntu's contents in folder format directly from
Windows, making reading and writing more convenient. To install Samba, enter

the following command:

$ apt-get install samba

In the /etc/samba/smb.conf file, add user configuration. The following
configuration uses the username "myir" as an example; please adjust it according
to your actual username. The following configuration can be directly added to the
end of the configuration file:

[myir]

path = /home/myir
valid users = myir
browseable = yes
public = yes
writable = yes

Create an account and set a password:

$ sudo smbpasswd -a myir
New SMB password:
Retype new SMB password:
Added user myir.

/etc/init.d/smbd restart Restart the Samba service:

$ /etc/init.d/smbd restart
-8 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

‘. =y S
H I lR ﬂfﬂ{'{&r%ﬂ%l Development Guide ‘

[ok] Restarting smbd (via systemctl): smbd.service.
® Configure Git

$ git config --global user.name "user"
$ git config --global user.email "email"
$ git config --list
® Install Necessary Tools
This section is very important. Please ensure that the host environment correctly
executes the following actions, and restart after completing the operations below.

$ sudo apt-get update

$ sudo apt-get install -y gawk wget git-core diffstat \

unzip texinfo gcc-multilib build-essential chrpath socat libsdl1.2-dev \

xterm sed cvs subversion coreutils texizhtml docbook-utils python-pysqglite2 \
help2man make gcc g++ desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev \
mercurial autoconf automake groff curl Izop asciidoc u-boot-tools cpio \
sudo locales bc libncurses5-dev screen flex bison vim-tiny \
device-tree-compiler xvfb libgtk2.0-dev libssl-dev net-tools libyaml-dev \
rsync liblz4-tool zstd python3-pip git-Ifs iputils-ping jq

$ sudo rm -rf /var/lib/apt/lists/*

$ sudo chmod a+x /usr/bin/repo

$ sudo In -s /usr/bin/python3 /usr/bin/python

$ sudo sed -i -e 's/# en US.UTF-8 UTF-8/en US.UTF-8 UTF-8/' /etc/locale.gen
$ echo 'LANG="en US.UTF-8"" | sudo tee /etc/default/locale > /dev/null

$ sudo dpkg-reconfigure --frontend=noninteractive locales

$ sudo update-locale LANG=en US.UTF-8

$ sudo pip3 install pyusb usb crypto ecdsa crcmod tgdm pycryptodome pycr
yptodomex pyelftools

-9-

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

2.2. Installation of cross-compilation toolchain

After using Yocto to build the system image, we can also use Yocto to build an
extensible SDK. The materials provided by MYiR contain a pre-compiled SDK
package, located at: 03-Tools/Compile Toolchain/SDK. The functionalities of the
SDK files are described in the table below:

Table 2-1. Compilation Toolchain

Toolchain File Name Description
myir-image-full-openstlinux-weston-myd-ld25x-x86_64-toolchain- Includes a standalone cross-
4.2.4-snapshot.sh development toolchain, also

providing gmake, the target
platform's sysroot, libraries, and
header files required for Qt
application development. Users
can directly use this SDK to
establish an independent
development environment.

Here are the steps for installing the SDK:
® Copy SDK to Linux Directory

Transfer the SDK compressed package to the user's working directory in Ubuntu.

This will give you the installation script file, which looks like this:

$ mkdir myd-ld25x-toolchain;cd ~/myd-Id25x-toolchain
$ cp ~/03-Tools/Compile Toolchain/* ./
$ Is ~/myd-Id25x-toolchain
myir-image-full-openstlinux-weston-myd-1d25x-x86_64-toolchain-4.2.4-snapshot.
sh

® Execute the Installation Script
To execute the shell script with regular user permissions, it will prompt for the
installation path, which defaults to the /opt directory. In this example, the Qt
toolchain is installed in the directory /home/myir/myd-ld25x-toolchain, as shown
below:
$./myir-image-full-openstlinux-weston-myd-1d25x-x86_64-toolchain-4.2.4-snaps
hot.sh
ST OpenSTLinux - Weston - (A Yocto Project Based Distro) SDK installer versi

on 4.2.4-snapshot
-10 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

k =y S
H I lR ﬂfﬂ{'{}r%ﬂ%l Development Guide ‘

Enter target directory for SDK (default: /opt/st/myd-ld25x/4.2.4-snapshot): ./
You are about to install the SDK to "/home/myir/myd-ld25x-toolchain”. Proce
ed [Y/n]? y

Extracting SD

Setting it up...done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to sour
ce the environment setup script e.g.

Initialize environment variables:

$ source ~/myd-ld25x-toolchain/environment-setup-cortexa35-ostl-linux
® Test the SDK

Use $CC or $CXX to check whether the cross-compiled gcc and g++ are installed

correctly:

$ $CC -v

Using built-in specs.

COLLECT GCC=aarch64-ostl-linux-gcc

COLLECT LTO WRAPPER=/home/myir/myd-ld25x-toolchain/sysroots/x86 64-ostl
_sdk-linux/usr/libexec/aarch64-ostl-linux/gcc/aarch64-ostl-linux/12.3.0/1to-wrapp
er

Target: aarch64-ostl-linux

Thread model: posix

Supported LTO compression algorithms: zlib zstd

gcc version 12.3.0 (GCC)

Note: The operation to initialize the environment variables will only apply to the currently

opened terminal window. Any new window opened in any way will not load the LMA35

SDK cross-compilation toolchain by default. Therefore, if you need to perform Yocto
-11 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

‘ .y =
M I lR z\!lfe{'{:r%uil Development Guide ‘

builds or other development tasks, please open a new window to avoid environmental
errors caused by the cross-compilation toolchain.

-12-

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

[=y S
H I lI !me{’lu}r%ﬂil Development Guide -

3. How to Flash the System Image

The MYD-LD25X series development boards, designed by MYIR, are based on ST's
STM32MP257 microprocessors and support various boot methods, requiring
different update tools and methods. Users can choose from the following update
options:
> STM32CubeProgrammer: A Windows software that allows direct
programming of the board via Type-C, without needing additional storage
media.
» TF Card Launcher: Suitable for development and debugging, it facilitates
quick booting but cannot flash images.
> TF Card Programmer: Ideal for mass production, used for flashing eMMC.

For detailed image flashing methods, refer to the "MYD-LD25X Production
Guide," which includes comprehensive preparation steps and operational

instructions for each model and image type.

-13 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

4. Separate Compilation and Update

of the Board Support Package

4.1. Introduction to the Board Support Package

To adapt to a new hardware platform, you first need to understand the resources
provided by MYIR's MYD-LD25X development board. For detailed information,
please refer to the "MYD-LD25X SDK Release Note." Additionally, we have
compiled a list of files that may need modification within the BSP (Board Support
Package) to assist users in locating and making necessary changes. The specific
details are outlined in the table below:

Table 4-1. Adding Configuration Information

Project Device Tree Description
U-boot arch/arm/dts/myb-stm32mp257x-2GB.dts U-Boot device tree
definition file for 2GB
RAM
arch/arm/dts/myb-stm32mp257x-2GB-resmem.dtsi Device tree configuration

include file for reserved
memory with 2GB RAM

arch/arm/dts/myb-stm32mp257x-2GB-u-boot.dtsi U-Boot specific device
tree configuration include
file
arch/arm/dts/myb-stm32mp257x-base.dtsi Basic device tree
configuration include file

arch/arm/dts/myb-stm32mp257x-1GB.dts U-Boot device tree
definition file for 1GB
RAM

arch/arm/dts/myb-stm32mp257x-1GB-resmem.dtsi Device tree configuration
include file for reserved
memory with 1GB RAM

arch/arm/dts/myb-stm32mp257x-1GB-u-boot.dtsi U-Boot specific device
tree configuration include
file

configs/myd_1d25x_2G_defconfig 2GB DDR U-Boot
configuration file

configs/myd_1d25x_1G_defconfig 1GB DDR U-Boot
configuration file

Kernel arch/arm64/configs/myd_stm32mp257x_defconfig Default kernel

configuration file

arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB.dts Device tree definition file
for 2GB RAM

-14 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB- Device tree definition file
ethswitch.dts for Ethernet switch with
2GB RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB-resmem.dtsi | Device tree include file
for reserved memory

with 2GB RAM
arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB.dts Device tree definition file
for 1GB RAM
arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB- Device tree definition file
ethswitch.dts for Ethernet switch with
1GB RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB-resmem.dtsi | Device tree include file
for reserved memory
with 1GB RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-base.dtsi Basic device tree
configuration include file

arch/arm64/boot/dts/myir/myb-stm32mp257x-ethswitch.dtsi Ethernet switch device
tree configuration include
file

The following section focuses on the processes users undertake based on the
Bootloader, Kernel, and Yocto source code and data we provide.

-15 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

4.2. Bootloader Compilation and Update

U-Boot is a highly versatile open-source bootloader that supports kernel booting,
downloading updates, and many other functions, making it widely used in
embedded systems. For more information, visit the official website: U-Boot.

4.2.1. Obtaining U-Boot Source Code
You can obtain the U-Boot source code through one of the following methods:
1) From GitHub

Create a directory to store U-Boot and use the following commands to clone the
source code from GitHub:

$ mkdir bsp;cd bsp
$ git clone https://github.com/MYiR-Dev/myir-st-u-boot.git \
-b develop-1d25x-v2022.10

2) From CD Image

After extracting the CD image, go to the 04-Sources directory and extract the
source code package MYD-LD25X-Distribution-L6.1.82-V*.tar.gz to your host.
Navigate to the extracted directory to access the U-Boot source code:

$ mkdir MYD-LD25X

$ tar xvf 04-Sources/MYD-LD25X-Distribution-L6.1.82-V*.tar.gz \

-C MYD-LD25X

$ cd MYD-LD25X/MYD-LD25X-Distribution-L6.1.82-V*/MYD-LD25X-Uboot-L2022.
10-V*

4.2.2. Compiling the Bootloader

To compile the bootloader, first, check the directory structure of MYD-LD25X-
Uboot-L2022.10-V*:

$Is -la

build/ - Directory for compiled files
build-uboot-en.sh - English build script
build-uboot-zh.sh - Chinese build script
deploy/ - Directory for deployment files

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

FIP artifacts/ - FIP related files
fiptool-stm32mp - STM32MP FIP tool
Makefile.sdk - Compilation rules file

myir-st-external-dt/ - External device tree files for U-Boot
myir-st-optee/ - OP-TEE files directory

myir-st-u-boot/ - U-Boot source directory

output/ - Final output directory for FIP files

README_en - README in English

README zh - README in Chinese

Running the one-click compile script will automatically start the compilation. The
following example uses the 2GB model; if you need to compile the 1GB model,

please select it yourself in the prompt.

$./build-uboot-en.sh

Compilation chain is normal

Please select the DDR size configuration to build (1/2):
1 - 1GB model suitable for MYD-LD257-8E1D

2 - 2GB model suitable for MYD-LD257-8E2D

Please enter your choice (1 or 2): 2

*kkkhkkkhkkkkhkhkk

* Configuring U-Boot. *

kkkkkkkkkkkkkk

(I N AR N R A AN NN AREE RN 100%

*kkkhkkkhkkkkhkikk

* Compiling U-Boot. *

kkkkkkkkkkkkkk

N N A AN AN 100%

*kkkhkkkhkhkkkkhkikk

* Configuring Optee. *

kkkkkkkkkkkkkk

N N A AN EEE NN 100%

*kkkhkkkhkhkkkhkikk

* Building FIP files. *

11

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

*kkkhkkkhkkkkhkikk

(I N AR N R A NN NN AREE RN 100%

khkkkkkkkkkkkhhhhhhkhhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkkkkkhhhrhhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkrkkkkkkkkkkkkkkkk®

kkkkkkkkkkkkkkkkk

* Compilation completed, FIP files located at /home/myir/MYD-LD25X/MYD-L
D25X-Uboot-L2022.10-V*/Bootloader/output *

khkkkkkkkkkkkhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkhkkkhhkrhhkhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkk

The final compiled files will be in the output directory. The contents include:

$ Is output/ -
fip-myb-stm32mp257x-2GB-optee-emmc.bin
fip-myb-stm32mp257x-2GB-optee-sdcard.bin

4.2.3. Updating the Bootloader

This section describes how to flash the files onto the development board using
command-line tools.

1) Flashing the FIP Firmware Image to the Development Board

Note: The following example uses a 2GB fip file. If your development board is MYD-
LD257-8E1D, please replace the files in the commands below with the corresponding
1GB files.

® Flashing fip-myb-stm32mp257x-2GB-optee-emmc.bin to the Development
Board:

Copy the compiled fip-myb-stm32mp257x-2GB-optee-emmc.bin file to the
eMMC on the development board. You can transfer it using scp or other storage
media such as a USB drive. For example, using scp:

scp beste@192.168.40.21:~/scpfile/fip-myb-stm32mp257x-2GB-optee-emmc.b
in /home/root

dd if=fip-myb-stm32mp257x-2GB-optee-emmc.bin \

of=/dev/mmcblk1p3 bs=1M conv=fsync

dd if=fip-myb-stm32mp257x-2GB-optee-emmc.bin

of=/dev/mmcblk1p4 bs=1M conv=fsync

-18 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

mailto:beste@192.168.40.21:~/scpfile/fip.bin-sdcard
mailto:beste@192.168.40.21:~/scpfile/fip.bin-sdcard
http://www.myir.cn
http://www.myirtech.com

[=y S
H I lI !me{’lu}r%ﬂil Development Guide -

4.3. Onboard Kernel Compilation and Update

The kernel is the core of the operating system, responsible for managing
hardware resources and system services. It handles critical tasks such as process
management, memory allocation, device drivers, and file systems. The kernel is
loaded during system startup to ensure smooth coordination between hardware
and software. Common open-source kernels like the Linux kernel are widely used
in various devices, from embedded systems to servers. For more information,
please refer to the kernel's official website or community.

4.3.1. Obtaining Kernel Source Code
1) Getting the Source Code from GitHub

Create a kernel work directory and use the following commands to download the
source code:

$ mkdir linux;cd linux
$ git clone https://github.com/MYiR-Dev/myir-st-linux.git \
-b develop-1d25x-6.1.82

2) Get the source code from the release information

After obtaining the published information, extract the source code compression
package MYD-LD25X-Distribution-L6.1.82-V*.tar.gz under 04-Sources to the host
for use.

$ mkdir MYD-LD25X
$ tar xvf 04-Sources/MYD-LD25X-Distribution-L6.1.82-V*.tar.gz \
-C MYD-LD25X
$ cd MYD-LD25X/MYD-LD25X-Distribution-L6.1.82-V*/MYD-LD25X-Linux-L6.1.82
-\V*

4.3.2. Compiling the Kernel

After extraction, check the directory structure of MYD-LD25X-Linux-L6.1.82-V*:

$Is -la
build-linux-en.sh build-linux-zh.sh myir-st-linux README_en README zh
» myir-st-linux: Linux source code, including the complete Linux source.

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

https://github.com/MYiR-Dev/myir-st-linux.git
http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

» build-linux-zh.sh: One-click compilation script with Chinese prompts.
» build-linux-en.sh: One-click compilation script with English prompts.
» README-zh: Chinese documentation.
» README-en: English documentation.

Running the one-click compilation script will automatically decompress the source

code package and compile it.

$./build-linux-en.sh
Usage: ./build-linux-en.sh [-h] [y/n] [y/n] [y/n]
Options:
-h Print help information
-c ~ Clean build content
Arguments:
y/n Choose whether to execute the task (y: Yes, n: No)
The first argument is for compiling the kernel
The second argument is for compiling the device tree
The third argument is for compiling modules
You can choose to execute, e.g., ./build-linux-en.sh n y n to build only the
device tree
If no arguments are provided, it defaults to compiling everything
Please enter the number of threads for compilation: 40
Detected that the myir-st-linux directory exists, skipping extraction step
Toolchain OK
Starting to configure the kernel
Starting to compile the kernel
[, | 100%
Compilation completed
Starting to build the device tree
[, | 100%
Compilation completed
Starting to compile modules
[, | 100%
Compilation completed

Starting to install modules to the modules directory
- LU -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

[=y S
H I lI !me{’lu}r%ﬂil Development Guide -

Build completed, output directory is: /media/home/beste/01 Pro/ld25x/bsp _hu/
MYD-LD25X-Linux-L6.1.82-V*/output

The final compiled files will be saved in the output directory at the same level as

the script, with the following contents:

$ Is output/ -

total 76040

Image

Image.gz

modules.tar.gz
myb-stm32mp257x-2GB.dtb
myb-stm32mp257x-2GB-ethswitch.dtb
myb-stm32mp257x-1GB.dtb
myb-stm32mp257x-1GB-ethswitch.dtb

4.3.3. Updating the Kernel

This section describes the file burning method, either via command on the
development board or using the STM32CubeProgrammer tool connected via
Type-C from a PC. For the STM32CubeProgrammer burning method, please refer
to the "MYD-LD25X Mass Production Guide." In the operations below, mmcblk1
refers to the eMMC partition, and mmcblkO refers to the TF card partition.

1) Replace the Kernel File Image on the Development Board:
® Replace Image.gz on the eMMC development board or TF card.

Copy the compiled Image.gz to the eMMC development board using methods
such as scp or a storage medium like a USB drive. For example, using scp through
the development board's serial debugging port, it is recommended to back up

before replacing as follows:

cd /boot

mv Image.gz bak-Image.gz

scp beste@192.168.40.21:~/scpfile/Image.gz /boot
|s /boot

bak-lmage.gz

-1 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

mailto:beste@192.168.40.21:~/scpfile/fip.bin-sdcard
http://www.myir.cn
http://www.myirtech.com

[.y =
H I |I l me{’lu}r%ﬂil Development Guide

Image.gz

Updating the system on a TF card follows a process similar to the one described

above.

2) Replace the Device Tree (dtb) on the Development Board:
® Replace the device tree file on the eMMC development board or TF card.

Copy the compiled dtb file from the output directory to the eMMC development
board. The method for copying all device tree files is similar to the operations
described below. Here, we use myb-stm32mp257x-2GB.dtb as an example. Users
of the MYD-LD257-8E1D should modify the device tree name to the
corresponding 1GB file in the following steps. You can transfer the file to the
development board using scp or storage media like a USB drive. In this example,
we use scp. When executing from the debug serial port on the development
board, it s recommended to back up the original file before replacing it as

follows:

cd /boot

mv myb-stm32mp257x-2GB.dtb bak-myb-stm32mp257x-2GB.dtb

scp beste@192.168.40.21:~/scpfile/myb-stm32mp257x-2GB.dtb /boot
|s /boot

myb-stm32mp257x-2GB.dtb

bak-myb-stm32mp257x-2GB.dtb

3) Update Modules on the Development Board

To update the modules, first back up /lib/modules/6.1.82 to linux-bak, then

extract the compiled modules.tar.gz to the root directory to complete the update.

cp /lib/modules/6.1.82 ~/linux-bak -rf
rm /lib/modules/6.1.82 -rf
tar xf modules.tar.gz -C / > /dev/null 2>&1

-22.

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

mailto:beste@192.168.40.21:~/scpfile/fip.bin-sdcard
http://www.myir.cn
http://www.myirtech.com

("] =~
H I |I l ﬂeﬂ{}r%ﬂir Development Guide

5. Setting Up a Basic Yocto

Environment

5.1. Introduction

Yocto is an open-source "umbrella” project that encompasses a range of sub-

projects. It integrates these projects and provides a reference build project called
Poky to guide developers on how to use these projects to build embedded Linux
systems. It includes Bitbake, OpenEmbedded-Core, board support packages, and

configuration files for various software packages.

MYD-LD25X provides Yocto-compatible configuration files to assist developers in
creating a Linux system image that can be flashed onto the MYD-LD25X board.
Yocto also offers extensive development documentation resources for developers
to learn and customize their systems. Due to space limitations, a complete
introduction to Yocto usage cannot be provided here; users are encouraged to

search online for additional information.

This section is suitable for developers who need to deeply customize their file
systems and wish to build a file system tailored to the MYD-LD25X series
development boards using Yocto, as well as for those interested in its
customization methods. Developers who are new to Yocto or do not have special
requirements may directly use the pre-provided file systems from MYD-LD25X.

Note: Building Yocto does not require loading the SDK toolchain environment variables
from section 2.3. Please create a new shell or open a new terminal window.

-23-

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

HY 3 R JIRIREB= .
. Make Your Idea Real Development Guide -

5.2. Obtaining the Source Code

We offer two methods for obtaining the source code: one is to download the
compressed package from the 04-Sources directory of the release materials, and
the other is to use repo to fetch the source code from GitHub, which is
continuously updated. Users should choose the method that best suits their
needs. Since Yocto requires downloading all software packages locally before
building, MYD-LD25X has pre-packaged the relevant software to minimize
repeated downloads. Release materials can be obtained from the MYiR Developer
Center.

5.2.1. Obtaining the Source Code from Release Materials

The source package is available in MYD-LD25X-Distribution-L6.1.82-V*.tar.gz
within the MYiR development package materials in the 04-Sources directory. Copy
the compressed package to your specified directory, and extract it as follows:

$ mkdir -p MYD-LD25X

$ cd MYD-LD25X

$ tar -xvf MYD-LD25X-Distribution-L6.1.82-V*.tar.gz \

-C MYD-LD25X

$ cd MYD-LD25X/MYD-LD25X-Distribution-L6.1.82-V*/MYD-LD25X-Yocto-mickle
dore-V*

If you have already obtained the Yocto source code as described in this section,
you can skip the following section 5.2.2.

5.2.2. Obtaining from GitHub

Currently, both the BSP source code and Yocto source code for the MYD-LD25X
development board are hosted on GitHub and will be kept up-to-date. Please
refer to the "MYD-LD25X SDK Release Note" for the repository address. Users can
use repo to fetch and synchronize code from GitHub. The specific operation
methods are as follows:

$ mkdir -p ~/bin

$ curl https://mirrors.tuna.tsinghua.edu.cn/qgit/qit-repo > ~/bin/repo

$ chmod a+x ~/bin/repo
- -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

https://mirrors.tuna.tsinghua.edu.cn/git/git-repo
http://www.myir.cn
http://www.myirtech.com

& .y =
H I |I l z\tfe{/{}r%ﬂir Development Guide

$ export PATH=~/bin:${PATH}

$ export REPO_URL='"https://mirrors.tuna.tsinghua.edu.cn/git/git-repo/'
$ mkdir -p MYD-LD25X-yocto

$ c¢d MYD-LD25X-yocto

$ repo init -u https://github.com/MYiR-Dev/myir-st-manifest.git \
--no-clone-bundle --depth=1 -m myir-stm32mp2-6.1.82-1.0.0.xml \
-b myd-1d25x-v24.06.26-mickledore

$ repo sync

$Is

layers

After successfully synchronizing the code, you will find the same directory

contents as in MYD-LD25X-Yocto-mickledore-V* within the MYD-LD25X directory.

5.3. Quick Compilation of Development Board Image

5.3.1. Execute Environment Variable Setup Script

Before building the system with the Yocto project, you need to set the
appropriate environment variables. Therefore, each time you compile Yocto in a
new terminal window, run the envsetup.sh script located in the Yocto source
directory at layers/meta-myir/scripts/.
The procedure to set up the build environment is as follows. Depending on your
development board model, you need to execute the appropriate command:

® MYD-LD25X-8E256D model
$ cd MYD-LD25X-yocto
$ DISTRO=openstlinux-weston MACHINE=myd-ld25x source \

layers/meta-myir/scripts/envsetup.sh
After running the configuration script, you will automatically enter the generated

build-openstlinuxweston-myd-1d25x directory.

Note: Yocto compilation should be performed as a regular user, not as root.

5.3.2. Build the Image
-25 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

To understand the differences between the various images provided by MYiR,
please refer to the "MYD-LD25X SDK Release Notes."

® Build the myir-image-full Image

After completing the environment setup and downloading the necessary files, you
can build the myir-image-full image by executing the following command:

$ bitbake myir-image-full

NOTE: Started PRServer with DBfile: /media/home/beste/01 Pro/ld25x/build-op
enstlinuxweston-myd-ld25x/cache/prserv.sqlite3, Address: 127.0.0.1:40731, PID:

1971012

Loading cache: 100% |#####H#####HHAHHHHHHAHHHHHHHHHH AR AR AR
B T R L L T R R I R R R R IR R R R R R R
HAHH AR AR Time: 0:00:01

Loaded 4749 entries from dependency cache.

Parsing recipes: 100% |#####H#H###HHHHAHHHHHHHHHHHHHHHH AR HHAHHHHAHHHR
B T R L L T R R I R R R R IR R R R R R R
HAH# AR AR Time: 0:00:01

Parsing of 2997 .bb files complete (2994 cached, 3 parsed). 4754 targets, 515
skipped, 0 masked, 0 errors.

NOTE: Resolving any missing task queue dependencies

Build Configuration:

BB_VERSION = "2.4.0"

BUILD_SYS = "x86_64-linux"

NATIVELSBSTRING = "universal"

TARGET SYS = "aarch64-ostl-linux"

MACHINE = "myd-1d25x"

DISTRO = "openstlinux-weston"
DISTRO_VERSION = "4.2.4-snapshot-20240903"
TUNE_FEATURES = "aarch64 armv8a crc cortexa35"
TARGET_FPU ="

DISTRO_CODENAME = "mickledore”

® Build the myir-image-core Image

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

[] =~
H I |I ‘ ﬂfe{/{}r%ﬂir Development Guide

To build the myir-image-core image, use the following command, similar to the
full image build:

$ bitbake myir-image-core

® Build the myir-image-burn Image
Before building the burn image, the full image needs to be built first, as the burn
image requires copying the file system, kernel files, and other elements from the
full image into the burn image system for flashing.

The myir-image-burn image comes in two versions: myir-image-burn-1G and
myir-image-burn-2G, which are suitable for the MYD-LD257-8E1D and MYD-
LD257-8E2D models, respectively. The burn image is used to flash to the TF card,
and then after booting from the TF card, it is used to flash the myir-image-full
image from the TF card to the eMMC, serving as a production-friendly image
package. For specific instructions on how to flash this image, please refer to the
"MYD-LD25X Production Guide". Depending on the development board model,
you can construct the burn image by executing one of the following commands:

» MYD-LD257-8E1D

$ bitbake myir-image-burn-1G
» MYD-LD257-8E2D

$ bitbake myir-image-burn-2G

After the build completes, the compiled image will be located in tmp-
glibc/deploy/images/myd-1d25x/. You can update the generated image file using
STM32CubeProgrammer as described in the "MYD-LD25X Mass Production
Guide."

® Build the Raw File for TF Card Flashing

If you need to flash the image onto a TF card, you must use the sdcard-raw-tools.

First, build the sdcard-raw-tools by running:

$ bitbake sdcard-raw-tools

Then, navigate to the following directory:

$ cd tmp-glibc/deploy/images/myd-ld25x/scripts/

Once in the directory, run the provided script to see how to use it.
-27 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

$./create sdcard from flashlayout.sh

[ERROR]: bad number of parameters

Help:

Jcreate_sdcard from flashlayout.sh [-h|--help] [--compress] <FlashLayout fil
e>

-h ; this help

--help: this help

--compress: compress the raw image generated

--force-rootfs: force to use predefined rootfs size (3906 MB)

By setting SDCARD SIZE on shell environment or calling the script with it you
can limit the size of RAW sdcard

SDCARD SIZE=<value on MB>

ex.. SDCARD SIZE=2048 ./script/create sdcard from flashlayout.sh <flashlayou
t>

this exemple limit the size of sdcard to 2GB (2048MB)

By setting DEVICE on shell environment or calling the script with it you can ¢
ustomize the command
ex.. DEVICE=sdb ./script/create _sdcard from flashlayout.sh <flashlayout>

Next, I'll demonstrate how to use the script to generate a raw.xz compressed file
using the burn image as an example. The raw file is used for flashing onto the TF
card, and outputting it as an xz compressed file makes it easier to transfer.

To start creating the raw.xz file for the burn image, use the following command.
The process is similar for full and core images; you just need to select the

appropriate Flashlayout file:

$./create sdcard from flashlayout.sh --compress \
../flashlayout_myir-image-burn/optee/FlashLayout sdcard myb-stm32mp257x-2
GB-optee.tsv

-28 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

&’ .y =
M I i R ﬂfﬂ{'{}r%ﬂ%! Development Guide

Create Raw empty image: ../flashlayout_myir-image-burn/optee/../../FlashLayout
_sdcard_myb-stm32mp257x-2GB-optee.raw of 5442MB
Create partition table:

[CREATED] part 01: fsbla1l [partition size 256.0 KiB]
[CREATED] part 02: fsbla2 [partition size 256.0 KiB]
[CREATED] part 03: metadatal [partition size 256.0 KiB]
[CREATED] part 04: metadata2 [partition size 256.0 KiB]
[CREATED] part 05: fip-a [partition size 4.0 MiB]
[CREATED] part 06: fip-b [partition size 4.0 MiB]
[CREATED] part 07: u-boot-env [partition size 512.0 KiB]
[CREATED] part 08: bootfs [partition size 64.0 MiB]
[CREATED] part 09: vendorfs [partition size 183.0 MiB]
[CREATED] part 10: rootfs [partition size 4.0 GiB]
[CREATED] part 11: userfs [partition size 1.1 GiB]

It is important to note that the tsv file selected must be for the SD card, not for
the eMMC. Once the process is complete, the raw.xz file will be output to the
parent directory, which is tmp-glibc/deploy/images/myd-1d25x/:

$ Is ../*.raw.xz
-rw- 444893344 . /FlashLayout sdcard myb-stm32mp257x-2GB-optee.raw.xz

After extracting this file, you can use the resulting raw file for flashing, following
the instructions in the "MYD-LD25X Mass Production Guide" in the
Win32Disklmager burning section.

-29 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

5.4. Bulid SDK

Yocto provides functionality to build an SDK toolchain, which includes tools,
headers, and libraries for both low-level and application developers. This
eliminates the need for users to manually create or compile dependency libraries.
The SDK is used for compiling U-Boot and Linux kernel code and includes headers
and libraries for the target system, making it easier for application developers to
port applications to the target device. Here’ s how to build the toolchain SDK:

This section provides a brief explanation on building the SDK provided by MYiR.

Use the following command to generate the SDK package:
$ bitbake -c populate sdk myir-image-full

After the build completes, the SDK installation package will be located in the tmp-
glibc/deploy/sdk/ directory. For installation instructions, please refer to section 2.2.

myir-image-full-openstlinux-weston-myd-1d25x-x86 64-toolchain-4.2.4-snapshot.
sh

-30 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

[] =~
H I |I l ﬂfe{/{}r%ﬂir Development Guide

6. Adapting Hardware to the

Baseboard

6.1. Introduction to the meta-bsp Layer

The Yocto project's "layer model" is a development model designed for creating
embedded and IoT Linux systems. It differentiates the Yocto project from other
simpler build systems by supporting both collaboration and customization. A
layer is a repository containing related sets of instructions that inform the
OpenEmbedded build system on what to do.

The meta-myir layer is built on top of the meta-st layer from STMicroelectronics
and is tailored for the MYD-LD25X development board. Within this layer, the
meta-bsp layer includes various metadata and recipes for BSP, GUI, distribution
configuration, middleware, or applications. Users can adapt their hardware
designed for the MYD-LD25X development board based on this "layer model,"

customize their applications, and build a system image suited to their needs. This
section primarily introduces the meta-myir layer, including its specific contents as

follows:

$ tree -a -L 1 layers/meta-myir/meta-myir-stm32mp
layers/meta-myir/meta-myir-stm32mp
— classes

— CODE_OF CONDUCT.md

— conf

— License.md

— README -> README.md

— README.md

— recipes-bsp

— recipes-connectivity

— recipes-core

— recipes-devtools

A\ |

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

F— recipes-extended
— recipes-graphics
— recipes-kernel
F— recipes-myir
— recipes-security
F— recipes-st

— recipes-support

Layer Details:

Table 6-1. Description of the meta-myir Layer Contents

Source Code and Data Description

¢ Contains current layer path information and
con
machine software configuration.

) b Includes configuration information for ATF, U-Boot,
recipes-bs
P P and firmware.

) Contains resources for the Linux kernel and third-
recipes-kernel _
party firmware.

_ _ Includes MYIR's custom package configuration for
recipes-myir _
the file system.

When performing a system port, it is crucial to focus on the recipes-bsp section,
which handles hardware initialization and system boot, and the recipes-kernel
section, which is responsible for the implementation of the Linux system's kernel
and drivers.

-32-

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

("] =~
H I |I l ﬂeﬂ{}r%ﬂir Development Guide

6.2. How to Create Your Own Machine

In the development process, users sometimes need to create a custom board
configuration. This section will demonstrate how to create your own machine

through an example.

6.2.1. Creating a Board Configuration in Yocto
1) Select a Similar Machine File

Copy a similar machine file and rename it to your board’ s specific name. For
example, a machine file similar to MYD-LD25X can be found in the directory
layers/meta-myir/meta-myir-stm32mp/conf/machine. Navigate to this directory
and list the files:

$ cd layers/meta-myir/meta-myir-stm32mp/conf/machine
$ Is
include myd-ld25x.conf

2) Copy and Rename

Once you find a similar machine file, copy it and rename it to your own machine

file. For instance:

$ cp myd-ld25x.conf test-myd-ld25x.conf
$ Is
myd-ld25x.conf test-myd-ld25x.conf

3) Machine Configuration File
Some parameters to pay attention to in the MACHINE configuration file include:

KERNEL DEVICETREE += "myir/myb-stm32mp257x-1GB.dtb \
myir/myb-stm32mp257x-2GB.dtb \
myir/myb-stm32mp257x-2GB-ethswitch.dtb \
myir/myb-stm32mp257x-1GB-ethswitch.dtb \

This specifies the device trees included with the kernel. Here, all types of device
trees for myb-ld25x are specified. You can refer to section 4.1 for details on

-33-

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

available device trees. Note that this should point to the final compiled .dtb files,
not the .dts files.

4) Compile and Test

After creating the machine file, you can compile and test it. Execute the following
commands to compile the minimal image for testing. Make sure to modify the
configuration command to use your custom MACHINE name and check the flash
model type:

$ c¢d MYD-LD25X-yocto

$ DISTRO=openstlinux-weston MACHINE=test-myd-Id25x source layers/meta-m
yir/scripts/envsetup.sh

$ bitbake core-image-minimal

After compiling, the generated image is located at build-openstlinuxweston-test-
myd-ld25x/tmp-glibc/deploy/images/test-myd-ld25x/. Copy this image and use
STM32CubeProgrammer to flash it onto the development board, following the
instructions in the "MYD-LD25X Production Guidance Manual," then start the test:

root@test-myd-1d25x:~#

6.2.2. Creating Board Configuration Files in U-Boot

In the development process, users typically need to create their own board
configuration files according to their board requirements. This section will
demonstrate, through a simple example, how to create your own board
configuration files step-by-step.

1) Create Board

When creating your own board configuration, you can establish it by copying and
renaming an existing board configuration file. These files are generally located in
the board directory of the U-Boot source code. Navigate to the myir subdirectory
under the U-Boot source board directory, then copy the myd Id25x folder to
create test |d25x, as shown below:

$ cd MYD-LD25X-Uboot-L2022.10-V*/board/myir/
$ cp myd Id25x/ test |d25x -rf

$Is
-34 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

myd Id25x test Id25x

Enter the test |d25x directory, rename myd-ld25x.c to test-ld25x.c, and modify the
Makefile to change myd-ld25x.0 to test Id25x.o.

$ mv myd-Id25x.c test-ld25x.c

$ vi Makefile

$ cat Makefile

SPDX-License-ldentifier: GPL-2.0

obj-y += test-ld25x.0

2) Create the Board .config File
® Modify the New Board Kconfig

In the test |d25x directory, modify the Kconfig file to match the following (with
the red text indicating changes):

if 1d25x

config SYS BOARD
default "test Id25x"

config SYS VENDOR
default "myir"

config SYS CONFIG_ NAME
default "test Id25x"

endif

Next, add the following content (with the red text indicating changes) to
arch/arm/mach-stm32mp/Kconfig.25x (this will affect make menuconfig):

source "board/st/stm32mp2/Kconfig"
source "board/myir/test Id25x/Kconfig"

-35-

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

& Y] S
M I lR me{/{:r%ﬂi; Development Guide -
® Create the New Board Header File

From the root of the source directory, navigate to include/configs and copy
myd _[d25x.h to test 1d25x.h:

$ cd include/configs
$ cp myd Id25x.h test Id25x.h
$ Is -l test Id25x.h

-rw-rw-r-- 1 myir myir 1620 Sep 5 11:49 test Id25x.h

Note: Since the SYS_CONFIG_NAME has been changed to test_[d25x.h, the header file
should be renamed to test_|d25x.h.

® Customize the System Board Configuration Filev
Enter the configs directory from the root of the source code, and choose the
appropriate defconfig based on the Flash model to copy as test-defconfig. Here,

we use the 2GB version as an example.

$ cd configs

$ cp myd Id25x 2G_defconfig test 1d25x 2G defconfig

$ Is test Id25x 2G defconfig -la

-rw-rw-r-- 1 beste beste 1963 8 1 15:23 test Id25x 2G_defconfig

After these steps, the board should be mostly customized. If you need to compile
with Yocto, you will also need to adjust the U-Boot defconfig settings in the layers

accordingly.

$ vi layers/meta-myir/meta-myir-stm32mp/recipes-bsp/u-boot/u-boot-stm32mp

-config.inc

UBOOT_CONFIG[default stm32mp25] ?= "test Id25x 2G_defconfig, u-boot.dtb"

3) Compile

After submitting the modified U-Boot to Git, you need to compile it using Yocto.
Please refer to section 4.2.2 for the details on how to perform this compilation.

- 36 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

& .y =
H I |I l z\tfe{/{}r%ﬂir Development Guide

||
6.3. How to Create Your Device Tree
Introduction to the Device Tree Hierarchy
A device tree is a data structure that describes the hardware layout of a system
using a specific syntax. It stores information about both on-chip and off-chip
devices. The device tree file is compiled into a Device Tree Blob (DTB) file by U-
Boot or the kernel. During operation, this DTB is parsed to retrieve board-level
device information. The DTB used by U-Boot and the kernel are consistent with
each other.
1) Device Tree for MYIR-ST-U-Boot
Below is a list of the device tree files used in U-Boot for the MYD-LD25X board,
for user reference:
Table 6-2. MYD-LD25X U-Boot Device Tree List
Component Device Tree File Description
U-boot arch/arm/dts/myb-stm32mp257x-2GB.dts Device tree definition file for 2GB
RAM in U-Boot
arch/arm/dts/myb-stm32mp257x-2GB-resmem.dtsi Include file for reserved memory
device tree configuration for 2GB
RAM
arch/arm/dts/myb-stm32mp257x-2GB-u-boot.dtsi U-Boot specific device tree
configuration include file
arch/arm/dts/myb-stm32mp257x-1GB.dts Device tree definition file for 1GB
RAM in U-Boot
arch/arm/dts/myb-stm32mp257x-1GB-resmem.dtsi Include file for reserved memory
device tree configuration for 1GB
RAM
arch/arm/dts/myb-stm32mp257x-1GB-u-boot.dtsi U-Boot specific device tree
configuration include file
arch/arm/dts/myb-stm32mp257x-base.dtsi Base device tree configuration
include file

When compiling the U-Boot source code for MYD-LD25X, all related .dts and .dtsi
files are merged to generate the default myb-stm32mp257x-2GB.dtb used in the

U-Boot stage.
2) Device Tree for MYIR-ST-Linux

The device tree hierarchy for MYIR-ST-Linux is as follows: myb-stm32mp257x-
base.dtsi + myb-stm32mp257x-ethswitch.dtsi + myb-stm32mp257x-2GB-
resmem.dtsi -> myb-stm32mp257x-2GB-ethswitch.dts and myb-stm32mp257x-

-37 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MYi R ifeﬁr%ﬂi; Development Guide -
2GB.dts. Below is a detailed list of the device tree files for MYD-LD25X for user

development reference:

Table 6-3. MYD-LD25X Linux Device Tree List

Compone Device Tree File Description
nt
Kernel arch/arm64/boot/dts/myir/myb-stm32mp257x- Device tree definition file for 2GB
2GB.dts RAM
arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB- Device tree definition file for 2GB
ethswitch.dts RAM with Ethernet switch
arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB- Include file for reserved memory
resmem.dtsi device tree configuration for 2GB
RAM
arch/arm64/boot/dts/myir/myb-stm32mp257x- Device tree definition file for 1GB
1GB.dts RAM
arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB- Device tree definition file for 1GB
ethswitch.dts RAM with Ethernet switch
arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB- Include file for reserved memory
resmem.dtsi device tree configuration for 1GB
RAM
arch/arm64/boot/dts/myir/myb-stm32mp257x- Base device tree configuration
base.dtsi include file
arch/arm64/boot/dts/myir/myb-stm32mp257x- Ethernet switch device tree
ethswitch.dtsi configuration include file

6.3.1. Adding Device Trees

1) Uboot create a device tree
® Creating Device Trees in U-Boot

Enter the arch/arm/dts directory from the root of the source code, copy myb-
stm32mp257x-2GB.dts to test-stm32mp257x-2GB.dts. The 1GB configuration is
similar, just select the device tree corresponding to 1GB. For 2GB, refer to the

following:
$ cp myb-stm32mp257x-2GB.dts test-stm32mp257x-2GB.dts
® Modify the Device Tree Makefile

Edit the Makefile in the same directory to include the new device tree. Add the

following content:

dtb-$(CONFIG STM32MP25X) +=\
stm32mp257f-dk.dtb \
test-stm32mp257x-2GB.dts \

- Vu -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

HY 3 R JIRIREB= .
. Make Your Idea Real Development Guide -

® Modify the Board Configuration File

Next, go to the configs directory in the source directory and update the default
device tree in the test 1d25x 2G_defconfig configuration file:

CONFIG_ENV_SECT SIZE=0x80000
CONFIG_DEFAULT DEVICE TREE="test-stm32mp257x-2GB"

2) Creating Device Trees in the Kernel

For MYIR series device trees located in arch/arm64/boot/dts/myir, you can create
a new device tree by copying an existing MYIR device tree and renaming it. Follow
a similar process to that used for U-Boot. Please refer to the steps mentioned

above.

6.4. Configuring CPU Function Pins for Your Hardware

Implementing pin functionality control is a complex system development process
that involves pin configuration, driver development, and application
implementation. This section will explain pin control implementation through an

example.

6.4.1. GPIO Pin Configuration Methods

On the MYD-LD25X board, most |10 pin definitions are in the
arch/armé64/boot/dts/myir/myb-stm32mp257x-base.dtsi device tree file. The ST
official documentation provides IO mux functionalities and corresponding IOPAD
attributes for each 10 pin, so users need only include the macros for the desired

1O pins and functionalities in the array.
1) View the Pinctrl Configuration Rules

st pinctrl configuration format: #define STM32 PINMUX(port, line, mode)
(((PIN_NO(port, line)) << 8) | (mode))

Where:
-39-

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

» Port: Represents the GPIO port, such as the character ‘D’ in pin PD11.
» Line: Indicates the pin number within its port, starting from 0. For example,
pin 11 in PD11.

» Mode: Represents the mode value for the pin's operational mode.

For mode values, refer to the parameter definitions in the file include/dt-

bindings/pinctrl/stm32-pinfunc.h.

/* define PIN modes */
#define GPIO 0x0
#define AFO Ox1
#define AF13 Oxe
#define AF14 Oxf
#define AF15 0x10
#define ANALOG Ox11
#define RSVD 0x12

2) Configure GPIO in the Device Tree

To request and allocate hardware resources using the DTS file, you can configure
the GPIO in the myb-stm32mp257x-base.dts file. Define the LED device node as
follows:
gpio_leds test {
compatible = "gpio-leds";

ledO {
label = "LED-Blue";
gpios = <&gpioz 5 GPIO ACTIVE HIGH>;
default-state = "on";
linux,default-trigger = "heartbeat";
If

-40 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

("] =~
H I |I l ﬂeﬂ{}r%ﬂir Development Guide

6.5. Using Configured Pins

Once you have configured the pins in U-Boot or the kernel device tree, you can
use these pins within U-Boot or the kernel to control them.

6.5.1. Using GPIO Pins in U-Boot

1) Controlling GPIO via U-Boot Command Line

U-Boot allows direct control of GPIO pins through commands. For instance, to
control a User LED on the development board with GPIO pin PH4, you can use the
following commands. The pin number calculation for GPIO PH4 is as follows:

Note: 72 is the ASCII value of 'H', and 65 is the ASCII value of 'A’.
STM32MP> gpio clear 116

gpio: pin 116 (gpio 116) value is 0
STM32MP> gpio set 116
gpio: pin 116 (gpio 116) value is 1

This will allow you to see the User LED (D8) on the development board turn on
and off.

2) Controlling GPIO via U-Boot Code

You can also control GPIO values within U-Boot code. For example, to control the
power reset of a PHY, you might implement it in the U-Boot code as follows:

® Using the Reset Pin in U-Boot

To use a reset pin in U-Boot, you can modify the file board/myir/myd-ld25x/myd-
|d25x.c. Here' s an example of how to use the reset pin in your U-Boot code:

static void led _gpio(void)

{
unsigned int gpio led=116;
gpio_request(gpio _led, "led-gpio");
gpio_direction_output(gpio_led, 0);
gpio_set value(gpio_led, 0);
gpio_free(gpio_led);

-41 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

[] =~
H I |I lﬂf&{’{}r%ﬂ%’ Development Guide o

7. Application Development and

Deployment

Porting Linux applications generally involves two phases: development and
debugging, and production deployment. During the development and debugging
phase, you can use the SDK provided by your hardware vendor to cross-compile
your applications and then transfer them to the target machine for testing. For the
production deployment phase, you need to write recipe files for your application
and use Bitbake to build the production image.

7.1. Applications Based on Makefile

Porting Linux applications generally involves two phases: development and
debugging, and production deployment. During the development and debugging
phase, you can use the SDK provided by your hardware vendor to cross-compile
your applications and then transfer them to the target machine for testing. For the
production deployment phase, you need to write recipe files for your application
and use Bitbake to build the production image.

7.1. Applications Based on Makefile

A Makefile is essentially a document that defines a set of build rules and contains
detailed information on how to compile the source code. Once a Makefile is
written, you can use a single make command to automate the entire build process,
significantly improving development efficiency. Makefiles are widely used in the
development of Linux programs, including kernels, drivers, and applications.

make is a command-line tool that interprets the instructions in the Makefile. It
simplifies the compilation process by executing the commands specified in the

Makefile. When you run make, it looks for a file named Makefile (or makefile) in
-42 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

the current directory and executes the corresponding commands. make

automatically determines if source files have changed and recompiles only the
modified files.

Here is an example illustrating how to write and execute a Makefile for a simple
application that controls a button on the MYD-LD25X development board.

A Makefile follows a specific structure:

target prerequisites ...
command
> target: This can be an object file, an executable, or a label.
> prerequisites: These are the files or targets needed to generate the target.
» command: These are the commands that make needs to execute.
TARGET = $(notdir $(CURDIRY))
objs := $(patsubst %c, %o, $(shell Is *.c))
$(TARGET) test:$(objs)
$(CC) -0 $@ $~
%.0:%.c
$(CC) -c -0 $@ $<
clean:
rm -f $(TARGET) test *.all *.0

Parameter Descriptions:

> $(CURDIR): Represents the full path of the current directory where the
Makefile is located.

> $(notdir $(path)): Removes the path from $(path) and keeps only the
current directory name. For example, if the current Makefile directory
is /home/myir/MYD-LD25X/key led, it will become TARGET = key led.

> $(patsubst pattern, replacement, text): Replaces occurrences of pattern
in text with replacement. For example, $(patsubst %c, %0, $(shell Is *.c))
lists all .c files in the current directory and replaces their extension
with .o.

» CC: The name of the C compiler.

> CXX: The name of the C++ cgg;l:?i_ler.

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

» clean: A conventional target used to clean up the build directory by

removing generated files.
Key Implementation Code:

#include <linux/input.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

/* ./key led /dev/input/event1 noblock */
int main(int argc, char **argv)
{
int fd,bg fd;
int err, len, i
unsigned char flag;
unsigned int data[1];
char *bg = "/sys/class/leds/LED-Blue/brightness”;

struct input_event event;
system("echo none > /sys/class/leds/LED-Blue/trigger");
if (argc < 2)

{
printf("Usage: %s <dev> [noblock]\n", argv[0]);

return -1;

if (argc == 3 && Istrcmp(argv[2], "noblock"))

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

[} A]
M I |R ﬁ;ﬂiﬁ%ﬁ Development Guide ‘

_ 45 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

& .y =
H I |I l ﬂfe{/{:r%ﬂiv Development Guide

system("echo 0 > /sys/class/leds/LED-Blue/brightnes
s");//led off

}

return O;

}

To compile and generate the executable file target bin on the target machine
using the make command, follow these steps:

$ source ~/Id25x_toolchian/environment-setup-aarch64-poky-linux

Execute make:

$ make

From the output of this command, you can see that the compiler used is the one
specified by the CC variable defined in the setup script. Transfer the key led test
executable file to the target board's /usr/sbin directory using a transfer method
such as SCP or a USB drive. Then, execute the following command on the target
board and press the USER button to observe the blue LED turning on and off:

key led test /dev/input/eventO
key test
key test
key test
key test

- 46 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

7.2. Qt-Based Applications

Qt is a cross-platform framework for developing graphical applications, used
across various device sizes and platforms. It offers multiple licensing options for
users. The MYD-LD25X uses Qt version 5.15.13 for application development. For
Qt application development, it's recommended to use the Qt Creator integrated
development environment (IDE). This allows for developing Qt applications on a
Linux PC and automatically cross-compiling them for the ARM architecture of the
development board. For more details, refer to the "MYD-LD25X QT Application
Note."

-47 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

7.3. Configuring Applications for Automatic Startup

1) Automatic Startup Service

The development board system typically includes a default autorun service, which
automatically executes the /usr/bin/autorun.sh script at startup. The
autorun.service file is located in /lib/systemd/system/autorun.service.

To check the status of the autorun service, use the following command:

systemctl status autorun
e autorun.service - auto run hmi after weston
Loaded: loaded (/lib/systemd/system/autorun.service; enabled; preset: ena
bled)
Active: active (running) since Fri 2023-03-03 10:08:52 UTC; 542ms ago
Process: 3912 ExecStart=/usr/bin/autorun.sh (code=exited, status=0/SUCCE
SS)
Main PID: 3919 (mxapp?2)
Tasks: 6 (limit: 2032)
Memory: 17.5M
CGroup: /system.slice/autorun.service
L—3919 /usr/sbin/mxapp2

3 03 10:08:53 myd-ld25x autorun.sh[3919]: libpng warning: iCCP: known incorr
ect sRGB profile
3 03 10:08:53 myd-Id25x autorun.sh[3919]: libpng warning: iCCP: known incorr
ect sRGB profile

To add commands that should be executed at startup, you can add them to the
“/usr/bin/autorun.sh’ script. This script is automatically run by the “autorun’
service at boot time. Simply append your desired commands to this script to have
them executed on startup.

vi /usr/bin/autorun.sh

source /etc/profile.d/weston_profile.sh
source /etc/profile.d/pulse profile.sh
/usr/sbin/mxapp2 &

T\J

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

[=y S
H I lI !me{’lu}r%ﬂil Development Guide -

echo "This is a test log" > /dev/ttySTMO
exit 0

The above operation will print a test log to the debug serial port, which can be
observed after a reboot. Note that the logs from the autorun service will appear in
the output of systemctl status, and you can only see these logs through this
command, unless you configure the logs to be redirected to the /dev/ttySTMO
debug serial port.

To restart and verify:

systemctl restart autorun
This is a test log
2) Configuring an Application for Automatic Startup

To have your own application automatically start at boot in Yocto, you can create
a recipe similar to the autorun example found in meta-myir/meta-myir-
stm32mp/recipes-myir/autorun.

Navigate to the autorun package directory:

$ cd sources/meta-myir/meta-myir-stm32mp/recipes-myir/autorun

$Is

autorun autorun.bb

You will see that the autorun directory contains two parts: a .bb file and a
resources directory with files used in the autorun.bb recipe.

You can follow this example to create a new package called test-app, add it to the
myir-image-core image, and configure it for automatic startup.

Copy the autorun directory and rename it to test-app:

$ cd meta-myir/recipes-myir
$ cp autorun test-app -rf
$Is

.. autorun test-app ...

Next, change all file names within the test-app directory to test-app:

$ cd test-app
-49 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

$ mv autorun.bb test-app.bb

$ mv autorun/ test-app/
$ cd test-app
$ mv autorun.service test-app.service

In the test-app directory, replace the original autorun application with a simple
test shell script. The content is as follows:

$Is

licenses autorun test-app.service

$ rm autorun

$ vi test-app.sh #Create a script and add the following content, then save
and close

#!/bin/sh

echo "======This is a test shell script======" > /dev/ttySO

This script is used to print a test message to the debug serial port. Next, add this
script to the service configuration so that it runs when the test-app.service service
is executed at boot time. The script is assumed to be located in the /usr/bin/
directory of the filesystem.

$ vi test-app.service #Open the service file and modify it to match the f
ollowing content

[Unit]

Description=auto run hmi after weston

After=weston-graphical-session.service

[Service]

#Type=oneshot

Type=forking
#ExecCondition=/usr/bin/pgrep -x weston
ExecStart=/usr/bin/test-app.sh

[Install]
WantedBy=multi-user.target

-50 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

g .y =
M I i R ﬂfﬂ{'{}r%ﬂ%! Development Guide

After making the changes, go up one level to modify the ".bb" file. Open the ".bb
file and update it to match the content below. It is recommended to copy and
paste the content directly:

$cd ./

$ vi test-app.bb

SUMMARY = "Test app"

DESCRIPTION = "test application”

LICENSE = "GPL-2"

LIC_FILES CHKSUM = "file://licenses/GPL-2;md5=94d55d512a9ba36caa9b7df079
bae19f"

S = "${WORKDIR}"

SRC URI = "\
file://licenses/GPL-2 \
file://test-app.sh \
file://test-app.service \

inherit systemd

do_install() {
install -d -m 755 ${D}/etc
install -d -m 755 ${D}${systemd system_unitdir}

install ${WORKDIR}/test-app.sh ${D}/usr/bin/
install -m 644 ${WORKDIR}/test-app.service ${D}${systemd system unit
dir}/test-app.service

}

SYSTEMD_PACKAGES = "${PN}"
SYSTEMD SERVICE ${PN} = "test-app.service"
SYSTEMD_AUTO _ENABLE_hmi = "enable"

-51 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

&’ .y =
M I i R ﬂfﬂ{'{}r%ﬂ%! Development Guide

FILES ${PN} += "/"

After saving, the test-app package is created. Next, add test-app to myir-image-

core by opening the core image's .bb file and including test-app:

$ vi meta-myir/recipes-images/images/myir-image-core.bb

IMAGE_INSTALL append = "\
test-app \

Save the changes and build the core image:
$ bitbake myir-image-core

Then, update the built image to the development board and start it to observe

the changes.

-52 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

8. References

® Linux Kernel Open Source Community

https://www.kernel.org/

® Yocto Project BSP Development Guide

https://www.yoctoproject.org/docs/3.1.1/bsp-guide/bsp-guide.html

® Yocto Project Linux Kernel Development Manual

https://www.yoctoproject.org/docs/3.1.1/kernel-dev/kernel-dev.html

® Yocto Development Guide

https://www.yoctoproject.orqg/

-53-

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

https://www.kernel.org/
https://www.yoctoproject.org/docs/3.1.1/kernel-dev/kernel-dev.html
https://www.yoctoproject.org/
http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

Appendix A

Warranty & Technical Support Services

MYIR Electronics Limited is a global provider of ARM hardware and software tools, design solutions for
embedded applications. We support our customers in a wide range of services to accelerate your time to
market.

MYIR is an ARM Connected Community Member and work closely with ARM and many semiconductor
vendors. We sell products ranging from board level products such as development boards, single board
computers and CPU modules to help with your evaluation, prototype, and system integration or creating
your own applications. Our products are used widely in industrial control, medical devices, consumer
electronic, telecommunication systems, Human Machine Interface (HMI) and more other embedded
applications. MYIR has an experienced team and provides custom design services based on ARM
processors to help customers make your idea a reality.

The contents below introduce to customers the warranty and technical support services provided by
MYIR as well as the matters needing attention in using MYIR's products.

Service Guarantee

MYIR regards the product quality as the life of an enterprise. We strictly check and control the core
board design, the procurement of components, production control, product testing, packaging, shipping
and other aspects and strive to provide products with best quality to customers. We believe that only
quality products and excellent services can ensure the long-term cooperation and mutual benefit.

Price

MYIR insists on providing customers with the most valuable products. We do not pursue excess profits
which we think only for short-time cooperation. Instead, we hope to establish long-term cooperation
and win-win business with customers. So we will offer reasonable prices in the hope of making the
business greater with the customers together hand in hand.

Delivery Time

MYIR will always keep a certain stock for its regular products. If your order quantity is less than the
amount of inventory, the delivery time would be within three days; if your order quantity is greater than
the number of inventory, the delivery time would be always four to six weeks. If for any urgent delivery,
we can negotiate with customer and try to supply the goods in advance.

Technical Support

-54 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

MYIR has a professional technical support team. Customer can contact us by email

(support@myirtech.com), we will try to reply you within 48 hours. For mass production and customized

products, we will specify person to follow the case and ensure the smooth production.

After-sale Service

MYIR offers one year free technical support and after-sales maintenance service from the purchase date.

The service covers:

Technical support service

MYIR offers technical support for the hardware and software materials which have provided to customers;

> To help customers compile and run the source code we offer;

> To help customers solve problems occurred during operations if users follow the user manual
documents;

> To judge whether the failure exists;

> To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical support service:

> Hardware or software problems occurred during customers' own development;

» Problems occurred when customers compile or run the OS which is tailored by themselves;

» Problems occurred during customers' own applications development;

» Problems occurred during the modification of MYIR's software source code.

After-sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free maintenance

service since the purchase date. But following situations are not included in the scope of our free

maintenance service:

> The warranty period is expired;

> The customer cannot provide proof-of-purchase or the product has no serial number;

» The customer has not followed the instruction of the manual which has caused the damage the
product;

> Due to the natural disasters (unexpected matters), or natural attrition of the components, or
unexpected matters leads the defects of appearance/function;

> Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards, all those
reasons which have caused the damage of the products or defects of appearance;

> Due to unauthorized weld or dismantle parts or repair the products which has caused the damage of

the products or defects of appearance;

-55 .

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

MY iR ez) |
Make Your Idea Real eVeIOpment Guide -

> Due to unauthorized installation of the software, system or incorrect configuration or computer virus

which has caused the damage of products.

Warm tips

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the LCD when

receiving the goods. In case the LCD cannot run or no display, customer should contact MYIR within 7

business days from the moment get the goods.

2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use, please

avoid clean the surface with fingers or hands to leave fingerprint.

4. Do not clean the surface of the screen with chemicals.

5. Please read through the product user manual before you using MYIR's products.

6. For any maintenance service, customers should communicate with MYIR to confirm the issue first.

MYIR's support team will judge the failure to see if the goods need to be returned for repair service, we

will issue you RMA number for return maintenance service after confirmation.

Maintenance period and charges

> MYIR will test the products within three days after receipt of the returned goods and inform customer
the testing result. Then we will arrange shipment within one week for the repaired goods to the
customer. For any special failure, we will negotiate with customers to confirm the maintenance period.

» For products within warranty period and caused by quality problem, MYIR offers free maintenance
service; for products within warranty period but out of free maintenance service scope, MYIR provides
maintenance service but shall charge some basic material cost; for products out of warranty period,
MYIR provides maintenance service but shall charge some basic material cost and handling fee.

Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be responsible by user;

MYIR will pay for the return shipping cost to users when the product is repaired. If the warranty period is

expired, all the shipping cost will be responsible by users.

Products Life Cycle -56 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

g .y =
M I i R ﬂfﬂ{'{}r%ﬂ%! Development Guide

MYIR will always select mainstream chips for our design, thus to ensure at least ten years continuous
supply; if meeting some main chip stopping production, we will inform customers in time and assist
customers with products updating and upgrading.

Value-added Services

1. MYIR provides services of driver development base on MYIR's products, like serial port, USB, Ethernet,

LCD, etc.

2. MYIR provides the services of OS porting, BSP drivers' development, API software development, etc.
3. MYIR provides other products supporting services like power adapter, LCD panel, etc.
4. ODM/OEM services.

MYIR Electronics Limited

Room 04, 6th Floor, Building No.2, Fada Road,

Yunli Inteiligent Park, Bantian, Longgang District.

Support Email: support@myirtech.com

Sales Email: sales@myirtech.com

Phone: +86-755-22984836

Fax: +86-755-25532724

Website: www.myirtech.com

-57 -

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

http://www.myir.cn
http://www.myirtech.com

	Revision History
	CONTENT
	1.Overview of System Development
	1.1.Software Resources

	2.Setting Up the Development Environment
	2.1.Host Environment
	1)Host Hardware and Software Requirements
	Host Hardware
	Host Operating System

	2)Host Environment Configuration
	Set Root Password
	Install SSH
	Configure Samba
	Configure Git
	Install Necessary Tools

	2.2.Installation of cross-compilation toolchain
	Copy SDK to Linux Directory
	Execute the Installation Script
	Test the SDK

	3.How to Flash the System Image
	4.Separate Compilation and Update of the Board Suppo
	4.1.Introduction to the Board Support Package
	4.2.Bootloader Compilation and Update
	4.2.1.Obtaining U-Boot Source Code
	1)From GitHub
	2)From CD Image

	4.2.2.Compiling the Bootloader
	4.2.3. Updating the Bootloader
	1)Flashing the FIP Firmware Image to the Development
	Flashing fip-myb-stm32mp257x-2GB-optee-emmc.bin to

	4.3.Onboard Kernel Compilation and Update
	4.3.1.Obtaining Kernel Source Code
	1)Getting the Source Code from GitHub
	2)Get the source code from the release information

	4.3.2.Compiling the Kernel
	4.3.3.Updating the Kernel
	1)Replace the Kernel File Image on the Development B
	Replace Image.gz on the eMMC development board or
	2)Replace the Device Tree (dtb) on the Development B

	Replace the device tree file on the eMMC developme
	3)Update Modules on the Development Board

	5.Setting Up a Basic Yocto Environment
	5.1.Introduction
	5.2.Obtaining the Source Code
	5.2.1.Obtaining the Source Code from Release Materials
	5.2.2.Obtaining from GitHub

	5.3.Quick Compilation of Development Board Image
	5.3.1.Execute Environment Variable Setup Script
	MYD-LD25X-8E256D model

	5.3.2.Build the Image
	Build the myir-image-full Image
	Build the myir-image-core Image
	Build the myir-image-burn Image
	Build the Raw File for TF Card Flashing

	5.4.Bulid SDK

	6.Adapting Hardware to the Baseboard
	6.1.Introduction to the meta-bsp Layer
	6.2.How to Create Your Own Machine
	6.2.1.Creating a Board Configuration in Yocto
	1)Select a Similar Machine File
	2)Copy and Rename
	3)Machine Configuration File
	4)Compile and Test

	6.2.2.Creating Board Configuration Files in U-Boot
	1)Create Board
	2)Create the Board .config File
	Modify the New Board Kconfig
	Create the New Board Header File
	Customize the System Board Configuration Filev

	3)Compile

	6.3.How to Create Your Device Tree
	 Introduction to the Device Tree Hierarchy
	1)Device Tree for MYIR-ST-U-Boot
	2)Device Tree for MYIR-ST-Linux

	6.3.1.Adding Device Trees
	1)Uboot create a device tree
	 Creating Device Trees in U-Boot
	Modify the Device Tree Makefile
	Modify the Board Configuration File

	2)Creating Device Trees in the Kernel

	6.4.Configuring CPU Function Pins for Your Hardware
	6.4.1.GPIO Pin Configuration Methods
	1)View the Pinctrl Configuration Rules
	2)Configure GPIO in the Device Tree

	6.5.Using Configured Pins
	6.5.1.Using GPIO Pins in U-Boot
	1)Controlling GPIO via U-Boot Command Line
	2)Controlling GPIO via U-Boot Code
	Using the Reset Pin in U-Boot

	7.Application Development and Deployment
	7.1.Applications Based on Makefile
	7.2.Qt-Based Applications
	7.3.Configuring Applications for Automatic Startup
	1)Automatic Startup Service
	2)Configuring an Application for Automatic Startup

	8.References
	Appendix A

