
File status:

[] Draft

[√]Release

FILE ID: MYIR-MYD-LD25X-SW-DG-EN-L6.1.82

VERSION: V1.1[Doc]

AUTHOR: MSW0192

RELEASE: 2024-09-11

UPDATED: 2024-11-08

Copyright © MYIR Electronics Limited 2011-2024 all rights reserved

MYD-LD25X Linux

Software Development Guide

- 2 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

Revision History

VERSION AUTHOR PARTICIPANT DATE DESCRIPTION
V1.0[Doc] MSW0192 MSW0041 2024-09-15 Official Release

V1.1[Doc] MSW0192 MSW0041 2024-11-08 The adaptation for the MYD-
LD257-8E1D model.

http://www.myir.cn
http://www.myirtech.com

- 3 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

CONTENT

Revision History ..- 2 -

CONTENT..- 3 -

1. Overview of System Development... - 5 -

1.1. Software Resources ... - 6 -

2. Setting Up the Development Environment ... - 7 -

2.1. Host Environment.. - 7 -

2.2. Installation of cross-compilation toolchain ... - 10 -

3. How to Flash the System Image..- 13 -

4. Separate Compilation and Update of the Board Support Package- 14 -

4.1. Introduction to the Board Support Package ... - 14 -

4.2. Bootloader Compilation and Update...- 16 -

4.3. Onboard Kernel Compilation and Update ... - 19 -

5. Setting Up a Basic Yocto Environment ... - 23 -

5.1. Introduction... - 23 -

5.2. Obtaining the Source Code... - 24 -

5.3. Quick Compilation of Development Board Image- 25 -

5.4. Bulid SDK.. - 30 -

6. Adapting Hardware to the Baseboard.. - 31 -

6.1. Introduction to the meta-bsp Layer ... - 31 -

6.2. How to Create Your Own Machine... - 33 -

6.3. How to Create Your Device Tree ..- 37 -

6.4. Configuring CPU Function Pins for Your Hardware....................................- 39 -

6.5. Using Configured Pins ... - 41 -

7. Application Development and Deployment - 42 -

7.1. Applications Based on Makefile ...- 42 -

http://www.myir.cn
http://www.myirtech.com

- 4 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

7.2. Qt-Based Applications ... - 47 -

7.3. Configuring Applications for Automatic Startup ...- 48 -

8. References ...- 53 -

Appendix A.. - 54 -

http://www.myir.cn
http://www.myirtech.com

- 5 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

1. Overview of System Development

The embedded Linux system is a relatively large software system, including the

board support package BSP (Board Support Package), which can be narrowly

understood as the system bootloader, drivers, etc.; the Linux system kernel, which

includes numerous protocol stacks, resource management, and schedulers; the

Rootfs root file system, the application runtime environment, initialization scripts,

and service resources, etc. To integrate these resources into a whole that can be

well managed, a framework is needed for management.

Embedded Linux system software has many open-source build frameworks,

among which the more common ones are Buildroot, Yocto, Busyboxand so on.

Yocto uses powerfulresource integration

methodsandhighcustomizablearchitecture,making it very convenient tobuild Linux

systems suitable for embedded products.At the same timeYocto is not only

asystem tool for creating files, but also provides a complete set of Linux-based

development and maintenance workflows, allowing lower-level embedded

developers and upper-level application developers to work within a unified

framework, solving the scattered and unmanaged development forms of

traditional development methods.

MYD-LD25X series development platform on， using Yocto to deploy

development environments, build systems, and Linux applications integration and

image updates, etc. After system developers are familiar with the Yocto

development process in Chapter five, they can refer to the porting guide in

Chapter six to customize the BSP according to actual project needs, allowing them

to quickly port the system to hardware platforms based on the MYD-LD25X core

board design.

Note:This document does not include an introduction to the Yocto projectand basic
knowledge related to Linux systems,and is suitable for embedded Linuxsystem
developers with some development experience.For specific functions that users may use
during secondary development, we also provide detailed application development
manuals.

http://www.myir.cn
http://www.myirtech.com

- 6 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

1.1. Software Resources

The MYD-LD25X board runs an operating system based on Linux kernel version

6.1.82, providing a wealth of system and software resources. The development

board comes pre-installed with the cross-compilation toolchain required for

embedded Linux system development, ATF source code, U-boot source code,

Linux kernel and various driver modules' source codes, as well as various

development and debugging tools for Windows and Linux desktop environments,

and application development examples. For detailed software information, please

refer to Chapter 2 of the "MYD-LD25X SDK Release Note."

http://www.myir.cn
http://www.myirtech.com

- 7 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

2. Setting Up the Development

Environment

This chapter provides guidance on setting up the environment based on the

MYD-LD25X development board, including the necessary hardware and software

components for the entire development process.

2.1. Host Environment

1) Host Hardware and Software Requirements

 Host Hardware

Yocto project builds require a development host with a dual-core CPU or better,

at least 8GB of RAM, and a 400GB or larger hard drive. It can be a physical

machine or a virtual machine running Linux.

 Host Operating System

Various Linux distributions can be used for building Yocto projects. Common

choices include Fedora, openSUSE, Debian, Ubuntu, RHEL, or CentOS. This guide

recommends Ubuntu 20.04 64-bit for development.

2) Host Environment Configuration

After installing the Ubuntu 20.04 64-bit system, you can make appropriate

configurations to prepare for subsequent development.

 Set Root Password

For development operations, it is advisable to use a regular user account rather

than the root account. This means that the hostname should match your

username instead of 'root', in order to avoid potential permission-related issues

during the development process.

$ sudo passwd root

 Install SSH

http://www.myir.cn
http://www.myirtech.com

- 8 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

After installing the SSH service, you can connect to Ubuntu for subsequent

development using an SSH2 connection with a remote serial debugging tool in a

Windows environment. You can search online for tutorials on how to use the

serial debugging tool.

$ sudo apt-get install openssh-server

To generate a key for the user, use the following commands:

$ su user

$ ssh-keygen -t rsa

 Configure Samba

Samba allows you to access Ubuntu's contents in folder format directly from

Windows, making reading and writing more convenient. To install Samba, enter

the following command:

$ apt-get install samba

In the /etc/samba/smb.conf file, add user configuration. The following

configuration uses the username "myir" as an example; please adjust it according

to your actual username. The following configuration can be directly added to the

end of the configuration file:

[myir]

path = /home/myir

valid users = myir

browseable = yes

public = yes

writable = yes

Create an account and set a password:

$ sudo smbpasswd -a myir

New SMB password:

Retype new SMB password:

Added user myir.

/etc/init.d/smbd restart Restart the Samba service:

$ /etc/init.d/smbd restart

http://www.myir.cn
http://www.myirtech.com

- 9 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

[ok] Restarting smbd (via systemctl): smbd.service.

 Configure Git

$ git config --global user.name "user"

$ git config --global user.email "email"

$ git config --list

 Install Necessary Tools

This section is very important. Please ensure that the host environment correctly

executes the following actions, and restart after completing the operations below.

$ sudo apt-get update

$ sudo apt-get install -y gawk wget git-core diffstat \

unzip texinfo gcc-multilib build-essential chrpath socat libsdl1.2-dev \

xterm sed cvs subversion coreutils texi2html docbook-utils python-pysqlite2 \

help2man make gcc g++ desktop-file-utils libgl1-mesa-dev libglu1-mesa-dev \

mercurial autoconf automake groff curl lzop asciidoc u-boot-tools cpio \

sudo locales bc libncurses5-dev screen flex bison vim-tiny \

device-tree-compiler xvfb libgtk2.0-dev libssl-dev net-tools libyaml-dev \

rsync liblz4-tool zstd python3-pip git-lfs iputils-ping jq

$ sudo rm -rf /var/lib/apt/lists/*

$ sudo chmod a+x /usr/bin/repo

$ sudo ln -s /usr/bin/python3 /usr/bin/python

$ sudo sed -i -e 's/# en_US.UTF-8 UTF-8/en_US.UTF-8 UTF-8/' /etc/locale.gen

$ echo 'LANG="en_US.UTF-8"' | sudo tee /etc/default/locale > /dev/null

$ sudo dpkg-reconfigure --frontend=noninteractive locales

$ sudo update-locale LANG=en_US.UTF-8

$ sudo pip3 install pyusb usb crypto ecdsa crcmod tqdm pycryptodome pycr

yptodomex pyelftools

http://www.myir.cn
http://www.myirtech.com

- 10 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

2.2. Installation of cross-compilation toolchain

After using Yocto to build the system image, we can also use Yocto to build an

extensible SDK. The materials provided by MYiR contain a pre-compiled SDK

package, located at: 03-Tools/Compile Toolchain/SDK. The functionalities of the

SDK files are described in the table below:

Table 2-1. Compilation Toolchain

Toolchain File Name Description

myir-image-full-openstlinux-weston-myd-ld25x-x86_64-toolchain-
4.2.4-snapshot.sh

Includes a standalone cross-
development toolchain, also
providing qmake, the target
platform's sysroot, libraries, and
header files required for Qt
application development. Users
can directly use this SDK to
establish an independent
development environment.

Here are the steps for installing the SDK:

 Copy SDK to Linux Directory

Transfer the SDK compressed package to the user's working directory in Ubuntu.

This will give you the installation script file, which looks like this:

$ mkdir myd-ld25x-toolchain;cd ~/myd-ld25x-toolchain

$ cp ~/03-Tools/Compile Toolchain/* ./

$ ls ~/myd-ld25x-toolchain

myir-image-full-openstlinux-weston-myd-ld25x-x86_64-toolchain-4.2.4-snapshot.

sh

 Execute the Installation Script

To execute the shell script with regular user permissions, it will prompt for the

installation path, which defaults to the /opt directory. In this example, the Qt

toolchain is installed in the directory /home/myir/myd-ld25x-toolchain, as shown

below:

$./myir-image-full-openstlinux-weston-myd-ld25x-x86_64-toolchain-4.2.4-snaps

hot.sh

ST OpenSTLinux - Weston - (A Yocto Project Based Distro) SDK installer versi

on 4.2.4-snapshot

http://www.myir.cn
http://www.myirtech.com

- 11 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

===

==

Enter target directory for SDK (default: /opt/st/myd-ld25x/4.2.4-snapshot): ./

You are about to install the SDK to "/home/myir/myd-ld25x-toolchain". Proce

ed [Y/n]? y

Extracting SD

K..

..

..

..done

Setting it up...done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to sour

ce the environment setup script e.g.

Initialize environment variables:

$ source ~/myd-ld25x-toolchain/environment-setup-cortexa35-ostl-linux

 Test the SDK

Use $CC or $CXX to check whether the cross-compiled gcc and g++ are installed

correctly:

$ $CC -v

Using built-in specs.

COLLECT_GCC=aarch64-ostl-linux-gcc

COLLECT_LTO_WRAPPER=/home/myir/myd-ld25x-toolchain/sysroots/x86_64-ostl

_sdk-linux/usr/libexec/aarch64-ostl-linux/gcc/aarch64-ostl-linux/12.3.0/lto-wrapp

er

Target: aarch64-ostl-linux

......

Thread model: posix

Supported LTO compression algorithms: zlib zstd

gcc version 12.3.0 (GCC)
Note: The operation to initialize the environment variables will only apply to the currently
opened terminal window. Any new window opened in any way will not load the LMA35
SDK cross-compilation toolchain by default. Therefore, if you need to perform Yocto

http://www.myir.cn
http://www.myirtech.com

- 12 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

builds or other development tasks, please open a new window to avoid environmental
errors caused by the cross-compilation toolchain.

http://www.myir.cn
http://www.myirtech.com

- 13 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

3. How to Flash the System Image

The MYD-LD25X series development boards, designed by MYIR, are based on ST's

STM32MP257 microprocessors and support various boot methods, requiring

different update tools and methods. Users can choose from the following update

options:

 STM32CubeProgrammer: A Windows software that allows direct

programming of the board via Type-C, without needing additional storage

media.

 TF Card Launcher: Suitable for development and debugging, it facilitates

quick booting but cannot flash images.

 TF Card Programmer: Ideal for mass production, used for flashing eMMC.

For detailed image flashing methods, refer to the "MYD-LD25X Production

Guide," which includes comprehensive preparation steps and operational

instructions for each model and image type.

http://www.myir.cn
http://www.myirtech.com

- 14 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

4. Separate Compilation and Update

of the Board Support Package

4.1. Introduction to the Board Support Package

To adapt to a new hardware platform, you first need to understand the resources

provided by MYIR's MYD-LD25X development board. For detailed information,

please refer to the "MYD-LD25X SDK Release Note." Additionally, we have

compiled a list of files that may need modification within the BSP (Board Support

Package) to assist users in locating and making necessary changes. The specific

details are outlined in the table below:

Table 4-1. Adding Configuration Information

Project Device Tree Description
U-boot arch/arm/dts/myb-stm32mp257x-2GB.dts U-Boot device tree

definition file for 2GB
RAM

arch/arm/dts/myb-stm32mp257x-2GB-resmem.dtsi Device tree configuration
include file for reserved
memory with 2GB RAM

arch/arm/dts/myb-stm32mp257x-2GB-u-boot.dtsi U-Boot specific device
tree configuration include
file

arch/arm/dts/myb-stm32mp257x-base.dtsi Basic device tree
configuration include file

arch/arm/dts/myb-stm32mp257x-1GB.dts U-Boot device tree
definition file for 1GB
RAM

arch/arm/dts/myb-stm32mp257x-1GB-resmem.dtsi Device tree configuration
include file for reserved
memory with 1GB RAM

arch/arm/dts/myb-stm32mp257x-1GB-u-boot.dtsi U-Boot specific device
tree configuration include
file

configs/myd_ld25x_2G_defconfig 2GB DDR U-Boot
configuration file

configs/myd_ld25x_1G_defconfig 1GB DDR U-Boot
configuration file

Kernel arch/arm64/configs/myd_stm32mp257x_defconfig Default kernel
configuration file

arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB.dts Device tree definition file
for 2GB RAM

http://www.myir.cn
http://www.myirtech.com

- 15 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB-
ethswitch.dts

Device tree definition file
for Ethernet switch with
2GB RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB-resmem.dtsi Device tree include file
for reserved memory
with 2GB RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB.dts Device tree definition file
for 1GB RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB-
ethswitch.dts

Device tree definition file
for Ethernet switch with
1GB RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB-resmem.dtsi Device tree include file
for reserved memory
with 1GB RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-base.dtsi Basic device tree
configuration include file

arch/arm64/boot/dts/myir/myb-stm32mp257x-ethswitch.dtsi Ethernet switch device
tree configuration include
file

The following section focuses on the processes users undertake based on the

Bootloader, Kernel, and Yocto source code and data we provide.

http://www.myir.cn
http://www.myirtech.com

- 16 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

4.2. Bootloader Compilation and Update

U-Boot is a highly versatile open-source bootloader that supports kernel booting,

downloading updates, and many other functions, making it widely used in

embedded systems. For more information, visit the official website: U-Boot.

4.2.1. Obtaining U-Boot Source Code

You can obtain the U-Boot source code through one of the following methods:

1) From GitHub

Create a directory to store U-Boot and use the following commands to clone the

source code from GitHub:

$ mkdir bsp;cd bsp

$ git clone https://github.com/MYiR-Dev/myir-st-u-boot.git \

-b develop-ld25x-v2022.10

2) From CD Image

After extracting the CD image, go to the 04-Sources directory and extract the

source code package MYD-LD25X-Distribution-L6.1.82-V*.tar.gz to your host.

Navigate to the extracted directory to access the U-Boot source code:

$ mkdir MYD-LD25X

$ tar xvf 04-Sources/MYD-LD25X-Distribution-L6.1.82-V*.tar.gz \

-C MYD-LD25X

$ cd MYD-LD25X/MYD-LD25X-Distribution-L6.1.82-V*/MYD-LD25X-Uboot-L2022.

10-V*

4.2.2. Compiling the Bootloader

To compile the bootloader, first, check the directory structure of MYD-LD25X-

Uboot-L2022.10-V*:

$ ls -la

build/ - Directory for compiled files

build-uboot-en.sh - English build script

build-uboot-zh.sh - Chinese build script

deploy/ - Directory for deployment files

http://www.myir.cn
http://www.myirtech.com

- 17 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

FIP_artifacts/ - FIP related files

fiptool-stm32mp - STM32MP FIP tool

Makefile.sdk - Compilation rules file

myir-st-external-dt/ - External device tree files for U-Boot

myir-st-optee/ - OP-TEE files directory

myir-st-u-boot/ - U-Boot source directory

output/ - Final output directory for FIP files

README_en - README in English

README_zh - README in Chinese

Running the one-click compile script will automatically start the compilation. The

following example uses the 2GB model; if you need to compile the 1GB model,

please select it yourself in the prompt.

$./build-uboot-en.sh

-----------------Script Start---------------

Compilation chain is normal

Please select the DDR size configuration to build (1/2):

1 - 1GB model suitable for MYD-LD257-8E1D

2 - 2GB model suitable for MYD-LD257-8E2D

Please enter your choice (1 or 2): 2

* Configuring U-Boot. *

[██] 100%

* Compiling U-Boot. *

[██] 100%

* Configuring Optee. *

[██] 100%

* Building FIP files. *

http://www.myir.cn
http://www.myirtech.com

- 18 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

[██] 100%

**

* Compilation completed, FIP files located at /home/myir/MYD-LD25X/MYD-L

D25X-Uboot-L2022.10-V*/Bootloader/output *

**

The final compiled files will be in the output directory. The contents include:

$ ls output/ -l

fip-myb-stm32mp257x-2GB-optee-emmc.bin

fip-myb-stm32mp257x-2GB-optee-sdcard.bin

4.2.3. Updating the Bootloader

This section describes how to flash the files onto the development board using

command-line tools.

1) Flashing the FIP Firmware Image to the Development Board

Note: The following example uses a 2GB fip file. If your development board is MYD-
LD257-8E1D, please replace the files in the commands below with the corresponding
1GB files.
 Flashing fip-myb-stm32mp257x-2GB-optee-emmc.bin to the Development
Board:

Copy the compiled fip-myb-stm32mp257x-2GB-optee-emmc.bin file to the

eMMC on the development board. You can transfer it using scp or other storage

media such as a USB drive. For example, using scp:

scp beste@192.168.40.21:~/scpfile/fip-myb-stm32mp257x-2GB-optee-emmc.b

in /home/root

dd if=fip-myb-stm32mp257x-2GB-optee-emmc.bin \

of=/dev/mmcblk1p3 bs=1M conv=fsync

dd if=fip-myb-stm32mp257x-2GB-optee-emmc.bin

of=/dev/mmcblk1p4 bs=1M conv=fsync

mailto:beste@192.168.40.21:~/scpfile/fip.bin-sdcard
mailto:beste@192.168.40.21:~/scpfile/fip.bin-sdcard
http://www.myir.cn
http://www.myirtech.com

- 19 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

4.3. Onboard Kernel Compilation and Update

The kernel is the core of the operating system, responsible for managing

hardware resources and system services. It handles critical tasks such as process

management, memory allocation, device drivers, and file systems. The kernel is

loaded during system startup to ensure smooth coordination between hardware

and software. Common open-source kernels like the Linux kernel are widely used

in various devices, from embedded systems to servers. For more information,

please refer to the kernel's official website or community.

4.3.1. Obtaining Kernel Source Code

1) Getting the Source Code from GitHub

Create a kernel work directory and use the following commands to download the

source code:

$ mkdir linux;cd linux

$ git clone https://github.com/MYiR-Dev/myir-st-linux.git \

-b develop-ld25x-6.1.82

2) Get the source code from the release information

After obtaining the published information, extract the source code compression

package MYD-LD25X-Distribution-L6.1.82-V*.tar.gz under 04-Sources to the host

for use.

$ mkdir MYD-LD25X

$ tar xvf 04-Sources/MYD-LD25X-Distribution-L6.1.82-V*.tar.gz \

-C MYD-LD25X

$ cd MYD-LD25X/MYD-LD25X-Distribution-L6.1.82-V*/MYD-LD25X-Linux-L6.1.82

-V*

4.3.2. Compiling the Kernel

After extraction, check the directory structure of MYD-LD25X-Linux-L6.1.82-V*:

$ ls -la

build-linux-en.sh build-linux-zh.sh myir-st-linux README_en README_zh

 myir-st-linux: Linux source code, including the complete Linux source.

https://github.com/MYiR-Dev/myir-st-linux.git
http://www.myir.cn
http://www.myirtech.com

- 20 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

 build-linux-zh.sh: One-click compilation script with Chinese prompts.

 build-linux-en.sh: One-click compilation script with English prompts.

 README-zh: Chinese documentation.

 README-en: English documentation.

Running the one-click compilation script will automatically decompress the source

code package and compile it.

$./build-linux-en.sh

Usage: ./build-linux-en.sh [-h] [y/n] [y/n] [y/n]

Options:

-h Print help information

-c Clean build content

Arguments:

y/n Choose whether to execute the task (y: Yes, n: No)

The first argument is for compiling the kernel

The second argument is for compiling the device tree

The third argument is for compiling modules

You can choose to execute, e.g., ./build-linux-en.sh n y n to build only the

device tree

If no arguments are provided, it defaults to compiling everything

Please enter the number of threads for compilation: 40

Detected that the myir-st-linux directory exists, skipping extraction step

Toolchain OK

Starting to configure the kernel

Starting to compile the kernel

[██████████████████████████████] 100%

Compilation completed

Starting to build the device tree

[██████████████████████████████] 100%

Compilation completed

Starting to compile modules

[██████████████████████████████] 100%

Compilation completed

Starting to install modules to the modules directory

http://www.myir.cn
http://www.myirtech.com

- 21 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

Build completed, output directory is: /media/home/beste/01_Pro/ld25x/bsp_hu/

MYD-LD25X-Linux-L6.1.82-V*/output

The final compiled files will be saved in the output directory at the same level as

the script, with the following contents:

$ ls output/ -l

total 76040

Image

Image.gz

modules.tar.gz

myb-stm32mp257x-2GB.dtb

myb-stm32mp257x-2GB-ethswitch.dtb

myb-stm32mp257x-1GB.dtb

myb-stm32mp257x-1GB-ethswitch.dtb

4.3.3. Updating the Kernel

This section describes the file burning method, either via command on the

development board or using the STM32CubeProgrammer tool connected via

Type-C from a PC. For the STM32CubeProgrammer burning method, please refer

to the "MYD-LD25X Mass Production Guide." In the operations below, mmcblk1

refers to the eMMC partition, and mmcblk0 refers to the TF card partition.

1) Replace the Kernel File Image on the Development Board:

 Replace Image.gz on the eMMC development board or TF card.

Copy the compiled Image.gz to the eMMC development board using methods

such as scp or a storage medium like a USB drive. For example, using scp through

the development board's serial debugging port, it is recommended to back up

before replacing as follows:

cd /boot

mv Image.gz bak-Image.gz

scp beste@192.168.40.21:~/scpfile/Image.gz /boot

ls /boot

bak-Image.gz

mailto:beste@192.168.40.21:~/scpfile/fip.bin-sdcard
http://www.myir.cn
http://www.myirtech.com

- 22 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

Image.gz

.......

Updating the system on a TF card follows a process similar to the one described

above.

2) Replace the Device Tree (dtb) on the Development Board:

 Replace the device tree file on the eMMC development board or TF card.

Copy the compiled dtb file from the output directory to the eMMC development

board. The method for copying all device tree files is similar to the operations

described below. Here, we use myb-stm32mp257x-2GB.dtb as an example. Users

of the MYD-LD257-8E1D should modify the device tree name to the

corresponding 1GB file in the following steps. You can transfer the file to the

development board using scp or storage media like a USB drive. In this example,

we use scp. When executing from the debug serial port on the development

board, it’s recommended to back up the original file before replacing it as

follows:

cd /boot

mv myb-stm32mp257x-2GB.dtb bak-myb-stm32mp257x-2GB.dtb

scp beste@192.168.40.21:~/scpfile/myb-stm32mp257x-2GB.dtb /boot

ls /boot

......

myb-stm32mp257x-2GB.dtb

bak-myb-stm32mp257x-2GB.dtb

......

3) Update Modules on the Development Board

To update the modules, first back up /lib/modules/6.1.82 to linux-bak, then

extract the compiled modules.tar.gz to the root directory to complete the update.

cp /lib/modules/6.1.82 ~/linux-bak -rf

rm /lib/modules/6.1.82 -rf

tar xf modules.tar.gz -C / > /dev/null 2>&1

mailto:beste@192.168.40.21:~/scpfile/fip.bin-sdcard
http://www.myir.cn
http://www.myirtech.com

- 23 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

5. Setting Up a Basic Yocto

Environment

5.1. Introduction

Yocto is an open-source "umbrella" project that encompasses a range of sub-

projects. It integrates these projects and provides a reference build project called

Poky to guide developers on how to use these projects to build embedded Linux

systems. It includes Bitbake, OpenEmbedded-Core, board support packages, and

configuration files for various software packages.

MYD-LD25X provides Yocto-compatible configuration files to assist developers in

creating a Linux system image that can be flashed onto the MYD-LD25X board.

Yocto also offers extensive development documentation resources for developers

to learn and customize their systems. Due to space limitations, a complete

introduction to Yocto usage cannot be provided here; users are encouraged to

search online for additional information.

This section is suitable for developers who need to deeply customize their file

systems and wish to build a file system tailored to the MYD-LD25X series

development boards using Yocto, as well as for those interested in its

customization methods. Developers who are new to Yocto or do not have special

requirements may directly use the pre-provided file systems from MYD-LD25X.

Note: Building Yocto does not require loading the SDK toolchain environment variables
from section 2.3. Please create a new shell or open a new terminal window.

http://www.myir.cn
http://www.myirtech.com

- 24 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

5.2. Obtaining the Source Code

We offer two methods for obtaining the source code: one is to download the

compressed package from the 04-Sources directory of the release materials, and

the other is to use repo to fetch the source code from GitHub, which is

continuously updated. Users should choose the method that best suits their

needs. Since Yocto requires downloading all software packages locally before

building, MYD-LD25X has pre-packaged the relevant software to minimize

repeated downloads. Release materials can be obtained from the MYiR Developer

Center.

5.2.1. Obtaining the Source Code from Release Materials

The source package is available in MYD-LD25X-Distribution-L6.1.82-V*.tar.gz

within the MYiR development package materials in the 04-Sources directory. Copy

the compressed package to your specified directory, and extract it as follows:

$ mkdir -p MYD-LD25X

$ cd MYD-LD25X

$ tar -xvf MYD-LD25X-Distribution-L6.1.82-V*.tar.gz \

-C MYD-LD25X

$ cd MYD-LD25X/MYD-LD25X-Distribution-L6.1.82-V*/MYD-LD25X-Yocto-mickle

dore-V*

If you have already obtained the Yocto source code as described in this section,

you can skip the following section 5.2.2.

5.2.2. Obtaining from GitHub

Currently, both the BSP source code and Yocto source code for the MYD-LD25X

development board are hosted on GitHub and will be kept up-to-date. Please

refer to the "MYD-LD25X SDK Release Note" for the repository address. Users can

use repo to fetch and synchronize code from GitHub. The specific operation

methods are as follows:

$ mkdir -p ~/bin

$ curl https://mirrors.tuna.tsinghua.edu.cn/git/git-repo > ~/bin/repo

$ chmod a+x ~/bin/repo

https://mirrors.tuna.tsinghua.edu.cn/git/git-repo
http://www.myir.cn
http://www.myirtech.com

- 25 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

$ export PATH=~/bin:${PATH}

$ export REPO_URL='https://mirrors.tuna.tsinghua.edu.cn/git/git-repo/'

$ mkdir -p MYD-LD25X-yocto

$ cd MYD-LD25X-yocto

$ repo init -u https://github.com/MYiR-Dev/myir-st-manifest.git \

--no-clone-bundle --depth=1 -m myir-stm32mp2-6.1.82-1.0.0.xml \

-b myd-ld25x-v24.06.26-mickledore

$ repo sync

$ ls

layers

After successfully synchronizing the code, you will find the same directory

contents as in MYD-LD25X-Yocto-mickledore-V* within the MYD-LD25X directory.

5.3. Quick Compilation of Development Board Image

5.3.1. Execute Environment Variable Setup Script

Before building the system with the Yocto project, you need to set the

appropriate environment variables. Therefore, each time you compile Yocto in a

new terminal window, run the envsetup.sh script located in the Yocto source

directory at layers/meta-myir/scripts/.

The procedure to set up the build environment is as follows. Depending on your

development board model, you need to execute the appropriate command:

 MYD-LD25X-8E256D model

$ cd MYD-LD25X-yocto

$ DISTRO=openstlinux-weston MACHINE=myd-ld25x source \

layers/meta-myir/scripts/envsetup.sh

After running the configuration script, you will automatically enter the generated

build-openstlinuxweston-myd-ld25x directory.

Note: Yocto compilation should be performed as a regular user, not as root.

5.3.2. Build the Image

http://www.myir.cn
http://www.myirtech.com

- 26 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

To understand the differences between the various images provided by MYiR,

please refer to the "MYD-LD25X SDK Release Notes."

 Build the myir-image-full Image

After completing the environment setup and downloading the necessary files, you

can build the myir-image-full image by executing the following command:

$ bitbake myir-image-full

NOTE: Started PRServer with DBfile: /media/home/beste/01_Pro/ld25x/build-op

enstlinuxweston-myd-ld25x/cache/prserv.sqlite3, Address: 127.0.0.1:40731, PID:

1971012

Loading cache: 100% |##

###

##############################| Time: 0:00:01

Loaded 4749 entries from dependency cache.

Parsing recipes: 100% |###

###

#############################| Time: 0:00:01

Parsing of 2997 .bb files complete (2994 cached, 3 parsed). 4754 targets, 515

skipped, 0 masked, 0 errors.

NOTE: Resolving any missing task queue dependencies

Build Configuration:

BB_VERSION = "2.4.0"

BUILD_SYS = "x86_64-linux"

NATIVELSBSTRING = "universal"

TARGET_SYS = "aarch64-ostl-linux"

MACHINE = "myd-ld25x"

DISTRO = "openstlinux-weston"

DISTRO_VERSION = "4.2.4-snapshot-20240903"

TUNE_FEATURES = "aarch64 armv8a crc cortexa35"

TARGET_FPU = ""

DISTRO_CODENAME = "mickledore"

........

 Build the myir-image-core Image

http://www.myir.cn
http://www.myirtech.com

- 27 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

To build the myir-image-core image, use the following command, similar to the

full image build:

$ bitbake myir-image-core

 Build the myir-image-burn Image

Before building the burn image, the full image needs to be built first, as the burn

image requires copying the file system, kernel files, and other elements from the

full image into the burn image system for flashing.

The myir-image-burn image comes in two versions: myir-image-burn-1G and

myir-image-burn-2G, which are suitable for the MYD-LD257-8E1D and MYD-

LD257-8E2D models, respectively. The burn image is used to flash to the TF card,

and then after booting from the TF card, it is used to flash the myir-image-full

image from the TF card to the eMMC, serving as a production-friendly image

package. For specific instructions on how to flash this image, please refer to the

"MYD-LD25X Production Guide". Depending on the development board model,

you can construct the burn image by executing one of the following commands:

 MYD-LD257-8E1D

$ bitbake myir-image-burn-1G

 MYD-LD257-8E2D

$ bitbake myir-image-burn-2G

After the build completes, the compiled image will be located in tmp-

glibc/deploy/images/myd-ld25x/. You can update the generated image file using

STM32CubeProgrammer as described in the "MYD-LD25X Mass Production

Guide."

 Build the Raw File for TF Card Flashing

If you need to flash the image onto a TF card, you must use the sdcard-raw-tools.

First, build the sdcard-raw-tools by running:

$ bitbake sdcard-raw-tools

Then, navigate to the following directory:

$ cd tmp-glibc/deploy/images/myd-ld25x/scripts/

Once in the directory, run the provided script to see how to use it.

http://www.myir.cn
http://www.myirtech.com

- 28 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

$./create_sdcard_from_flashlayout.sh

[ERROR]: bad number of parameters

Help:

./create_sdcard_from_flashlayout.sh [-h|--help] [--compress] <FlashLayout fil

e>

-h : this help

--help: this help

--compress: compress the raw image generated

--force-rootfs: force to use predefined rootfs size (3906 MB)

By setting SDCARD_SIZE on shell environment or calling the script with it you

can limit the size of RAW sdcard

SDCARD_SIZE=<value on MB>

ex.: SDCARD_SIZE=2048 ./script/create_sdcard_from_flashlayout.sh <flashlayou

t>

this exemple limit the size of sdcard to 2GB (2048MB)

By setting DEVICE on shell environment or calling the script with it you can c

ustomize the command

ex.: DEVICE=sdb ./script/create_sdcard_from_flashlayout.sh <flashlayout>

Next, I'll demonstrate how to use the script to generate a raw.xz compressed file

using the burn image as an example. The raw file is used for flashing onto the TF

card, and outputting it as an xz compressed file makes it easier to transfer.

To start creating the raw.xz file for the burn image, use the following command.

The process is similar for full and core images; you just need to select the

appropriate Flashlayout file:

$./create_sdcard_from_flashlayout.sh --compress \

../flashlayout_myir-image-burn/optee/FlashLayout_sdcard_myb-stm32mp257x-2

GB-optee.tsv

http://www.myir.cn
http://www.myirtech.com

- 29 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

Create Raw empty image: ../flashlayout_myir-image-burn/optee/../../FlashLayout

_sdcard_myb-stm32mp257x-2GB-optee.raw of 5442MB

Create partition table:

[CREATED] part 01: fsbla1 [partition size 256.0 KiB]

[CREATED] part 02: fsbla2 [partition size 256.0 KiB]

[CREATED] part 03: metadata1 [partition size 256.0 KiB]

[CREATED] part 04: metadata2 [partition size 256.0 KiB]

[CREATED] part 05: fip-a [partition size 4.0 MiB]

[CREATED] part 06: fip-b [partition size 4.0 MiB]

[CREATED] part 07: u-boot-env [partition size 512.0 KiB]

[CREATED] part 08: bootfs [partition size 64.0 MiB]

[CREATED] part 09: vendorfs [partition size 183.0 MiB]

[CREATED] part 10: rootfs [partition size 4.0 GiB]

[CREATED] part 11: userfs [partition size 1.1 GiB]

......

It is important to note that the tsv file selected must be for the SD card, not for

the eMMC. Once the process is complete, the raw.xz file will be output to the

parent directory, which is tmp-glibc/deploy/images/myd-ld25x/:

$ ls ../*.raw.xz

-rw- 444893344 ../FlashLayout_sdcard_myb-stm32mp257x-2GB-optee.raw.xz

After extracting this file, you can use the resulting raw file for flashing, following

the instructions in the "MYD-LD25X Mass Production Guide" in the

Win32DiskImager burning section.

http://www.myir.cn
http://www.myirtech.com

- 30 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

5.4. Bulid SDK

Yocto provides functionality to build an SDK toolchain, which includes tools,

headers, and libraries for both low-level and application developers. This

eliminates the need for users to manually create or compile dependency libraries.

The SDK is used for compiling U-Boot and Linux kernel code and includes headers

and libraries for the target system, making it easier for application developers to

port applications to the target device. Here’s how to build the toolchain SDK:

This section provides a brief explanation on building the SDK provided by MYiR.

Use the following command to generate the SDK package:

$ bitbake -c populate_sdk myir-image-full

After the build completes, the SDK installation package will be located in the tmp-

glibc/deploy/sdk/ directory. For installation instructions, please refer to section 2.2.

myir-image-full-openstlinux-weston-myd-ld25x-x86_64-toolchain-4.2.4-snapshot.

sh

http://www.myir.cn
http://www.myirtech.com

- 31 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

6. Adapting Hardware to the

Baseboard

6.1. Introduction to the meta-bsp Layer

The Yocto project's "layer model" is a development model designed for creating

embedded and IoT Linux systems. It differentiates the Yocto project from other

simpler build systems by supporting both collaboration and customization. A

layer is a repository containing related sets of instructions that inform the

OpenEmbedded build system on what to do.

The meta-myir layer is built on top of the meta-st layer from STMicroelectronics

and is tailored for the MYD-LD25X development board. Within this layer, the

meta-bsp layer includes various metadata and recipes for BSP, GUI, distribution

configuration, middleware, or applications. Users can adapt their hardware

designed for the MYD-LD25X development board based on this "layer model,"

customize their applications, and build a system image suited to their needs. This

section primarily introduces the meta-myir layer, including its specific contents as

follows:

$ tree -a -L 1 layers/meta-myir/meta-myir-stm32mp

layers/meta-myir/meta-myir-stm32mp

├── classes

├── CODE_OF_CONDUCT.md

├── conf

├── License.md

├── README -> README.md

├── README.md

├── recipes-bsp

├── recipes-connectivity

├── recipes-core

├── recipes-devtools

http://www.myir.cn
http://www.myirtech.com

- 32 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

├── recipes-extended

├── recipes-graphics

├── recipes-kernel

├── recipes-myir

├── recipes-security

├── recipes-st

├── recipes-support

Layer Details:

Table 6-1. Description of the meta-myir Layer Contents

Source Code and Data Description

conf
Contains current layer path information and

machine software configuration.

recipes-bsp
Includes configuration information for ATF, U-Boot,

and firmware.

recipes-kernel
Contains resources for the Linux kernel and third-

party firmware.

recipes-myir
Includes MYIR's custom package configuration for

the file system.

When performing a system port, it is crucial to focus on the recipes-bsp section,

which handles hardware initialization and system boot, and the recipes-kernel

section, which is responsible for the implementation of the Linux system's kernel

and drivers.

http://www.myir.cn
http://www.myirtech.com

- 33 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

6.2. How to Create Your Own Machine

In the development process, users sometimes need to create a custom board

configuration. This section will demonstrate how to create your own machine

through an example.

6.2.1. Creating a Board Configuration in Yocto

1) Select a Similar Machine File

Copy a similar machine file and rename it to your board’s specific name. For

example, a machine file similar to MYD-LD25X can be found in the directory

layers/meta-myir/meta-myir-stm32mp/conf/machine. Navigate to this directory

and list the files:

$ cd layers/meta-myir/meta-myir-stm32mp/conf/machine

$ ls

include myd-ld25x.conf

2) Copy and Rename

Once you find a similar machine file, copy it and rename it to your own machine

file. For instance:

$ cp myd-ld25x.conf test-myd-ld25x.conf

$ ls

myd-ld25x.conf test-myd-ld25x.conf

3) Machine Configuration File

Some parameters to pay attention to in the MACHINE configuration file include:

KERNEL_DEVICETREE += "myir/myb-stm32mp257x-1GB.dtb \

myir/myb-stm32mp257x-2GB.dtb \

myir/myb-stm32mp257x-2GB-ethswitch.dtb \

myir/myb-stm32mp257x-1GB-ethswitch.dtb \

"

This specifies the device trees included with the kernel. Here, all types of device

trees for myb-ld25x are specified. You can refer to section 4.1 for details on

http://www.myir.cn
http://www.myirtech.com

- 34 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

available device trees. Note that this should point to the final compiled .dtb files,

not the .dts files.

4) Compile and Test

After creating the machine file, you can compile and test it. Execute the following

commands to compile the minimal image for testing. Make sure to modify the

configuration command to use your custom MACHINE name and check the flash

model type:

$ cd MYD-LD25X-yocto

$ DISTRO=openstlinux-weston MACHINE=test-myd-ld25x source layers/meta-m

yir/scripts/envsetup.sh

$ bitbake core-image-minimal

After compiling, the generated image is located at build-openstlinuxweston-test-

myd-ld25x/tmp-glibc/deploy/images/test-myd-ld25x/. Copy this image and use

STM32CubeProgrammer to flash it onto the development board, following the

instructions in the "MYD-LD25X Production Guidance Manual," then start the test:

root@test-myd-ld25x:~#

6.2.2. Creating Board Configuration Files in U-Boot

In the development process, users typically need to create their own board

configuration files according to their board requirements. This section will

demonstrate, through a simple example, how to create your own board

configuration files step-by-step.

1) Create Board

When creating your own board configuration, you can establish it by copying and

renaming an existing board configuration file. These files are generally located in

the board directory of the U-Boot source code. Navigate to the myir subdirectory

under the U-Boot source board directory, then copy the myd_ld25x folder to

create test_ld25x, as shown below:

$ cd MYD-LD25X-Uboot-L2022.10-V*/board/myir/

$ cp myd_ld25x/ test_ld25x -rf

$ ls

http://www.myir.cn
http://www.myirtech.com

- 35 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

myd_ld25x test_ld25x

Enter the test_ld25x directory, rename myd-ld25x.c to test-ld25x.c, and modify the

Makefile to change myd-ld25x.o to test_ld25x.o.

$ mv myd-ld25x.c test-ld25x.c

$ vi Makefile

$ cat Makefile

SPDX-License-Identifier: GPL-2.0

obj-y += test-ld25x.o

2) Create the Board .config File

 Modify the New Board Kconfig

In the test_ld25x directory, modify the Kconfig file to match the following (with

the red text indicating changes):

if ld25x

config SYS_BOARD

default "test_ld25x"

config SYS_VENDOR

default "myir"

config SYS_CONFIG_NAME

default "test_ld25x"

endif

Next, add the following content (with the red text indicating changes) to

arch/arm/mach-stm32mp/Kconfig.25x (this will affect make menuconfig):

source "board/st/stm32mp2/Kconfig"

source "board/myir/test_ld25x/Kconfig"

http://www.myir.cn
http://www.myirtech.com

- 36 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

 Create the New Board Header File

From the root of the source directory, navigate to include/configs and copy

myd_ld25x.h to test_ld25x.h:

$ cd include/configs

$ cp myd_ld25x.h test_ld25x.h

$ ls -l test_ld25x.h

-rw-rw-r-- 1 myir myir 1620 Sep 5 11:49 test_ld25x.h
Note: Since the SYS_CONFIG_NAME has been changed to test_ld25x.h, the header file
should be renamed to test_ld25x.h.
 Customize the System Board Configuration Filev

Enter the configs directory from the root of the source code, and choose the

appropriate defconfig based on the Flash model to copy as test-defconfig. Here,

we use the 2GB version as an example.

$ cd configs

$ cp myd_ld25x_2G_defconfig test_ld25x_2G_defconfig

$ ls test_ld25x_2G_defconfig -la

-rw-rw-r-- 1 beste beste 1963 8 1 15:23 test_ld25x_2G_defconfig

After these steps, the board should be mostly customized. If you need to compile

with Yocto, you will also need to adjust the U-Boot defconfig settings in the layers

accordingly.

$ vi layers/meta-myir/meta-myir-stm32mp/recipes-bsp/u-boot/u-boot-stm32mp

-config.inc

...

UBOOT_CONFIG[default_stm32mp25] ?= "test_ld25x_2G_defconfig,,u-boot.dtb"

...

3) Compile

After submitting the modified U-Boot to Git, you need to compile it using Yocto.

Please refer to section 4.2.2 for the details on how to perform this compilation.

http://www.myir.cn
http://www.myirtech.com

- 37 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

6.3. How to Create Your Device Tree

Introduction to the Device Tree Hierarchy

A device tree is a data structure that describes the hardware layout of a system

using a specific syntax. It stores information about both on-chip and off-chip

devices. The device tree file is compiled into a Device Tree Blob (DTB) file by U-

Boot or the kernel. During operation, this DTB is parsed to retrieve board-level

device information. The DTB used by U-Boot and the kernel are consistent with

each other.

1) Device Tree for MYIR-ST-U-Boot

Below is a list of the device tree files used in U-Boot for the MYD-LD25X board,

for user reference:

Table 6-2. MYD-LD25X U-Boot Device Tree List

Component Device Tree File Description
U-boot arch/arm/dts/myb-stm32mp257x-2GB.dts Device tree definition file for 2GB

RAM in U-Boot
arch/arm/dts/myb-stm32mp257x-2GB-resmem.dtsi Include file for reserved memory

device tree configuration for 2GB
RAM

arch/arm/dts/myb-stm32mp257x-2GB-u-boot.dtsi U-Boot specific device tree
configuration include file

arch/arm/dts/myb-stm32mp257x-1GB.dts Device tree definition file for 1GB
RAM in U-Boot

arch/arm/dts/myb-stm32mp257x-1GB-resmem.dtsi Include file for reserved memory
device tree configuration for 1GB
RAM

arch/arm/dts/myb-stm32mp257x-1GB-u-boot.dtsi U-Boot specific device tree
configuration include file

arch/arm/dts/myb-stm32mp257x-base.dtsi Base device tree configuration
include file

When compiling the U-Boot source code for MYD-LD25X, all related .dts and .dtsi

files are merged to generate the default myb-stm32mp257x-2GB.dtb used in the

U-Boot stage.

2) Device Tree for MYIR-ST-Linux

The device tree hierarchy for MYIR-ST-Linux is as follows: myb-stm32mp257x-

base.dtsi + myb-stm32mp257x-ethswitch.dtsi + myb-stm32mp257x-2GB-

resmem.dtsi -> myb-stm32mp257x-2GB-ethswitch.dts and myb-stm32mp257x-

http://www.myir.cn
http://www.myirtech.com

- 38 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

2GB.dts. Below is a detailed list of the device tree files for MYD-LD25X for user

development reference:

Table 6-3. MYD-LD25X Linux Device Tree List

Compone
nt

Device Tree File Description

Kernel arch/arm64/boot/dts/myir/myb-stm32mp257x-
2GB.dts

Device tree definition file for 2GB
RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB-
ethswitch.dts

Device tree definition file for 2GB
RAM with Ethernet switch

arch/arm64/boot/dts/myir/myb-stm32mp257x-2GB-
resmem.dtsi

Include file for reserved memory
device tree configuration for 2GB
RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-
1GB.dts

Device tree definition file for 1GB
RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB-
ethswitch.dts

Device tree definition file for 1GB
RAM with Ethernet switch

arch/arm64/boot/dts/myir/myb-stm32mp257x-1GB-
resmem.dtsi

Include file for reserved memory
device tree configuration for 1GB
RAM

arch/arm64/boot/dts/myir/myb-stm32mp257x-
base.dtsi

Base device tree configuration
include file

arch/arm64/boot/dts/myir/myb-stm32mp257x-
ethswitch.dtsi

Ethernet switch device tree
configuration include file

6.3.1. Adding Device Trees

1) Uboot create a device tree

 Creating Device Trees in U-Boot

Enter the arch/arm/dts directory from the root of the source code, copy myb-

stm32mp257x-2GB.dts to test-stm32mp257x-2GB.dts. The 1GB configuration is

similar, just select the device tree corresponding to 1GB. For 2GB, refer to the

following:

$ cp myb-stm32mp257x-2GB.dts test-stm32mp257x-2GB.dts

 Modify the Device Tree Makefile

Edit the Makefile in the same directory to include the new device tree. Add the

following content:

...

dtb-$(CONFIG_STM32MP25X) += \

stm32mp257f-dk.dtb \

test-stm32mp257x-2GB.dts \

http://www.myir.cn
http://www.myirtech.com

- 39 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

...

 Modify the Board Configuration File

Next, go to the configs directory in the source directory and update the default

device tree in the test_ld25x_2G_defconfig configuration file:

...

CONFIG_ENV_SECT_SIZE=0x80000

CONFIG_DEFAULT_DEVICE_TREE="test-stm32mp257x-2GB"

...

2) Creating Device Trees in the Kernel

For MYiR series device trees located in arch/arm64/boot/dts/myir, you can create

a new device tree by copying an existing MYiR device tree and renaming it. Follow

a similar process to that used for U-Boot. Please refer to the steps mentioned

above.

6.4. Configuring CPU Function Pins for Your Hardware

Implementing pin functionality control is a complex system development process

that involves pin configuration, driver development, and application

implementation. This section will explain pin control implementation through an

example.

6.4.1. GPIO Pin Configuration Methods

On the MYD-LD25X board, most IO pin definitions are in the

arch/arm64/boot/dts/myir/myb-stm32mp257x-base.dtsi device tree file. The ST

official documentation provides IO mux functionalities and corresponding IOPAD

attributes for each IO pin, so users need only include the macros for the desired

IO pins and functionalities in the array.

1) View the Pinctrl Configuration Rules

st pinctrl configuration format：#define STM32_PINMUX(port, line, mode)

(((PIN_NO(port, line)) << 8) | (mode))

Where：

http://www.myir.cn
http://www.myirtech.com

- 40 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

 Port: Represents the GPIO port, such as the character ‘D’ in pin PD11.

 Line: Indicates the pin number within its port, starting from 0. For example,

pin 11 in PD11.

 Mode: Represents the mode value for the pin's operational mode.

For mode values, refer to the parameter definitions in the file include/dt-

bindings/pinctrl/stm32-pinfunc.h.

/* define PIN modes */

#define GPIO 0x0

#define AF0 0x1

......

#define AF13 0xe

#define AF14 0xf

#define AF15 0x10

#define ANALOG 0x11

#define RSVD 0x12

2) Configure GPIO in the Device Tree

To request and allocate hardware resources using the DTS file, you can configure

the GPIO in the myb-stm32mp257x-base.dts file. Define the LED device node as

follows:

gpio_leds_test {

compatible = "gpio-leds";

led0 {

label = "LED-Blue";

gpios = <&gpioz 5 GPIO_ACTIVE_HIGH>;

default-state = "on";

linux,default-trigger = "heartbeat";

};

};

http://www.myir.cn
http://www.myirtech.com

- 41 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

6.5. Using Configured Pins

Once you have configured the pins in U-Boot or the kernel device tree, you can

use these pins within U-Boot or the kernel to control them.

6.5.1. Using GPIO Pins in U-Boot

1) Controlling GPIO via U-Boot Command Line

U-Boot allows direct control of GPIO pins through commands. For instance, to

control a User LED on the development board with GPIO pin PH4, you can use the

following commands. The pin number calculation for GPIO PH4 is as follows:

Note: 72 is the ASCII value of 'H', and 65 is the ASCII value of 'A'.
STM32MP> gpio clear 116

gpio: pin 116 (gpio 116) value is 0

STM32MP> gpio set 116

gpio: pin 116 (gpio 116) value is 1

This will allow you to see the User LED (D8) on the development board turn on

and off.

2) Controlling GPIO via U-Boot Code

You can also control GPIO values within U-Boot code. For example, to control the

power reset of a PHY, you might implement it in the U-Boot code as follows:

 Using the Reset Pin in U-Boot

To use a reset pin in U-Boot, you can modify the file board/myir/myd-ld25x/myd-

ld25x.c. Here’s an example of how to use the reset pin in your U-Boot code:

static void led_gpio(void)

{

unsigned int gpio_led=116;

gpio_request(gpio_led, "led-gpio");

gpio_direction_output(gpio_led, 0);

gpio_set_value(gpio_led, 0);

gpio_free(gpio_led);

}

http://www.myir.cn
http://www.myirtech.com

- 42 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

7. Application Development and

Deployment

Porting Linux applications generally involves two phases: development and

debugging, and production deployment. During the development and debugging

phase, you can use the SDK provided by your hardware vendor to cross-compile

your applications and then transfer them to the target machine for testing. For the

production deployment phase, you need to write recipe files for your application

and use Bitbake to build the production image.

7.1. Applications Based on Makefile

Porting Linux applications generally involves two phases: development and

debugging, and production deployment. During the development and debugging

phase, you can use the SDK provided by your hardware vendor to cross-compile

your applications and then transfer them to the target machine for testing. For the

production deployment phase, you need to write recipe files for your application

and use Bitbake to build the production image.

7.1. Applications Based on Makefile

A Makefile is essentially a document that defines a set of build rules and contains

detailed information on how to compile the source code. Once a Makefile is

written, you can use a single make command to automate the entire build process,

significantly improving development efficiency. Makefiles are widely used in the

development of Linux programs, including kernels, drivers, and applications.

make is a command-line tool that interprets the instructions in the Makefile. It

simplifies the compilation process by executing the commands specified in the

Makefile. When you run make, it looks for a file named Makefile (or makefile) in

http://www.myir.cn
http://www.myirtech.com

- 43 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

the current directory and executes the corresponding commands. make

automatically determines if source files have changed and recompiles only the

modified files.

Here is an example illustrating how to write and execute a Makefile for a simple

application that controls a button on the MYD-LD25X development board.

A Makefile follows a specific structure:

target ...: prerequisites ...

command

 target: This can be an object file, an executable, or a label.

 prerequisites: These are the files or targets needed to generate the target.

 command: These are the commands that make needs to execute.

TARGET = $(notdir $(CURDIR))

objs := $(patsubst %c, %o, $(shell ls *.c))

$(TARGET)_test:$(objs)

$(CC) -o $@ $^

%.o:%.c

$(CC) -c -o $@ $<

clean:

rm -f $(TARGET)_test *.all *.o

Parameter Descriptions:

 $(CURDIR): Represents the full path of the current directory where the

Makefile is located.

 $(notdir $(path)): Removes the path from $(path) and keeps only the

current directory name. For example, if the current Makefile directory

is /home/myir/MYD-LD25X/key_led, it will become TARGET = key_led.

 $(patsubst pattern, replacement, text): Replaces occurrences of pattern

in text with replacement. For example, $(patsubst %c, %o, $(shell ls *.c))

lists all .c files in the current directory and replaces their extension

with .o.

 CC: The name of the C compiler.

 CXX: The name of the C++ compiler.

http://www.myir.cn
http://www.myirtech.com

- 44 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

 clean: A conventional target used to clean up the build directory by

removing generated files.

Key Implementation Code:

#include <linux/input.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/ioctl.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

/* ./key_led /dev/input/event1 noblock */

int main(int argc, char **argv)

{

int fd,bg_fd;

int err, len, i;

unsigned char flag;

unsigned int data[1];

char *bg = "/sys/class/leds/LED-Blue/brightness";

struct input_event event;

system("echo none > /sys/class/leds/LED-Blue/trigger");

if (argc < 2)

{

printf("Usage: %s <dev> [noblock]\n", argv[0]);

return -1;

}

if (argc == 3 && !strcmp(argv[2], "noblock"))

http://www.myir.cn
http://www.myirtech.com

- 45 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

{

fd = open(argv[1], O_RDWR | O_NONBLOCK);

}

else

{

fd = open(argv[1], O_RDWR);

}

if (fd < 0)

{

printf("open %s err\n", argv[1]);

return -1;

}

while (1)

{

len = read(fd, &event, sizeof(event));

if (event.type == EV_KEY)

{

if (event.value == 1)//key down and up

{

printf("key test \n");

bg_fd = open(bg, O_RDWR);

if (bg_fd < 0)

{

printf("open %d err\n", bg_fd);

return -1;

}

read(bg_fd,&flag,1);

if(flag == '0')

system("echo 1 > /sys/class/leds/LED-Blue/brig

htness"); //led on

else

http://www.myir.cn
http://www.myirtech.com

- 46 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

system("echo 0 > /sys/class/leds/LED-Blue/brightnes

s");//led off

}

}

}

return 0;

}

To compile and generate the executable file target_bin on the target machine

using the make command, follow these steps:

$ source ~/ld25x_toolchian/environment-setup-aarch64-poky-linux

Execute make:

$ make

From the output of this command, you can see that the compiler used is the one

specified by the CC variable defined in the setup script. Transfer the key_led_test

executable file to the target board's /usr/sbin directory using a transfer method

such as SCP or a USB drive. Then, execute the following command on the target

board and press the USER button to observe the blue LED turning on and off:

key_led_test /dev/input/event0

key test

key test

key test

key test

http://www.myir.cn
http://www.myirtech.com

- 47 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

7.2. Qt-Based Applications

Qt is a cross-platform framework for developing graphical applications, used

across various device sizes and platforms. It offers multiple licensing options for

users. The MYD-LD25X uses Qt version 5.15.13 for application development. For

Qt application development, it's recommended to use the Qt Creator integrated

development environment (IDE). This allows for developing Qt applications on a

Linux PC and automatically cross-compiling them for the ARM architecture of the

development board. For more details, refer to the "MYD-LD25X QT Application

Note."

http://www.myir.cn
http://www.myirtech.com

- 48 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

7.3. Configuring Applications for Automatic Startup

1) Automatic Startup Service

The development board system typically includes a default autorun service, which

automatically executes the /usr/bin/autorun.sh script at startup. The

autorun.service file is located in /lib/systemd/system/autorun.service.

To check the status of the autorun service, use the following command:

systemctl status autorun

● autorun.service - auto run hmi after weston

Loaded: loaded (/lib/systemd/system/autorun.service; enabled; preset: ena

bled)

Active: active (running) since Fri 2023-03-03 10:08:52 UTC; 542ms ago

Process: 3912 ExecStart=/usr/bin/autorun.sh (code=exited, status=0/SUCCE

SS)

Main PID: 3919 (mxapp2)

Tasks: 6 (limit: 2032)

Memory: 17.5M

CGroup: /system.slice/autorun.service

└─3919 /usr/sbin/mxapp2

3 03 10:08:53 myd-ld25x autorun.sh[3919]: libpng warning: iCCP: known incorr

ect sRGB profile

3 03 10:08:53 myd-ld25x autorun.sh[3919]: libpng warning: iCCP: known incorr

ect sRGB profile

To add commands that should be executed at startup, you can add them to the

`/usr/bin/autorun.sh` script. This script is automatically run by the `autorun`

service at boot time. Simply append your desired commands to this script to have

them executed on startup.

vi /usr/bin/autorun.sh

source /etc/profile.d/weston_profile.sh

source /etc/profile.d/pulse_profile.sh

/usr/sbin/mxapp2 &

http://www.myir.cn
http://www.myirtech.com

- 49 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

echo "This is a test log" > /dev/ttySTM0

exit 0

The above operation will print a test log to the debug serial port, which can be

observed after a reboot. Note that the logs from the autorun service will appear in

the output of systemctl status, and you can only see these logs through this

command, unless you configure the logs to be redirected to the /dev/ttySTM0

debug serial port.

To restart and verify:

systemctl restart autorun

This is a test log

2) Configuring an Application for Automatic Startup

To have your own application automatically start at boot in Yocto, you can create

a recipe similar to the autorun example found in meta-myir/meta-myir-

stm32mp/recipes-myir/autorun.

Navigate to the autorun package directory:

$ cd sources/meta-myir/meta-myir-stm32mp/recipes-myir/autorun

$ ls

autorun autorun.bb

You will see that the autorun directory contains two parts: a .bb file and a

resources directory with files used in the autorun.bb recipe.

You can follow this example to create a new package called test-app, add it to the

myir-image-core image, and configure it for automatic startup.

Copy the autorun directory and rename it to test-app:

$ cd meta-myir/recipes-myir

$ cp autorun test-app -rf

$ ls

... autorun test-app ...

Next, change all file names within the test-app directory to test-app:

$ cd test-app

http://www.myir.cn
http://www.myirtech.com

- 50 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

$ mv autorun.bb test-app.bb

$ mv autorun/ test-app/

$ cd test-app

$ mv autorun.service test-app.service

In the test-app directory, replace the original autorun application with a simple

test shell script. The content is as follows:

$ ls

licenses autorun test-app.service

$ rm autorun

$ vi test-app.sh #Create a script and add the following content, then save

and close

#!/bin/sh

echo "======This is a test shell script======" > /dev/ttyS0

This script is used to print a test message to the debug serial port. Next, add this

script to the service configuration so that it runs when the test-app.service service

is executed at boot time. The script is assumed to be located in the /usr/bin/

directory of the filesystem.

$ vi test-app.service #Open the service file and modify it to match the f

ollowing content

[Unit]

Description=auto run hmi after weston

After=weston-graphical-session.service

[Service]

#Type=oneshot

Type=forking

#ExecCondition=/usr/bin/pgrep -x weston

ExecStart=/usr/bin/test-app.sh

[Install]

WantedBy=multi-user.target

http://www.myir.cn
http://www.myirtech.com

- 51 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

After making the changes, go up one level to modify the `.bb` file. Open the `.bb`

file and update it to match the content below. It is recommended to copy and

paste the content directly:

$ cd ../

$ vi test-app.bb

SUMMARY = "Test app"

DESCRIPTION = "test application"

LICENSE = "GPL-2"

LIC_FILES_CHKSUM = "file://licenses/GPL-2;md5=94d55d512a9ba36caa9b7df079

bae19f"

S = "${WORKDIR}"

SRC_URI = " \

file://licenses/GPL-2 \

file://test-app.sh \

file://test-app.service \

"

inherit systemd

do_install() {

install -d -m 755 ${D}/etc

install -d -m 755 ${D}${systemd_system_unitdir}

install ${WORKDIR}/test-app.sh ${D}/usr/bin/

install -m 644 ${WORKDIR}/test-app.service ${D}${systemd_system_unit

dir}/test-app.service

}

SYSTEMD_PACKAGES = "${PN}"

SYSTEMD_SERVICE_${PN} = "test-app.service"

SYSTEMD_AUTO_ENABLE_hmi = "enable"

http://www.myir.cn
http://www.myirtech.com

- 52 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

FILES_${PN} += "/"

After saving, the test-app package is created. Next, add test-app to myir-image-

core by opening the core image's .bb file and including test-app:

$ vi meta-myir/recipes-images/images/myir-image-core.bb

....

IMAGE_INSTALL_append = "\

test-app \

Save the changes and build the core image:

$ bitbake myir-image-core

Then, update the built image to the development board and start it to observe

the changes.

http://www.myir.cn
http://www.myirtech.com

- 53 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

8. References

 Linux Kernel Open Source Community

https://www.kernel.org/

 Yocto Project BSP Development Guide

https://www.yoctoproject.org/docs/3.1.1/bsp-guide/bsp-guide.html

 Yocto Project Linux Kernel Development Manual

https://www.yoctoproject.org/docs/3.1.1/kernel-dev/kernel-dev.html

 Yocto Development Guide

https://www.yoctoproject.org/

https://www.kernel.org/
https://www.yoctoproject.org/docs/3.1.1/kernel-dev/kernel-dev.html
https://www.yoctoproject.org/
http://www.myir.cn
http://www.myirtech.com

- 54 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

Appendix A

Warranty & Technical Support Services
MYIR Electronics Limited is a global provider of ARM hardware and software tools, design solutions for

embedded applications. We support our customers in a wide range of services to accelerate your time to

market.

MYIR is an ARM Connected Community Member and work closely with ARM and many semiconductor

vendors. We sell products ranging from board level products such as development boards, single board

computers and CPU modules to help with your evaluation, prototype, and system integration or creating

your own applications. Our products are used widely in industrial control, medical devices, consumer

electronic, telecommunication systems, Human Machine Interface (HMI) and more other embedded

applications. MYIR has an experienced team and provides custom design services based on ARM

processors to help customers make your idea a reality.

The contents below introduce to customers the warranty and technical support services provided by

MYIR as well as the matters needing attention in using MYIR's products.

Service Guarantee

MYIR regards the product quality as the life of an enterprise. We strictly check and control the core

board design, the procurement of components, production control, product testing, packaging, shipping

and other aspects and strive to provide products with best quality to customers. We believe that only

quality products and excellent services can ensure the long-term cooperation and mutual benefit.

Price

MYIR insists on providing customers with the most valuable products. We do not pursue excess profits

which we think only for short-time cooperation. Instead, we hope to establish long-term cooperation

and win-win business with customers. So we will offer reasonable prices in the hope of making the

business greater with the customers together hand in hand.

Delivery Time

MYIR will always keep a certain stock for its regular products. If your order quantity is less than the

amount of inventory, the delivery time would be within three days; if your order quantity is greater than

the number of inventory, the delivery time would be always four to six weeks. If for any urgent delivery,

we can negotiate with customer and try to supply the goods in advance.

Technical Support

http://www.myir.cn
http://www.myirtech.com

- 55 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

MYIR has a professional technical support team. Customer can contact us by email

(support@myirtech.com), we will try to reply you within 48 hours. For mass production and customized

products, we will specify person to follow the case and ensure the smooth production.

After-sale Service

MYIR offers one year free technical support and after-sales maintenance service from the purchase date.

The service covers:

Technical support service

MYIR offers technical support for the hardware and software materials which have provided to customers;

 To help customers compile and run the source code we offer;

 To help customers solve problems occurred during operations if users follow the user manual

documents;

 To judge whether the failure exists;

 To provide free software upgrading service.

However, the following situations are not included in the scope of our free technical support service:

 Hardware or software problems occurred during customers' own development;

 Problems occurred when customers compile or run the OS which is tailored by themselves;

 Problems occurred during customers' own applications development;

 Problems occurred during the modification of MYIR's software source code.

After-sales maintenance service

The products except LCD, which are not used properly, will take the twelve months free maintenance

service since the purchase date. But following situations are not included in the scope of our free

maintenance service:

 The warranty period is expired;

 The customer cannot provide proof-of-purchase or the product has no serial number;

 The customer has not followed the instruction of the manual which has caused the damage the

product;

 Due to the natural disasters (unexpected matters), or natural attrition of the components, or

unexpected matters leads the defects of appearance/function;

 Due to the power supply, bump, leaking of the roof, pets, moist, impurities into the boards, all those

reasons which have caused the damage of the products or defects of appearance;

 Due to unauthorized weld or dismantle parts or repair the products which has caused the damage of

the products or defects of appearance;

http://www.myir.cn
http://www.myirtech.com

- 56 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

 Due to unauthorized installation of the software, system or incorrect configuration or computer virus

which has caused the damage of products.

Warm tips

1. MYIR does not supply maintenance service to LCD. We suggest the customer first check the LCD when

receiving the goods. In case the LCD cannot run or no display, customer should contact MYIR within 7

business days from the moment get the goods.

2. Please do not use finger nails or hard sharp object to touch the surface of the LCD.

3. MYIR suggests user purchasing a piece of special wiper to wipe the LCD after long time use, please

avoid clean the surface with fingers or hands to leave fingerprint.

4. Do not clean the surface of the screen with chemicals.

5. Please read through the product user manual before you using MYIR's products.

6. For any maintenance service, customers should communicate with MYIR to confirm the issue first.

MYIR's support team will judge the failure to see if the goods need to be returned for repair service, we

will issue you RMA number for return maintenance service after confirmation.

Maintenance period and charges

 MYIR will test the products within three days after receipt of the returned goods and inform customer

the testing result. Then we will arrange shipment within one week for the repaired goods to the

customer. For any special failure, we will negotiate with customers to confirm the maintenance period.

 For products within warranty period and caused by quality problem, MYIR offers free maintenance

service; for products within warranty period but out of free maintenance service scope, MYIR provides

maintenance service but shall charge some basic material cost; for products out of warranty period,

MYIR provides maintenance service but shall charge some basic material cost and handling fee.

Shipping cost

During the warranty period, the shipping cost which delivered to MYIR should be responsible by user;

MYIR will pay for the return shipping cost to users when the product is repaired. If the warranty period is

expired, all the shipping cost will be responsible by users.

Products Life Cycle

http://www.myir.cn
http://www.myirtech.com

- 57 -

Development Guide

MYIR Electronics Limited
Web: www.myirtech.com Mail: sales@myirtech.com Tel: +86-755-22984836

MYIR will always select mainstream chips for our design, thus to ensure at least ten years continuous

supply; if meeting some main chip stopping production, we will inform customers in time and assist

customers with products updating and upgrading.

Value-added Services

1. MYIR provides services of driver development base on MYIR's products, like serial port, USB, Ethernet,

LCD, etc.

2. MYIR provides the services of OS porting, BSP drivers' development, API software development, etc.

3. MYIR provides other products supporting services like power adapter, LCD panel, etc.

4. ODM/OEM services.

MYIR Electronics Limited

Room 04, 6th Floor, Building No.2, Fada Road,

Yunli Inteiligent Park, Bantian, Longgang District.

Support Email: support@myirtech.com

Sales Email: sales@myirtech.com

Phone: +86-755-22984836

Fax: +86-755-25532724

Website: www.myirtech.com

http://www.myir.cn
http://www.myirtech.com

	Revision History
	CONTENT
	1.Overview of System Development
	1.1.Software Resources

	2.Setting Up the Development Environment
	2.1.Host Environment
	1)Host Hardware and Software Requirements
	Host Hardware
	Host Operating System

	2)Host Environment Configuration
	Set Root Password
	Install SSH
	Configure Samba
	Configure Git
	Install Necessary Tools

	2.2.Installation of cross-compilation toolchain
	Copy SDK to Linux Directory
	Execute the Installation Script
	Test the SDK

	3.How to Flash the System Image
	4.Separate Compilation and Update of the Board Suppo
	4.1.Introduction to the Board Support Package
	4.2.Bootloader Compilation and Update
	4.2.1.Obtaining U-Boot Source Code
	1)From GitHub
	2)From CD Image

	4.2.2.Compiling the Bootloader
	4.2.3. Updating the Bootloader
	1)Flashing the FIP Firmware Image to the Development
	Flashing fip-myb-stm32mp257x-2GB-optee-emmc.bin to

	4.3.Onboard Kernel Compilation and Update
	4.3.1.Obtaining Kernel Source Code
	1)Getting the Source Code from GitHub
	2)Get the source code from the release information

	4.3.2.Compiling the Kernel
	4.3.3.Updating the Kernel
	1)Replace the Kernel File Image on the Development B
	Replace Image.gz on the eMMC development board or
	2)Replace the Device Tree (dtb) on the Development B

	Replace the device tree file on the eMMC developme
	3)Update Modules on the Development Board

	5.Setting Up a Basic Yocto Environment
	5.1.Introduction
	5.2.Obtaining the Source Code
	5.2.1.Obtaining the Source Code from Release Materials
	5.2.2.Obtaining from GitHub

	5.3.Quick Compilation of Development Board Image
	5.3.1.Execute Environment Variable Setup Script
	MYD-LD25X-8E256D model

	5.3.2.Build the Image
	Build the myir-image-full Image
	Build the myir-image-core Image
	Build the myir-image-burn Image
	Build the Raw File for TF Card Flashing

	5.4.Bulid SDK

	6.Adapting Hardware to the Baseboard
	6.1.Introduction to the meta-bsp Layer
	6.2.How to Create Your Own Machine
	6.2.1.Creating a Board Configuration in Yocto
	1)Select a Similar Machine File
	2)Copy and Rename
	3)Machine Configuration File
	4)Compile and Test

	6.2.2.Creating Board Configuration Files in U-Boot
	1)Create Board
	2)Create the Board .config File
	Modify the New Board Kconfig
	Create the New Board Header File
	Customize the System Board Configuration Filev

	3)Compile

	6.3.How to Create Your Device Tree
	 Introduction to the Device Tree Hierarchy
	1)Device Tree for MYIR-ST-U-Boot
	2)Device Tree for MYIR-ST-Linux

	6.3.1.Adding Device Trees
	1)Uboot create a device tree
	 Creating Device Trees in U-Boot
	Modify the Device Tree Makefile
	Modify the Board Configuration File

	2)Creating Device Trees in the Kernel

	6.4.Configuring CPU Function Pins for Your Hardware
	6.4.1.GPIO Pin Configuration Methods
	1)View the Pinctrl Configuration Rules
	2)Configure GPIO in the Device Tree

	6.5.Using Configured Pins
	6.5.1.Using GPIO Pins in U-Boot
	1)Controlling GPIO via U-Boot Command Line
	2)Controlling GPIO via U-Boot Code
	Using the Reset Pin in U-Boot

	7.Application Development and Deployment
	7.1.Applications Based on Makefile
	7.2.Qt-Based Applications
	7.3.Configuring Applications for Automatic Startup
	1)Automatic Startup Service
	2)Configuring an Application for Automatic Startup

	8.References
	Appendix A

